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Abstract: We are motivated by the idea of finding feedback laws for rotations that only require
transmission of scalar signals. In particular, we develop an extremum seeking control law for systems
living on the special orthogonal group. In addition, we equip our system with the capability of obstacle
avoidance using the idea of navigation functions, along the lines of Koditschek and Rimon [1990].

1. INTRODUCTION

1.1 Motivating Scenario

Assume a scenario in which a satellite is equipped with a
telescope and the goal is to navigate the satellite to a reference
configuration R∗ of its state space, which are the rotation ma-
trices. In doing so, one is restricted to sparse communication;
Specifically, it is only possible to transmit scalar-valued signals
ξ . In addition, the satellite must avoid certain orientations Oi
as for instance the telescope shall not face the direction of
the sun. Therefore, we are interested in finding state feedback
laws based only on scalar information that drive a dynamical
system on the rotation matrices from an initial rotation to a
target rotation whilst avoiding certain “obstacle” rotations.

1.2 Previous Work

To approach the problem described in subsection 1.1, we em-
ploy two methodologies – The path planning problem is ad-
dressed using the principles of navigation functions. The feed-
back law based on scalar information can be derived by means
of extremum seeking.

When we say path planning problem, we mean what Kavraki
and LaValle [2008] call the piano mover’s problem, i.e. finding
a continuous path from initial to target configuration avoiding
obstacles and not leaving the workspace. The problem was
initially posed by Reif [1979] in a yet different fashion. One
solution to the problem that has also significantly motivated
our study is to employ a navigation function, which has been
proposed by Koditschek [1987]. The idea was formalized for
so-called sphere worlds by Koditschek and Rimon [1990]. A
problem closely related to the one presented herein was dis-
cussed by Rimon [1991]. Dürr et al. [2013a] solved a path plan-
ning problem using scalar feedback by employing extremum
seeking. Global stability properties of extremum seeking in
Euclidean space was proven by Tan et al. [2006] and Dürr
et al. [2013a]. For a general introduction to extremum seeking
systems, we refer to Ariyur and Krstić [2003]. The above results
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do not apply to SO(3) due to its non-Euclidean structure. We
will outline this on an example.

For the solution to the problem posed in subsection 1.1, it
remains to construct a dynamical system (i) that evolves on
the rotation matrices, (ii) that avoids obstacles in the sense of
a path planning problem and (iii) that (practically) stabilizes
the destination point, i.e. it incorporates feedback into the path
planning problem in the sense of Koditschek.

1.3 Contribution and Structure of the Paper

We are going to use the distance function of R3×3 to measure
the distance to the target configuration as well as the distance to
the obstacles. From this function, we will construct a navigation
function in R3×3. Thereafter, we restrict the resulting system to
SO(3). To be able to rely only on scalar signals, we construct an
extremum seeking system whose solution stays “close” to the
solution of the gradient system for the navigation function.

The remainder of the paper is structured as follows; In section
2, we formalize our setup and state the problem that we are
going to solve. Section 3 introduces some basic methods and
notions that are relevant for this work. Therein, subsection 3.1
introduces basic facts on navigation functions, subsection 3.2
contains stability definitions, and subsection 3.3 explains essen-
tial facts on extremum seeking systems. We present our main
result in section 4, where we elaborate the stability properties
of the proposed solution. An additional result regarding the
proposed navigation function has been moved to Appendix A.
We validate our ideas on a numerical example in section 5 and
conclude the paper with section 6.

1.4 Notation

Rotation matrices are members of the special orthogonal group
SO(3). We smoothly embed SO(3) into the R3×3 matrices, i.e.
SO(3)= {R ∈R3×3|R⊤R = I,detR = 1}, where I is the identity
of R3×3. For the R3×3 matrices, we take the standard scalar
product x · y = tr

(

x⊤y
)

, x, y ∈ R3×3. For the matrices forming
an orthogonal basis for R3×3, we write Ei j, i.e. Ei j is the ma-
trix of zeros with the ith element of the jth column set to 1.
The tangent space of SO(3) at a point R ∈SO(3) is given by
TRSO(3)= {RΩ|R ∈ SO(3),Ω⊤ =−Ω}. The Lie algebra so(3)
of SO(3) is canonically determined by so(3) =TISO(3) and
we will denote the infinitesimal generators of the algebra by
Ωi, i = 1, 2, 3. The tangent space TRSO(3) is a vector space,
and we will refer to its orthogonal complement as T⊥

R SO(3),
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i.e. tr
(

x⊤y
)

= 0 when x ∈TRSO(3) and y ∈T⊥
R SO(3). As both

are linear spaces, we can define projections P from R3×3 to
TRSO(3) and T⊥

R SO(3); We will refer to these projections as
PR and P⊥

R , respectively. If f is a differentiable function map-
ping from SO(3) to R, by grad f , we mean the unique vec-
tor field satisfying d

ds ( f ◦A)(s) |s=0 = 〈grad f (R) ,V 〉, where
〈·, ·〉 is the Riemannian metric, A : [−ε,ε] →SO(3), A(0) =
R, and d

ds A(s) = V for every V ∈TRSO(3). Correspondingly,
by the operator Hess, we mean the form Hess f (R) (V ) =
d2

d s2 ( f ◦A)(s) |s=0. If in contrast, g is a function mapping from
R3×3 to R, we will replace grad by ∇ such that ∇g(x) denotes a
matrix which has ∂

∂xi j
g(x) as the ith element of its jth column,

where xi j denotes the ith component of the jth column of x.
Further, we replace Hess by ∇2, such that ∇2g(x)(y) denotes
a matrix which has ∇ ∂

∂xi j
g(x) · y as the ith element of its jth

column. If M is a set, then we will denote the boundary of M
by ∂M and the interior of M by int(M). If M is a subset of
SO(3), with critM ( f ), we refer to the set of points in M where
grad f vanishes. If, in contrast, M is a subset of R3×3, with
critM (g), we refer to the set of points in M where ∇g vanishes.
In a differential equation ẋ = f (x), the overdot abbreviates d

dt ,
where t is the time. In the right-hand side of the differential
equation, we will often drop the explicit dependence on time
whenever it can be inferred from the context. By the function
d : R3×3 ×R3×3 → R, we mean the distance function in R3×3.
If we fix one of the arguments, we write d (x,y) = dx (y), such
that

dR1 (R2) = tr
(

(R2 −R1)
⊤ (R2 −R1)

)

. (1)

Correspondingly, we refer to an open ball in R3×3 by

B̃r
R1

= {R2 ∈ R3×3|dR1 (R2) ∈ [0,r)}. (2)

If we want to exclude the members of R3×3 that are not
members of SO(3), then we write

Br
R1

= {R2 ∈ SO(3) |dR1 (R2) ∈ [0,r)}. (3)
With ⊕, we refer to the direct sum of vector spaces. We denote
the Weingarten map of SO(3) at a point R by AR. When x ∈Rn,
we write x = [xi] to indicate that we denote the ith entry of x by
xi. Equivalently, when x ∈ Rn×m, we write x = [xi j] to indicate
that we denote the ith entry of the jth column by xi j. Q are the
rational numbers.

2. PROBLEM STATEMENT

We are interested in controlling systems of the form
Ṙ = RU, R(t0) = R0, (4)

where R0 ∈SO(3) is the state and U ∈ so(3) the input of the
system. Our goal is to steer the system to a target configuration
R∗ by means of appropriate choice of U . In doing so, we restrict
ourselves to feedbacks U : R3×R×R→ so(3) depending only
on scalar-valued information, i.e.

U =U (ω ,ξ (R) , t) (5)

with ξ :SO(3)→R, where ω = [ωi]∈R3 are design parameters
with ωi = αiω , αi ∈ Q and αi 6= α j for i 6= j. The latter
restriction is rather technical and for details on this we refer
to Dürr et al. [2013b]. The state R and the target configuration
R∗ are encoded in ξ , but are not available to the system.

In the course of the navigation to the attitude R∗, we restrict
ourselves to a certain workspace W describing the feasible

configurations, i.e. we insist that W is invariant with respect
to (4) under (5). We assume that W is given in form

W = {R ∈ SO(3) |dI (R) ∈
[

0,r2
0

]

}. (6)
(6) is commonly referred to as a sphere world (see Koditschek
and Rimon [1990]). In addition, we want to avoid certain
obstacles Oi whilst moving towards R∗, i.e. we insist that all
Oi are repelling with some regard. We assume that there are m
obstacles given by

Oi = {R ∈ SO(3) |dRi (R) ∈
[

0,r2
i

]

}, i = 1, · · · ,m. (7)
That is, either the obstacles are merely points Ri and we add the
radius ri for the sake of conservativity, or the obstacles indeed
occupy volume in state space. The latter two equations restrict
our maneuvering to the so-called free space

S =W \
m
⋃

i=1

Oi, (8)

and we assume that all obstacles are contained in the workspace
and that they do not intersect, i.e. Oi ⊂W for all i= 1, · · · ,m and
Oi ∩O j = /0 for all i, j = 1, · · · ,m, i 6= j, respectively. We also
presume R∗ ∈ int(S). Formally, our design goal is to choose (5)
such that

R(t) ∈ int(S) (9)
for all times.

3. METHODS AND PRELIMINARIES

Our main result is based on two concepts, one of which is the
concept of a navigation function, i.e. a function that has the
property that its gradient flows converge to R∗ from almost all
initial conditions without leaving S. Consequently, we include
some definitions from stability theory needed in the remainder
of this paper. The other concept is extremum seeking, which can
be utilized to generate scalar-valued feedback laws. In particu-
lar, we will utilize an extremum-seeking approximation based
on the Lie-bracket system proposed by Dürr et al. [2013b].

3.1 Navigation Functions

The concept of a navigation function was introduced by
Koditschek and Rimon [1990]. The goal is to design a function
which has a gradient flow converging to R∗ from almost all
initial conditions without leaving S.
Definition 1. (Koditschek and Rimon [1990]). Let M be com-
pact, connected, analytic, and have nonempty boundary. An
analytic, polar, Morse, admissible function M → R is said to
be a navigation function on M.

With this in mind, define the functions βi : R3×3 →R,

βi (R) =

{

r2
0 − dI (R) i = 0

dRi (R)− r2
i i = 1, · · · ,m.

(10)

These functions have the property that
S = {R ∈ SO(3) |βi (R)≥ 0∀i = 0, · · · ,m}. (11)

With this relation at hand, we can also find that
∂S = {R ∈ SO(3) |∃i : βi (R) = 0}. (12)

For the distance to the reference, we introduce β ∗ : R3×3 →R,
β ∗ (R) = dR∗ (R) , (13)

and β : R3×3 →R,

β (R) =
m

∏
i=0

βi (R) . (14)
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In particular, we will employ the function ϕ : R3×3 → R,

ϕ (R) =
β ∗ (R)

(

(β ∗ (R))k +β (R)
)1/k

(15)

with sufficiently large integer k. This function has some partic-
ularly nice properties. Amongst them, ϕ has the image ϕ (S) =
[0,1] and the preimages ϕ−1 (0) = R∗ and ϕ−1 (1) = ∂S on its
extrema. Moreover, its level sets Sh = {R∈ S|ϕ (R)∈ [0,h]} are
compact for all h ∈ (0,1] and we have S1 = S.

Koditschek and Rimon [1990] use the vector field −∇ϕ to
employ its integral curves as solutions to the path planning
problem. For application of this methodology, we need to have
appropriate counterparts of W , Oi, and S in the ambient space
R3×3. Therefore, we define the ambient workspace

W̃ = {R ∈ R3×3|dI (R) ∈
[

0,r2
0

]

}, (16)

the ambient obstacles

Õi = {R ∈R3×3|dRi (R)
[

0,r2
i

]

}, i = 1, · · · ,m, (17)

and hence the ambient sphere world

S̃ = W̃ \
m
⋃

i=1

Õi. (18)

In this spirit, we also introduce the ambient system
˙̃R = Ũ , R̃(t0) = R̃0, (19)

where R̃0 ∈ R3×3 is the state and Ũ ∈ R3×3 is the input
of the system. The goal is to steer the system to the target
configuration R∗ by means of appropriate choice of Ũ . In doing
so, we restrict ourselves to scalar feedback laws Ũ :R3×3×R×
R→R3×3, i.e.

Ũ = Ũ
(

ω̃ , ξ̃
(

R̃
)

, t
)

(20)

with ξ̃ : R3×3 → R, where ω̃ = [ω̃i j] ∈ R3×3 are design pa-
rameters with ωi j = αi jω , αi j ∈ Q and αi j 6= αkl for i 6= k and
j 6= l. The latter restriction in rather technical and for details on
this we refer to Dürr et al. [2013b]. The state R̃ and the target
configuration R∗ are encoded in ξ̃ , but are not available to the
system.

An important result of Koditschek and Rimon [1990] is that, by
construction, ϕ is a navigation function on S̃.

Lemma 1. (Koditschek and Rimon [1990]). ϕ is a navigation
function on S̃ for sufficiently large integer k.

By
critS̃ (ϕ) = {R ∈ S̃|∇ϕ (R) = 0}, (21)

we denote the critical points of ϕ on the domain S̃ and by

critS (ϕ) = {R ∈ S|gradϕ (R) = 0}, (22)

we denote the critical points of ϕ on the domain S. As ϕ is
Morse and S̃ compact, critS̃ (ϕ) consists of isolated points and
has finite cardinality. Koditschek and Rimon [1990] proposed
the gradient system

˙̃Z =−∇ϕ
(

Z̃
)

, Z̃ (t0) = Z̃0, (23)

and investigated its stability properties.

Lemma 2. (Koditschek and Rimon [1990]). critS̃ (ϕ) are hyper-
bolic equilibria of (23) and (23) converges to critS̃ (ϕ). More-
over, the equilibria Z̃ ∈ critS̃ (ϕ) \ {R∗} of (23) are unstable
whereas the equilibrium Z̃ =R∗ of (23) is asymptotically stable.

Remark 1. Note that the extension of this theory to SO(3) is
nontrivial as Koditschek and Rimon [1990] cover only differ-
ential equations with Euclidean state-spaces. The restriction
of the flow of the gradient system for the navigation function
does not necessarily inherit the convergence properties from the
ambient space. Therefore, Lemma 2 does not hold true directly
for the restriction of−∇ϕ to SO(3). We want to briefly illustrate
this on an example; Therefore, let R∗ = I and, for simplicity,
m = 0. This is the simplest case of the considered setup, where
the target configuration lies in the center of the workspace and
there is no obstacles obstructing us from getting there. Yet, even

in this case, we have 1
2 ∇ϕ (R) =−

(

dk
I (R)− dI (R)+ r2

0

)1/k
I−

dI (R) 1
k

(

dk
I (R)−dI (R)+ r2

0

)1/k−1 (−kdk−1
I (R)+ 1

)

I. With PR

X = 1
2 R
(

R⊤X −X⊤R
)

, this is gradϕ (R) = PR ∇ϕ (R) =
(

dk
I (R)

−dI (R)+ r2
0

)1/k (
R2 − I

)

+dI (R) 1
k

(

dk
I (R)− dI (R)+ r2

0

)1/k−1

(

−kdk−1
I (R)+ 1

) (

R2 − I
)

. Thus, gradϕ (R) vanishes when-
ever R2 = I, i.e. when R is symmetric. Apart from the desired
configuration R = I, symmetry of R is also satisfied on a con-
nected, compact set. Note that the solution R = I is isolated
from this other set. For details on this, we refer to Schmidt
et al. [2013a,b]. As, in this particular case, the solution R = I is
isolated, we can however infer that we have a unique solution
if we choose r0 sufficiently small, i.e. if we exclude the set
of symmetric matrices that not equal the identity from our
workspace.

3.2 Practical Stability

Definition 2. A point R∗ is said to be practically uniformly
stable with respect to (19) under (20), if for every ε ∈ (0,∞),
there exist δ ∈ (0,∞) and ω0 ∈ (0,∞), such that for all t0 ∈ R,
ω ∈ (ω0,∞), R̃0 ∈ B̃δ

R∗ implies R̃(t)∈ B̃ε
R∗ . Equivalently, a point

R∗ is said to be practically uniformly stable with respect to (4)
under (5), if for every ε ∈ (0,∞), there exist δ ∈ (0,∞) and
ω0 ∈ (0,∞), such that for all t0 ∈ R, ω ∈ (ω0,∞), R0 ∈ Bδ

R∗
implies R(t) ∈ Bε

R∗ .
Definition 3. A point R∗ is said to be practically uniformly
attractive with respect to (19) under (20), if there exists a
δ ∈ (0,∞), such that for every ε ∈ (0,∞), there exist t f ∈ [0,∞)
and ω0 ∈ (0,∞), such that for all t0 ∈ R, ω ∈ (ω0,∞), t ∈
[

t0 + t f ,∞
)

, R̃0 ∈ B̃δ
R∗ implies R̃(t) ∈ B̃ε

R∗ . Equivalently, a point
R∗ is said to be practically uniformly attractive with respect to
(4) under (5), if there exists a δ ∈ (0,∞), such that for every
ε ∈ (0,∞), there exist t f ∈ [0,∞) and ω0 ∈ (0,∞), such that
for all t0 ∈ R, ω ∈ (ω0,∞), t ∈

[

t0 + t f ,∞
)

, R0 ∈ Bδ
R∗ implies

R(t) ∈ Bε
R∗ .

Definition 4. A point R∗ is said to be practically uniformly
attractive on M with respect to (4) under (5), if, for every
compact subset K ⊂ M, for every ε ∈ (0,∞), there exist t f ∈
[0,∞) and ω0 ∈ (0,∞), such that for all t0 ∈ R, ω ∈ (ω0,∞),
t ∈
[

t0 + t f ,∞
)

, R0 ∈ K implies R(t) ∈ Bε
R∗ .

Remark 2. Note that Definition 4 implies Definition 3 if there
exists δ ∈ (0,∞) such that M contains the closure of Bδ

R∗ . This
is because we can choose K in Definition 4 to be the closure
of Bδ

R∗ . Vice versa, Definition 3 implies Definition 4 if we set
M = Bδ

R∗ .
Definition 5. A point is said to be practically uniformly asymp-
totically stable with respect to (19) under (20), if it is practically
uniformly stable with respect to (19) under (20) and practically
uniformly attractive with respect to (19) under (20). Equiva-
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lently, a point is said to be practically uniformly asymptotically
stable with respect to (4) under (5), if it is practically uniformly
stable with respect to (4) under (5) and practically uniformly
attractive with respect to (4) under (5).

For the definitions above, we omit the term “practically”, if the
right-hand side of the differential equation under consideration
does not depend on ω .

3.3 Extremum Seeking

For the system (23), one needs to feed back ∇ϕ (R). However,
we are interested in scalar feedbacks (20). To construct such
feedbacks, Dürr et al. [2013b] proposed the so-called extremum
seeking feedback

Ũ
(

ω , ξ̃
(

R̃
)

, t
)

=
3

∑
i=1

3

∑
j=1

Ei j
(

ϕ
(

R̃
)√ωi j cos(ωi jt)+

√ωi j sin(ωi jt)
)

(24)

to approximate (23), where the matrices Ei j form an orthogonal
basis of R3×3. We can set ξ̃ = ϕ and we assume that all ωi j
are chosen to be nonidentical and rational multiples of ω . The
following results were proven.

Lemma 3. (Dürr et al. [2013b]). Consider (23) and (19) under
feedback (24). Let there exist B ⊂ R3×3 such that Z̃ (t0) ∈ B
implies Z̃ (t) ∈ B̃A

0 with A ∈ [0,∞). Then for every bounded
K ⊂ B, D ∈ (0,∞), t f ∈ (0,∞), there exists an ω0 ∈ (0,∞) such
that for every ω ∈ (ω0,∞), t0 ∈R, Z̃0 = R̃0 ∈ K, t ∈

[

t0, t0 + t f
]

,
dZ̃(t)

(

R̃(t)
)

∈ [0,D).

Lemma 4. (Dürr et al. [2013b]). If a point is asymptotically
stable for (23), then it is practically uniformly asymptotically
with respect to (19) under (24).

Corollary 5. (Dürr et al. [2013a]). The point R̃ = R∗ is practi-
cally uniformly asymptotically stable with respect to (19) under
(24).

By these results, the problem of constructing a feedback (20)
such that R∗ is a practically uniformly asymptotically stable
equilibrium of system (19) (i.e. in the ambient space) is solved.
The problem of constructing a feedback (5) such that R∗ is
a practically uniformly asymptotically stable equilibrium of
system (4) (i.e. on SO(3)) remains open.

4. MAIN RESULT

Dürr et al. [2013b] proposed (24) as a scalar feedback to make
R∗ a practically uniformly asymptotically stable equilibrium
of (19). We will propose a scalar feedback (5) to make R∗

a practically uniformly asymptotically stable equilibrium of
(4). In particular, we propose the extremum seeking feedback
U : R3 ×R×R→ so(3)

U (ω ,ξ (R) , t) =
3

∑
i=1

Ωi (ϕ (R)
√

ωi cos(ωit)+
√

ωi sin(ωit))

(25)
to approximate the gradient system

Ż =−gradϕ (Z) , Z (t0) = Z0. (26)

We can set ξ = ϕ and we have to assume that all ωi are chosen
to be nonidentical and rational multiples of ω .

Theorem 6. Consider (26) and (4) under feedback (25). For
every K ⊂SO(3), D ∈ (0,∞), t f ∈ (0,∞), there exists an ω0 ∈

(0,∞) such that for every ω ∈ (ω0,∞), t0 ∈ R, Z0 = R0 ∈ K,
t ∈
[

t0, t0 + t f
]

, dZ(t) (R(t)) ∈ [0,D).

Proof. Consider

Ẏ =
1
2

3

∑
i=1

[ϕ (Y )Y Ωi,YΩi] , Y (t0) = Y0 (27)

and (4) under feedback (25), where [·, ·] is the Lie bracket
of vector fields. As a consequence of Lemma 3, for every
K ⊂SO(3), D ∈ (0,∞), t f ∈ (0,∞), there exists an ω0 ∈ (0,∞)
such that for every ω ∈ (ω0,∞), t0 ∈ R, Y0 = R0 ∈ K, t ∈
[

t0, t0 + t f
]

, dY (t) (R(t)) ∈ [0,D). We clearly have

1
2

3

∑
i=1

[ϕ (Y )Y Ωi,Y Ωi] =
1
2

3

∑
i=1

tr
(

ΩiY
⊤∇ϕ (Y )

)

YΩi. (28)

We then use the decomposition R3×3 = TY SO(3)⊕T⊥
Y SO(3) to

write
∇ϕ (Y ) = gradϕ (Y )+ grad⊥ ϕ (Y ) (29)

with gradϕ (Y ) ∈ TY SO(3) and grad⊥ ϕ (Y ) ∈ T⊥
Y SO(3). We

moreover have Y Ωi ∈ TY SO(3) and hence have the identity
tr
(

ΩiY⊤ grad⊥ ϕ (Y )
)

= 0, which follows from the orthogonal-
ity of TY SO(3) and T⊥

Y SO(3). Hence,

1
2

3

∑
i=1

[ϕ (Y )Y Ωi,YΩi] =
1
2

3

∑
i=1

tr
(

ΩiY
⊤ gradϕ (Y )

)

Y Ωi. (30)

We know that a tangent vector of SO(3) at a point Y ∈SO(3) has
the form Y Ω with Ω ∈ so(3). Therefore, can write gradϕ (Y ) =
YΩϕ , with Ωϕ ∈ so(3). Thus

1
2

3

∑
i=1

[ϕ (Y )YΩi,Y Ωi] =
1
2

3

∑
i=1

tr
(

ΩiΩϕ
)

YΩi. (31)

Next, we use a property of the Lie algebra so(3). Namely, every
element of the algebra can be written as a linear combination
of its generators. It is thus possible to write Ωϕ as Ωϕ =

∑3
j=1 Ω jc

j
ϕ to arrive at

1
2

3

∑
i=1

[ϕ (Y )YΩi,Y Ωi] =
1
2

3

∑
i=1

tr

(

Ωi

3

∑
j=1

Ω jc
j
ϕ

)

Y Ωi. (32)

We know that tr(ΩiΩ j) = 0 if i 6= j because two distinct
generators are orthogonal to one another and can hence write

1
2

3

∑
i=1

[ϕ (Y )Y Ωi,YΩi] =
1
2

3

∑
i=1

tr
(

Ω2
i ci

ϕ
)

Y Ωi. (33)

Moreover, we have tr
(

Ω2
i

)

=−2 and can therefore see that

1
2

3

∑
i=1

[ϕ (Y )YΩi,Y Ωi] =−
3

∑
i=1

ci
ϕYΩi, (34)

which equals −gradϕ (Y ). Hence, if Y0 = Z0, then Y (t) = Z (t),
which concludes the proof. �

Theorem 7. The equilibrium Z = R∗ of (26) is asymptotically
stable. Moreover, every sublevel set of ϕ (Z) is invariant with
respect to (26).

Proof. Consider the Lyapunov function candidate
V (Z) = ϕ (Z) , (35)

which satisfies V (Z) ≥ 0 and V (Z) = 0 if and only if Z = R∗.
We consequently have

V̇ (Z) = ϕ̇ (Z) = 〈gradϕ (Z) , Ż〉. (36)
Substituting (26), this is

V̇ (Z) = ϕ̇ (Z) =−〈gradϕ (Z) ,gradϕ (Z)〉. (37)
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Since SO(3) is Riemannian, 〈·, ·〉 is positive definite. Hence,
V̇ (Z) ≤ 0 and with (35) it follows that every sublevel set of
ϕ (Z) is invariant with respect to (26). In addition, Z = R∗

implies V̇ (Z) = 0. We know from Koditschek and Rimon
[1990] that ϕ is analytic. Moreover, the equations Z⊤Z − I =
0 and detZ − 1 = 0 are analytic. Hence gradϕ is analytic.
Therefore, the solutions to gradϕ (Z) = 0 can only consist of a
finite number of connected components on SO(3) (this is found
e.g. in Shiota [1997]). By this argumentation, the solutions to
V̇ (Z) = 0 can only consist of a finite number of connected
components on SO(3), as well. By the same argumentation, we
know that ϕ (Z) attains a constant value on every connected
component of the solution of gradϕ (Z) = 0 on SO(3). This is a
consequence of Morse [1939]. Now note that ϕ−1 (0) = R∗ is a
singleton. Thus, the solution Z = R∗ of gradϕ (Z) = 0 on SO(3)
needs to be a singleton as well. Therefore, V̇ is negative definite
in a neighborhood of R∗ and hence the equilibrium Z = R∗ of
(26) is asymptotically stable. This was the last assertion to be
proven. �

By the foregoing theorem, every sublevel set of V (Z) = ϕ (Z)
is an invariant set of (26). We have ϕ−1 (1) = ∂S and can hence
conclude that if (26) is initialized in S, then its solution will not
enter any Oi at any time.

Theorem 8. The point R = R∗ is practically uniformly asymp-
totically stable with respect to (4) under (25).

Proof. The equilibrium Z = R∗ of (26) is asymptotically stable.
We have shown that Y0 = Z0 implies Y (t) = Z (t). From Dürr
et al. [2013b], we know that a point which is asymptotically sta-
ble for (27) is practically uniformly asymptotically stable with
respect to (4) under (25). Last, we know that, by construction,
U : R3 ×R×R→ so(3) (because the right-hand side of (25) is
a linear combination of the generators of the Lie algebra), such
that Ṙ ∈TRSO(3), hence making SO(3) invariant with respect to
(4) under (25). �

Remark 3. We now know that the solutions of (4) under (25)
stay close (in sense of a D-neighborhood) to the solutions of
(26) and that, in addition, R∗ is practically stabilized. How-
ever, (26) may have solutions that come arbitrarily close to
the boundary of the obstacles; Therefore, in practice, we can
choose choose ri in a way such that ri = ri,0+D, where ri,0 is the
physical radius of the obstacle and D is to make the solutions of
(4) under (25) not enter the physical obstacle. Yet, another way
to approach this issue is addresses in the course of the proof of
the next theorem.

It remains to show (9). For doing so, we use a result of Bhatia
and Szegő [1967]; Namely, if a point is asymptotically stable
with region of attraction A , then it is uniformly attractive on
A . Thus, as we have shown in Theorem 7 that the equilibrium
Z = R∗ of (26) is asymptotically stable, we know that its region
of attraction A is nonempty. Hence, we know moreover, that
R∗ is uniformly attractive on A with respect to (26). In the
following, let A denote A =A ∩ int(S). Hence note that Z = R∗

is also uniformly attractive on A with respect to (26).

Theorem 9. R= R∗ is practically uniformly attractive on A with
respect to (4) under (25). Moreover, for every compact subset
K ⊂ A, there exists an ω0 ∈ (0,∞), such that for all t0 ∈ R,
t ∈ [t0,∞), ω ∈ (ω0,∞), R0 ∈ K implies R(t) ∈ int(S).

Proof. Set ε1 = min({dR∗ (a) |a ∈ ∂S}). Existence of ε1 is
ensured by compactness of ∂S. We know from Theorem 8

that R = R∗ is practically uniformly asymptotically stable with
respect to (4) under (25) and hence know that there exist δ1 ∈
(0,∞) and ω1 ∈ (0,∞), such that for all t0 ∈ R, ω ∈ (ω1,∞),

R0 ∈ Bδ1
R∗ implies R(t) ∈ Bε1

R∗ for t ∈ [t0,∞). Now choose δ2 ∈
(0,δ1) and a compact subset K ⊂ A. For every such K, there
exists a t1 ∈ R, such that for all t0 ∈ R, t ∈ [t0 + t1,∞), Z0 ∈ K

implies Z (t) ∈ Bδ2
R∗ . We now set D1 = δ1 −δ2, let Sk denote the

smallest sublevel set containing K and set

D2 = min({da (b) |a ∈ ∂Sk,b ∈ ∂S}) , (38)

for our choice of K. D2 exists due to compactness of Sk and ∂S.
Next, set D0 = min({D1,D2}). By means of Theorem 6, there
exists ω0 ∈ (ω1,∞) such that for every ω ∈ (ω0,∞), t0 ∈ R,
R0 = Z0 ∈ K, t ∈ [t0, t0 + t1], dZ(t) (R(t)) ∈ [0,D0). Because
Sk ⊂ int(S) is invariant with respect to (26), which follows
from Theorem 7, and Z = R∗ is uniformly attractive on A with
respect to (26), we have R(t)∈ int(S) for all t ∈ [t0, t0 + t1] with

ω ∈ (ω0,∞). For ω ∈ (ω0,∞), we hence have R(t0 + t1) ∈ Bδ1
R∗ ,

which implies R(t) ∈ Bε1
R∗ ⊂ int(S) for t ∈ [t0 + t1,∞). As we

have already shown that R(t) ∈ int(S) for all t ∈ [t0, t0 + t1],
this concludes the proof. �

Remark 4. If S\A has measure zero in SO(3), the above implies
almost global convergence. If ϕ is a navigation function on S,
then S\A has measure zero; Under additional assumptions, it is
possible to show that ϕ is a navigation function on S. We have
moved this result to Appendix A.

5. NUMERICAL EXAMPLE

We want to illustrate our main result on a numerical example.
Therefore, we solve the differential equation (4) under (25) with
design parameters α1 = 1, α2 = 2, α3 = 3 and ω = 50 (ωi =
αiω) in MATLAB with ode15s. Therein, we choose the initial
value R0 = I, and the reference and obstacle configurations

R∗ =
[ 0.6428 0.6634 0.383
−0.766 0.5567 0.3214

0 −0.5 0.866

]

, R1 =
[0.866 0.4924 0.0868
−0.5 0.8529 0.1504

0 −0.1736 0.9848

]

, (39)

respectively, with radius r1 = 0.05. We have purposely chosen
R1 in a way such that it is located “between” R0 and R∗. All
configurations are plotted in Fig. 1 together with the numerical
solution of (4) under (25). It can be seen that the solution
R(t) performs oscillatory motion and approaches the reference
configuration R∗. Moreover, as expected, the solution avoids the
obstacle R1.

Fig. 1. The solution R(t) (—) of (4) under (25) with initial value
R0 (—) approaches the reference configuration R∗ (—) and
avoids the obstacle R1 (—). We have plotted two points of
view for better illustration. To plot the rotation matrices,
we have multiplied them with the unit vectors of R3 and
depicted the resulting vectors.
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6. CONCLUSIONS AND OUTLOOK

We have motivated a scenario where scalar feedbacks shall be
used to navigate a point on the rotation matrices to another point
whilst avoiding obstacles. Using the principles of navigation
functions and extremum seeking systems, we were able to
construct such a feedback. We could prove the convergence
and stability properties of the resulting closed-loop system.
The theoretical results were validated on a suitable numerical
example. Future research will rely on proper distance functions
on SO(3) rather than on distance functions induced by the
ambient space.

Appendix A

Theorem 10. If critS (ϕ) = critS̃ (ϕ), then ϕ is a navigation
function on S for sufficiently large k.

Proof. By construction, ϕ is analytic, polar, and admissible on
S. The Hessian of ϕ in direction RΩ is given by

Hessϕ (R) (RΩ) = PR ∇2ϕ (R) (RΩ)+AR

(

RΩ,P⊥
R ∇ϕ (R)

)

,

where PR : R3×3 → TRSO(3) is the orthogonal projection
from the ambient space to the tangent space at R, P⊥

R :
R3×3 → T⊥

R SO(3) is the orthogonal is the orthogonal projec-
tion from the ambient space to the normal space at R, and
AR : TRSO(3)×T⊥

R SO(3)→ TRSO(3) is the Weingarten map of
SO(3) at R. This relation is particularly discussed in Absil et al.
[2013]. On SO(3), PR X = 1

2 R
(

R⊤X −X⊤R
)

, and hence

PR ∇2ϕ (R)(RΩ) =
1
2

∇2ϕ (R) (RΩ)+
1
2

R∇2ϕ
(

R⊤
)

(RΩ)R.

Moreover, we have

AR (X1,X2) =−1
2

R
(

X⊤
2 X1 −X⊤

1 X2

)

. (A.1)

With

P⊥
R ∇ϕ (R) = ∇ϕ (R)− 1

2
∇ϕ (R)+

1
2

R(∇ϕ (R))⊤ R, (A.2)

this is

AR

(

RΩ,P⊥
R ∇ϕ (R)

)

=−1
4

R(∇ϕ (R))⊤ RΩ− 1
4

∇ϕ (R)Ω

−1
4

RΩR⊤∇ϕ (R)−1
4

RΩ(∇ϕ (R))⊤ R.

Resubstitution yields Hessϕ (R)(RΩ) =− 1
4 R(∇ϕ (R))⊤ RΩ−

1
4 RΩ(∇ϕ (R))⊤ R + 1

2 ∇2ϕ (R)(RΩ) + 1
2 R∇2ϕ

(

R⊤) (RΩ)R −
1
4 ∇ϕ (R)Ω− 1

4 RΩR⊤∇ϕ (R). We moreover know

gradϕ (R) = PR ∇ϕ (R) , (A.3)

which can e.g. be found in Absil et al. [2008]. This in turn
implies

critS (ϕ) = {R ∈ S|∇ϕ (R) = R(∇ϕ (R))⊤ R} (A.4)

and we have

Hessϕ (critS (ϕ))(critS (ϕ)Ω) =
1
2

∇2ϕ (R)(RΩ)

+
1
2

R∇2ϕ
(

R⊤
)

(RΩ)R− 1
2

∇ϕ (R)Ω− 1
2

R⊤ΩR∇ϕ (R) .

Hence, by our assumption critS (ϕ) = critS̃ (ϕ), we have
Hessϕ (critS (ϕ))(critS (ϕ)Ω) = 0 if and only if

∇2ϕ (R)(RΩ)+R∇2ϕ
(

R⊤
)

(RΩ)R = 0, (A.5)

which is a Sylvester equation with unique solution, because R
and −R share no eigenvalues. As

∇2ϕ (R)(RΩ) = 0. (A.6)
solves (A.5), we hence know that it is the only solution. It can
further be seen that (A.6) holds true if Ω = 0. The only other
solution to (A.6) is ∇ ∂

∂Ri j
ϕ (R) = 0 for all i, j, which contradicts

the result of Koditschek and Rimon [1990] that ϕ is Morse on S̃
for sufficiently large k. Thus, (A.6) has no solution in critS̃ (ϕ)
and Ω = 0 is the unique solution of (A.5). �

Remark 5. Naturally, the condition critS (ϕ) = critS̃ (ϕ) is re-
strictive. Yet, we have illustrated in Remark 1 that for a very
simple example (i.e. R∗ = I and m = 0), the condition holds
true for sufficiently small r0.
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