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Abstract: In order to define efficient air quality plans, Regional Authorities need suitable tools
to evaluate both the impact of emission reduction strategies on pollution indexes and the costs
of such emission reductions. Due to difficulty to cope with the complexity of environmental
models, decision support systems are essential tools to help Environmental Authorities to plan
air quality policies that fulfill EU Directive 2008/50 requirements in a cost-efficient way. Thus,
the main concern is to search for policies capable of taking into account both the environmental
and the economical problems. This work presents a new formalization and the first results of
an optimal control problem, addressing the selection of efficient control policies over a certain
time horizon to reduce air quality pollution. Dynamic programming offers a powerful tool that
allows an iterative formalization of the environmental problem as a constrained optimal control
problem. An objective function has to be minimized along a given finite time horizon. A set of
dynamic varying constraints on the applicability thresholds of emission reduction technologies
(control variables) is considered. When minimizing the objective function, the nondecreasing
property of each technology application level and the maximum feasible reduction levels have
been constrained. This approach has been tested over the Lombardia region in northern Italy.

Keywords: Air quality, non-linear control, integrated assessment, optimal control, dynamic
programming.

1. INTRODUCTION

The key problem of air quality Decision Makers is to
develop suitable emission control strategies, aimed at im-
proving air quality through the reduction of pollutant. Due
to the non-linearities involved the pollutant dynamics, it is
very challenging to develop sound air quality policies. This
task is even more difficult when considering at the same
time air quality improvement and policy implementation
cost.

In literature the following methodologies, namely based
on Integrated Assessment Modeling, are available to eval-
uate alternative emission reductions: (a) scenario analysis
(Thunis et al., 2007), (b) cost-benefit analysis (Rabl et al.
(2005), Reis et al. (2005)) (c) cost-effectiveness analysis
(Shih et al. (1998), Carslon et al. (2004)) and (d) multi-
objective analysis (Guariso et al. (2004), Carnevale et al.
(2007)). Scenario analysis is performed by evaluating the
effect of an emission reduction scenario on air quality, us-
ing modeling simulations. Cost-benefit analysis monetizes
all costs and benefits associated to an emission scenario in
a target function, searching for a solution that maximizes
the objective function. Due to the fact that quantifying
costs and benefits of non material issues is strongly affected
by uncertainties, the cost-effective approach has been in-
troduced. It searches the best solution considering non
monetizable objectives as constraints (without internaliz-
ing them in the optimization procedure). Multi-objective
analysis selects the efficient solutions, considering both air

quality and costs into an objective function, and stressing
possible conflicts among them.

The multi-objective analysis has rarely been faced in liter-
ature, due to the difficulties to include in the optimization
problem the non-linear dynamics involved in ozone for-
mation. The precursors-pollution relationship can be sim-
ulated by deterministic 3D modeling systems, describing
chemical and physical phenomena generating tropospheric
ozone. Such models, due to their complexity, require high
computational time and they are not implementable in
an optimization problem, which needs thousands of model
runs to find solutions. So, it is required to identify sim-
plified models synthesizing the relationship between the
precursor emissions and ozone concentrations. In liter-
ature source-receptor relationships have been described
using ozone isopleths (Shih et al., 1998), or with reduced
form models such as (a) simplified photochemical models,
adopting semi-empirical relations calibrated with experi-
mental data (Venkatram et al., 1994), and (b) statistical
models, identified on the results of complex 3D Chemi-
cal Transport Models (Friedrich and Reis (2000), Ryoke
et al. (2000), Guariso et al. (2004)). Therefore, all of these
approaches do not consider the strategic issue due to the
fact that different decisions can be taken in different times,
making the optimization, essentially static. In this paper, a
new integrated assessment methodology is proposed. The
problem has been defined at the beginning as a nonlinear
programming problem, taking into account the time, so,
the decision can be taken due to i.e. time varying budget
limits. In this way, air quality plans become dynamic
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strategies: a series of different decisions that, every year,
have to be taken to reach the final air quality objective.

The paper is organized as follows: in Section 2 the problem
is formulated and in Section 3 it is recast as an optimal
control problem. Section 4 is devoted to the presentation
of a computationally feasible approach and, in section 5, a
case study is presented and discussed. Finally, conclusions
are drawn in section 6.

2. PROBLEM FORMULATION

Consider a given domain, divided, for the sake of environ-
mental modeling, into a given number n of cells (Carnevale
et al., 2012b).
Consider a set of m given technologies, each of them char-
acterized by an application level between 0% and 100%
and a vector u containing all the application levels that
characterizes all the technologies that can be applied to
reduce emission levels over the domain at a certain time.
Also, consider an environmental model which relates tech-
nology application levels u to a given air quality index x
(e.g., PM10). Vector x has n elements, one for each cell of
the studied domain.
Finally, consider a cost function g(u), that express the
annual cost for a given application level vector u.
As said before, the aim of this work is to plan an optimal
air quality policy over a finite time horizon of T years,
considering both economical and technical aspects. In the
next subsections we will formalize all the elements needed
in order to correctly state the problem.

2.1 The environmental model

The environmental model that adopted for this work, given
a certain application level vector u(t), generates the air
quality index vector x(t + 1) for the considered domain
and for the following year; that is:

x(t+ 1) = f(e(u(t))), (1)

where e(·) is a the application levels-to-emissions function
and f(·) is the emissions-to-air quality indexes function.
In this paper, according to (Carnevale et al., 2012b), e(·) is
a linear application, basically an n×mmatrix. Conversely,
f(·) should take into account all the complex and non
linear characteristics of secondary pollution. Nevertheless,
considering that the devised model will run into an opti-
mization procedure, f(·) should not be excessively compu-
tationally demanding. In oder to meet these requirements,
here, surrogate models based on artificial neural networks
(ANNs) are employed. The choice of ANNs instead of more
complex deterministic models is due to the need to reduce
the computational burden without losing the non-linear
relations between the control variables and the output
variables. A detailed explanation of the employed artificial
neural network is out of the scope of the paper, the reader
may conveniently refer to (Carnevale et al., 2012a) for
details. It is worth to stress that the choice of one year
as time step is due to the fact that budget allocation is
made once in a year by the policymaker.
Finally, to find a cost-effective solution to the environ-
mental problem, the technologies-to-cost relation has been
modeled leading to

c(t) = g(u(t)), (2)

where, c(t) is the annual cost of the environmental policy
at the y year and, again, g(·) is a linear application, that
is, a 1×m matrix (Carnevale et al., 2012b).

2.2 Constraints

In order to achieve a cost-effective and technically feasible
solution, the optimization problem must be constrained.In
particular, in this work, two sets of constraints are taken
into account: one considers the technological aspects of the
problem, while, the other, states that the problem must be
solved under a given annual budget.

Technological constraints Technological constraints are
the most complex ones. They require to enlarge the state
vector in order to obtain a technically sound solution.
The first set of (static) technological constraints is given
by

u(t) ∈ U , (3)

where U is a set that describes the maximum and the
minimum application level of each technology. This set of
non dynamic constraints, allows the decision variable to
assume values only in a certain range, fixing for each of
them the lower bound LB and the upper bound UB and
takes into account the unfeasibility of solutions allowing to
reduce more than the emission due to a certain activity or
the application of two competitive technologies. Even if the
number of this constraints can be quite high (hundreds),
their formalization is quite easy, as they can be expressed
as a linear inequality system.
The second set of technological constraints is dynamic
varying and considers that, evidently, for technological
and social reasons, the application level of each technology
should never decrease along the decision horizon. In order
to formalize this constraint, the state vector has been
enlarged to [x, umin]

T . The non decreasing constraints are
automatically embedded into the state transition by using
the max(·) function leading to

{

x(t+ 1) = f(e(max(u(t), umin(t))))
umin(t+ 1) = max(u(t), umin(t)),

(4)

where umin(t) is a m × 1 vector and represents the mini-
mum application level of each technology in order to obtain
a non-decreasing solution and its initial value is equal to
the application level at t = 0

Remark 1. It is worth noting that the model (1) is a
multidimensional moving average system. Because of the
enlarged state vector, now (4) has an autoregressive part,
so, (4) is an autoregressive moving average model.

Economical constraints These constraints are respon-
sible for the achievement of a cost-effective solution. An
annual budget b(t), that annually increases of a quantity
∆b(t) along the environmental policy time horizon is con-
sidered, that is

b(t+ 1) = b(t) + ∆b(t). (5)

The economical policy, also considering the second part of
(4), is described by the following equality constraint

b(t) = g(max(u(t), umin(t))). (6)

In turn, the previous constraints state that the annual
budget must be completely used in such a way that, at
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year t, the application levels are higher than those of the
previous year.
Note that, once defined the annual budget increase
∆b(t), t = 0, . . . , T−1, the economical policy is completely
defined. This information is supposed to be known. Also
note that the level of use of a given technology cannot
decrease in order to be realistic. As a consequence, the
budget allocated at a given year on a given technology
cannot be reallocated on new ones the next years.

Remark 2. Reducing the level of use of a given technology
is not feasible since it means to dismiss a technology in
few years from the investment, usually before the end of
its service life.

The constrained problem Now we are ready to formalize
the model and the constraints in a compact form. Putting
together equations (1)-(6) we finally obtain (Carnevale
et al., 2013)

{

x(t+ 1) = f(e(max(u(t), umin(t))))
umin(t+ 1) = max(u(t), umin(t))
b(t+ 1) = b(t) + ∆b(t),

(7)

subject to

u(t) ∈ U ;
b(t) = g(max(u(t), umin(t)));
t ≤ T ;

(8)

where the last constraint define the policy time horizon T .

3. THE OPTIMAL CONTROL PROBLEM

In order to completely setup the optimal control problem
we must formalize an objective function to be minimized.
We use here a dynamic programming approach (Luen-
berger, 1979). Accordingly, the objective function to be
minimized subject to (8) is:

J(u) = l(x, umin, u) + Ψ(x(T ))

=

T−1
∑

t=0

h(x(t)) + g(u(t)) + Ψ(x(T )).
(9)

where h(·) is the air quality improvement objective func-
tion, g(·) is the cost function and Ψ(·) is a function of the
final state.
The h(·) function can be defined in several ways (e.g. the
average air quality index over the considered domain or
the numbers of peaks of pollutants over the considered
domain and so on). Note that, depending on the way h(·)
and Ψ(·) are defined, the previous objective function allows
the designer to deal the trade-off between costs and air
quality improvements.
Nevertheless, since the cost problem is addressed in the
constraints, the cost function is not needed into the prob-
lem constraints, because the value of g(u(t)) along the
policy horizon is imposed by the second of (8). A further
simplification can be obtained considering that, in order to
obtain a reasonable solution, h(·) and Ψ(·) should not op-
erate against each other. Bearing the previous reasoning,
a possible simple solution is to chose h(·) = Ψ(·) leading
to the following objective function

J(u) = l(x) =
T
∑

t=0

h(x(t)), (10)

The previous objective function has to be minimized
considering the dynamic model (7) subject to the set of
constraints (8).

3.1 Optimal return function

In order to solve an optimal control problem, the general
approach is to define an optimal return function associated
to it (Luenberger, 1979). The general structure of the
optimal return functions, to be used for the optimization,
is

V(x, T − i) = min
u(T−i)∈C

[l(x(T − i), u(T − i))

+ min
u(T−i+1)∈C

[l(s(x(T − i), u(T − i)), u(T − i + 1))

+ min
u(T−i+2)∈C

[l(s(s(x(T − i), u(T − i)), u(T − i+ 1)),

u(T − i+ 2))
...
+ min

u(T−i+m)∈C

[l(s(. . . s(s(x(T − i), u(T − i)), u(T − i+ 1)),

. . . , u(T − i+m− 1)), u(T − i+m))

...
+ min

u(T−1)∈C

[l(s(. . . s(s(x(T − i), u(T − i)), u(T − i+ 1)),

. . . , u(T − 2)), u(T − 1))
+Ψ(s(s(. . . s(s(x(T − i), u(T − i)), u(T − i+ 1)),
. . . , u(T − 2)), u(T − 1)))]]] . . .] . . .],

(11)
being C a generic set of constraints and s(·) a generic state
transition function.
For the proposed problem, considering the model (7) and
the objective function (10), the previous equation becomes

V(x, umin, T ) = h(x(T ));

V(x, umin, T − 1) = min[h(x(T − 1))
+h(f(e(max(u(T − 1), umin(T − 1)))))];

V(x, umin, T − 2) = min[h(x(T − 2))

+min[h(f(e(max(u(T − 2), umin(T − 2)))))

+h(f(e(max(u(T − 1),max(u(T − 2), umin(T − 2))))))]];
...

(12)
subject to the set of constraints (8).
In order to solve the optimal control problem, an ex-
pression for the optimal return function (12) has to be
obtained.
For very specific problems, in general, it is quite difficult
to obtain a closed-form analytic expression for the optimal
return function. The best way to solve these problems
is to use numerical methods, but this approach requires
an enormous computational effort. However, the problem
cannot be split into simpler subproblems because of the
autoregressive part of the state vector umin, (i.e., the
non decreasing constraint). Hence, considering the high
number of state variables (n + m) and input variables
(m) typical of environmental models, it is not numerically
tractable as it is.
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4. A FEASIBLE SUBOPTIMAL SOLUTION

In this section we propose an approach to simplify the
previous problem and, at the same time we present a
criterion to evaluate the distance between the obtained
suboptimal solution and the optimal one.
As previously said, in the optimal return function, the
autoregressive part only depends on the non decreasing
constraint max(u(T − i), umin(T − i)), i = 1, . . . , T . In
order to reduce the computational burden, we propose here
to change the non decreasing constraint into

u(t) ≤ usubopt(t+ 1), t = T − 1, . . . , 1, (13)

where usubopt is the suboptimal solution of the problem,
namely, the solution of the control problem originated from
the following model

{

x(t+ 1) = f(e(max(u(t), umin(t))))
b(t+ 1) = b(t) + ∆b(t),

(14)

subject to
u(t) ∈ U ;
b(t) = g(u(t));
t ≤ T ;
u(t) < usubopt(t+ 1);

(15)

Starting from (14) and considering the objective function
(10), we easily obtain the following return function

V(x, umin, T ) = h(x(T ));

V(x, umin, T − 1) = min[h(x(T − 1)) + h(f(e(u(T − 1))))];

V(x, umin, T − 2) = min[h(x(T − 2))
+min [h(f(e(u(T − 2)))) + h(f(e(u(T − 1))))]] ;
...

(16)
subject to (15).
The previous optimization problem can be solved numer-
ically in an iterative way. Indeed, by defining

usubopt(T + 1) := UB (17)

and by backward solving the problem, the optimal value at
a given time T−i, i = 0, . . . , T only depends on the actual
state x(T − i) and on the actual constraints u(T − i) ∈ U ,
b(T − i) = g(u(T − i)). Basically, the dynamic program-
ming problem reduces to solving T algebraic optimization
problems, that is, the optimal control problem can be
divided into simpler subproblems. Thus, the numerical
burden only shows a linear increase with respect to the
time horizon. Note that, despite being suboptimal, the
obtained solution remains economically and technically
sound. Indeed, substituting the non decreasing constraint
with (13) guarantees anywaymonotonicity, hence technical
feasibility of solution usubopt.

4.1 Performance evaluation

Clearly, we must be able to quantitatively evaluate how
far the obtained solution is from the optimal one. In order
to do that, we note that if we simply remove the nonde-
creasing constraint, we can define a third optimal control
problem: minimize (10) with the model (14) subject to the
constraints

u(t) ∈ U ;
b(t) = g(u(t));
t ≤ T.

(18)

Apart from a missing non decreasing constraint (the fourth
of (15)), the previous optimal control problem is exactly
the same as the one that leads to (16), hence, the optimal
return function is identical, as well as the reduced compu-
tational burden.
Nevertheless, because of the missing constraints, the ob-
jective function obtained with the solution of this new
control problem (called unconstrained optimal solution),
has always lower values than the ones that would have been
obtained by solving the original problem (called optimal
solution). Moreover, since the new problem leads to an
algebraic optimization for each year in the policy horizon,
the optimization function remains lower (or equal) for each
time instant along the policy horizon.
Conversely, being the suboptimal solution monotonic and,
again, being algebraically solvable for each time instant,
the optimization function remains, by construction, higher
(or equal) than the one that would have been obtained by
solving the original problem. Hence, it has to be that

h(f(e(uopt(t)))) ≤ h(f(e(uconstropt(t))))
≤ h(f(e(usubopt(t)))),

(19)

being uopt the unconstrained optimal solution and uconstropt

the solution of the original problem. uconstropt is unknown,
otherwise all the solutions would be meaningless, but uopt

and usubopt can be obtained through numerically tractable
optimization and they give quantitative information by
upper bounding the distance between the suboptimal so-
lution and the the optimal one.
Finally, note that, if the unconstrained optimal solution is
already non decreasing in each components of the vector
u, the non decreasing constraint can be dropped, consid-
erably simplifying the optimization problem, because, in
this case, uopt = uconstropt = usubopt.

5. A CASE STUDY: PM10 OVER LOMBARDIA

The proposed methodology has been tested over Lom-
bardia region in northern Italy. The data used to iden-
tify the neural network models has been provided by
a set of 20 simulations computed through the TCAM
(Transport Chemical Aerosol) model (Carnevale et al.,
2008). The Internal Cost Index (CI) describes the cost
to implement a particular emission reduction policy. This
index is computed by means of ANNs linking emission
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Fig. 1. PM10 concentration [µg/m3] over the selected
domain at the beginning of the air quality policy (year
0).
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Fig. 2. PM10 concentration [µg/m3] over the selected
domain at the middle of the air quality policy (year
5) using the unconstrained optimal solution.
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Fig. 3. PM10 concentration [µg/m3] over the selected
domain at the middle of the air quality policy (year
5) using the suboptimal solution.

reductions and their relative implementation cost, for dif-
ferent CORINAIR macro sectors. The data used to iden-
tify the emission-to-cost models have been provided by
IIASA through GAINS Europe database (Carnevale et al.,
2012b). The solutions of the decision problem are shown
for Lombardia region, one of the most polluted areas in
Europe, with a delta budget of ∆b(t) = 50MEuros per
year has been considered over a time horizon of T = 10
years.
The computation of the suboptimal solution over a set of
approximately 130 technologies together with the compu-
tation of the unconstrained optimal solution has required
less than 580 s, using Matlab on a commercial quadcore
processor.

Figure 1 shows the PM10 distribution over Lombardia
at the beginning of the air quality improvement policy,
while Figures 2 and 3 show the PM10 distribution using,
respectively, the unconstrained optimal and the subop-
timal solution. It can be noticed that the two PM10
distributions are not distinguishable. This means that,
for the proposed case study, it holds f(e(uopt(5))) =
f(e(uconstropt(5))) = f(e(usubopt(5))). It is worth stressing
that this set of equalities implies (19), but, in general, the
contrary is not true. Finally, Figure 4 shows the PM10
distribution over Lombardia at the end of the air quality
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Fig. 4. PM10 concentration [µg/m3] over the selected
domain at the end of the air quality policy (year 10)
using the suboptimal solution or the unconstrained
optimal solution.
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policy horizon using the unconstrained optimal (dot-
ted line) and the suboptimal (solid line) solutions.
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Fig. 6. Average air quality index difference in percentage
using the unconstrained optimal and the suboptimal
solutions.

improvement strategy. At t=T=10 it always holds, by
construction and independently from the considered case,
that uopt(T ) = uconstropt(T ) = usubopt(T ). Indeed, the
suboptimal solution is obtained by backward solving the
dynamic programming problem. Hence, it holds that at
t=T all the solutions lead to the same technology applica-
tion level. Note that this set of equalities stronger implies
the previous one and, in general, only holds t = T .
It is interesting to analyze the technology application levels
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Fig. 7. Average air quality index (PM10 concentration
[µg/m3]) using the optimal (dotted line) and the
suboptimal (solid line) solutions.

differences between two consecutive years. For the sake
of brevity only the changes between the first and the
second year of the control horizon are considered here,
as Figure 5 shows. It immediately appears that at t = 2
uopt(2) 6= usubopt(2). It can be also noticed that, the differ-
ences between the technology application levels change in
sign using the unconstrained optimal solution, while the
suboptimal solution, as expected, guarantees a monotonic
behavior.
Finally, Figures 6 and 7 show that, for the proposed
case, the values of the air quality indexes (i.e., average
PM10 over Lombardia) are the same both using the un-
constrained optimal and the suboptimal solutions, even
though the technology application levels are different. This
allows the user to quantify the loss of performance ob-
tained with the suboptimal solution with respect to the
(unknown) constrained optimal one. For the proposed case
study the set of inequalities (19) is practically a set of
equalities.

Remark 3. The negative values in Figure 6 depend on the
numerical optimization process and they are not inconsis-
tent with (18) because of their negligible entity (lower than
0.02%).

6. CONCLUSION

In this work, an air quality control problem has been
formalized and solved as a non-linear dynamic program-
ming problem. The general structure of the optimal return
function for the stated problem has been defined and the
approximation leading to a computationally sustainable
suboptimal solution has been presented. Moreover, the
differences between the computed suboptimal solution and
the optimal one have been investigated. The methodology
has been applied to the PM10 control problem over the
Lombardia region in the northern Italy domain with a time
horizon of 10 years. The results show that the application
of the control strategy leads to an improvement of air
quality, in particular in the central part of Lombardia
region.

This work is a first step for the implementation of a
suitable long-term planning decision support system that
could help Regional Authorities in the selection of optimal
(in terms of both cost and air quality) emission control
strategies.
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