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Abstract: This paper designs multi-step probabilistic sets for linear, discrete-time, stochastic
systems with unbounded multiplicative noise and probabilistic constraints. Multi-step proba-
bilistic sets strengthen IWPp by bringing more degrees of freedom to optimize the applicable
region of finite-step probabilistic constraints, and extending the prediction horizon of IWPp to
infinity for infinite-horizon probabilistic constraints. Conditions for multi-step probabilistic sets
are then incorporated into a stochastic model predictive control algorithm to satisfy probabilistic
constraints. Closed-loop mean-square stability is guaranteed by the algorithm. A numerical
example shows the performance of the proposed algorithm.
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1. INTRODUCTION

Model predictive control (MPC) has attracted much in-
terest from theoretical research and practical application
(e.g., Mayne et al. (2000); Ding (2011); Li et al. (2013);
Zheng et al. (2013)). It optimizes performance and takes
account of system constraints, and control move is imple-
mented in a receding horizon fashion. As a relatively recent
development, stochastic MPC (SMPC) has been proposed
in some papers (e.g. Primbs (2007); Kouvaritakis et al.
(2010); Chatterjee et al. (2011); Hokayem et al. (2012);
Zou and Niu (2013)) in order to satisfy soft constraints or
to achieve better control performance.

The difficulty of handling probabilistic constraints for sys-
tems with unbounded multiplicative uncertainty is con-
cerned with the propagation of the uncertainty over the
prediction horizon (Cannon et al., 2009). IWPp (invari-
ance with probability p) in Cannon et al. (2009); Su et al.
(2011) is effective to handle this problem, since it ensures
that state within IWPp remains inside with probability
no less than p. It uses one-step ahead prediction for the
uncertainty propagation, and can be extended to satisfy
finite-step ahead probabilistic constraints.

This paper proposes multi-step probabilistic sets (MSP
sets) to strengthen IWPp. MSP sets consist of a sequence
of sets, where state in one set enters the following set with
given transition probability. Compared with the single
feedback law for IWPp, the multi-step feedback policy
for MSP sets admits more degrees of freedom, so that
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the finite-step probabilistic constraints are ensured with a
larger region of applicability. For the infinite-horizon prob-
abilistic constraints, an extra mild condition concerning
the convergence of the controlled state is introduced. The
supermartingale inequality is then used to give a lower
bound on the probability of any predicted state belonging
to MSP sets.

The SMPC algorithm incorporates conditions of MSP
sets to satisfy the probabilistic constraints. At each time
instance it online solves a convex optimization problem
to minimize the upper bound on control performance. A
feedback sequence is obtained by the optimization, while
the first feedback law is implemented to control the system.
The SMPC algorithm guarantees the recursive feasibility
and mean-square stability.

The paper is organized as follows. Section 2 introduces
the probabilistic constraints and some preliminary results.
Section 3 includes the design and theoretical results for
MSP sets. Section 4 presents the MPC algorithm. The
numerical example in Section 5 verifies the effectiveness of
the proposed algorithm.

Notation. For brevity, we use Ek(X) to mean the ex-
pectation of random variable X with xk known. One
of the two symmetric blocks in a symmetric matrix is
replaced by symbol ∗. {Ωi}

N
i=0 means a sequence of sets

Ω0,Ω1, · · · ,ΩN . diag(M1, . . . ,Mn) represents a block di-
agonal matrix in which M1, . . . ,Mn are its diagonal blocks
and the off-diagonal matrices are zero.

2. SYSTEM DESCRIPTION

Consider the system with multiplicative uncertainty

xk+1 = A(k)xk +B(k)uk, (1)
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where x ∈ R
nx , u ∈ R

nu , and A(k), B(k) are random
matrices of proper dimensions

A(k) = Ā+

m
∑

j=1

Ãjqj(k), B(k) = B̄ +

m
∑

j=1

B̃jqj(k), (2)

where qj(k), k = 0, 1, . . ., j = 1, . . . ,m, follow independent
and identical standard normal distribution.

The constraints for (1) are assumed to be soft and proba-
bilistic, which take the form

Pr {Fxk+i +Guk+i ≤ h} ≥ p, i = 1, . . . , Np, (3)

Pr {Fxk+i +Guk+i ≤ h} ≥ p∞, i = Np + 1, . . . ,∞, (4)

where h ∈ R
nh , and the inequality sign ≤ apply element-

wise to vectors. Note that p, Np, and p∞ in (3) and (4) are
parameters that can be specified by designers for control
specifications. For instance, when Np = 1 and F = 0,
(3) has the form of probabilistic constraints in Cannon
et al. (2009); Su et al. (2011). If p∞ = p, then (3) and (4)
together define Pr{ Fxk+i + Guk+i ≤ h} ≥ p, i = 1, . . .,
which are widely studied.

IWPp Êz in Su et al. (2011) ensures that Pr{zk+1 ∈ Êz} ≥

p if zk ∈ Êz. It is proposed to formulate (3) with Np = 1.
To ensure both (3) and (4), we design MSP sets under
the control of multi-step feedback policy (Li et al., 2009).
This control policy enables more degrees of freedom than
the single feedback law for RMPC. Here MSP sets are
expected to have a larger applicable region than IWPp for
(3). The detailed proof is offered in later sections.

3. MULTI-STEP PROBABILISTIC SETS

The probabilistic transition of state is guaranteed by MSP
sets over control inputs specified by following multi-step
feedback policy (Li et al., 2009; Li and Xi, 2009)

uk+i =

{

Kixk+i, i = 0, . . . , N − 1,
KNxk+i, i = N,N + 1, . . ..

(5)

Here KN is the terminal feedback law for the prediction of
{uk+i}

∞
i=N . Thus at each time k, there are totally N + 1

steps of feedback laws to be optimized. In the following,
conditions involving these feedback laws are expressed
in terms of linear matrix inequalities to form a convex
optimization problem.

3.1 Definition and design of MSP sets

In order to predict the probabilistic distribution region of
state for the satisfaction of probabilistic constraints, we
give the definition of MSP sets.

Definition 1. A sequence of sets {Ωi}
N
i=0, where Ωi =

{x|xTQ−1

i x ≤ 1}, is said to be multi-step probabilistic
sets (MSP sets) if the following conditions are satisfied

1. State in Ωi is steered into Ωi+1 with probability no
less than p1 = p1/Np under feedback Ki. Particularly,
ΩN (including the case N =0) is an IWPp under
feedback KN .

2. For state in the sets {Ωi}
N
i=0, the following determin-

istic joint constraints are satisfied

Fxk+i +Guk+i ≤ h. (6)

3. The quadratic expression of MSP sets is a super-
martingale, i.e., there exists α ∈ (0, 1] satisfying

αxT
k+iQ

−1

i xk+i ≥ Ek+i{x
T
k+i+1Q

−1

i+1
xk+i+1}, (7)

with the definition Qi = QN for i > N .

The setting of p1 in Condition 1 ensures that predicted
state belongs to {Ωi}

N
i=0 with probability no less than p.

To see this, we write Condition 1 as

Pr{xk+i+1 ∈ Ωi+1|xk+i ∈ Ωi} ≥ p1, i = 0, . . . , N, (8)

where ΩN+1 = ΩN . If xk ∈ Ω0, then (8) can be used to
obtain Pr{xk+i ∈ Ωi} ≥ p for i = 1, . . . , Np. Combining
this result with Condition 2, we deduce that (6) is satisfied
in probability p for time k + 1, . . ., k + Np. Hence multi-
step probabilistic constraints (3) is guaranteed if the two
conditions of MSP sets are ensured and xk ∈ Ω0.

Theorem 2. A sequence of sets {Ωi}
N
i=0, where Ωi =

{x|xTQ−1

i x ≤ 1}, are MSP sets meeting Definition 1 if
there exist matrices Qi, Yi, and Wi of proper dimensions
satisfying the LMIs below














Qi+1 ∗ ∗
QiĀ

T + Y T
i B̄T (1− λ)Qi ∗







QiÃ
T
1 + Y T

i B̃T
1

...

QiÃ
T
m + Y T

i B̃T
m






0

λ

r2







Qi

. . .
Qi





















� 0,

(9)
[

Wi FQi +GYi

∗ Qi

]

� 0, eTl Wiel ≤ h2
l , l = 1, . . . , nh, (10)















αQi ∗ ∗
ĀQi + B̄Yi Qi+1 ∗







Ã1Qi + B̃1Yi

...

ÃmQi + B̃mYi






0







Qi+1

. . .
Qi+1





















� 0, (11)

i = 0, . . . , N, QN+1 = QN , YN+1 = YN ,

where el is the l-th column of the identity matrix, r is the
confidence radius for a χ2 distribution Pr{ χ2(m) ≤ r2}
≥ p1, and λ is a scalar in the interval (0, 1).

The feedback law (5) that regulates the probabilistic
transition of state between {Ωi}

N
i=0 is determined by Yi

and Qi in (9) and (10), i.e., Ki = YiQ
−1

i . One of the
alternatives to choose λ in (9) is to search over (0, 1) for the
largest volume of QN , similar to the method introduced in
Cannon et al. (2009).

Proof. Conditions in Definition 1 are guaranteed by (9),
(11) and (10) in Theorem 2 respectively. Firstly, it can
be verified that (9) is sufficient for (8). The main idea is
to prove that, for xk+i ∈ Ωi and the confidence ellipsoid
Oi+1 with probability p1 (i.e., Pr{xk+i+1 ∈ Oi+1} ≥ p1),
the relation

Oi+1 ⊆ Ωi+1

always holds. This procedure follows from the one about
IWPp in Cannon et al. (2009), hence the proof is omitted
for brevity. Therefore, Condition 1 is sufficed by (9). Mean-
while, referring to Kothare et al. (1996), (10) guarantees
(6) for xk+i ∈ Ωi, verifying the sufficing of Condition 2.
Finally, (11) is equivalent to
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αQ−1

i − (Ā+ B̄Ki)
TQ−1

i+1
(Ā+ B̄Ki)

−
m
∑

j=1

(Ãj + B̃jKi)
TQ−1

i+1
(Ãj + B̃jKi) � 0.

(12)

For xk+i controlled by Ki, it can be easily verified that
(12) ensures (7). �

3.2 Some characteristics of MSP sets

First we compare the applicable region of finite-step prob-
abilistic constraints (3) ensured by MSP sets with that by
IWPp in Su et al. (2011). For IWPp, its applicable region
is the elliptic projection from Z space (augmented state
space in Su et al. (2011)) to X space (system state space
in this paper). We give the following lemma about the
applicable region of IWPp.

Lemma 3. For system (1), the applicable region of any
given IWPp in Su et al. (2011) can be covered by a X-
space IWPp resulted by a single feedback control law.

Proof. It suffices to show that the X-space projection
region Êx of any given IWPp Êz in Su et al. (2011) can
be realized by an IWPp Ēx designed in X space.

First of all, referring to Su et al. (2011), conditions for

IWPp Êz := {z|zT P̂ z ≤ 1} to ensure probabilistic
constraints are briefly listed below















P̂−1 Ψ̄P̂−1 [Ψ̃1P̂
−1, · · · , Ψ̃mP̂−1]

∗ (1 − λ)P̂−1 0

∗ ∗
λ

r2







P̂−1

. . .

P̂−1





















� 0, (13)

[K ΓT
u ]P̂

−1

[

KT

Γu

]

� W, Wii ≤ ū2
i , i = 1, . . . , nu, (14)

where matrix variables are P̂−1 and W , and the other
constant matrices are identical to those in Su et al.
(2011) and Cannon et al. (2009). Define P̂−1 =

[

X V
V T U

]

,

according to Cannon et al. (2009), projection of Êz from

Z space to X space is given by Êx = {x|xTX−1x ≤ 1},

where X = ΓT
x P̂−1 Γx.

An IWPp Ēx = {x|xT X̄−1x ≤ 1} of X space under linear
feedback law u = K̄x is ensured in Cannon et al. (2009)
by















X̄ ∗ ∗
X̄ĀT + Ȳ T B̄T (1 − λ)X̄ ∗







X̄ÃT
1 + Ȳ T B̃T

1

...

X̄ÃT
m + Ȳ T B̃T

m






0

λ

r2







X̄
. . .

X̄





















� 0,

(15)
[

W Ȳ
∗ X̄

]

� 0, Wii ≤ ū2
i , i = 1, . . . , nu. (16)

where X̄ , Ȳ and W are matrix variables and the feedback
law K̄ = Ȳ X̄−1.

The proof below shows that, there exists P̂ satisfying (13),
(14) only if there exists X̄ = X , Ȳ satisfying (15), (16).

In this way, every projection region Êx can be realized by
Ēx, so that the lemma is proved.

First we show that (13) is sufficient for (15). Pre- and
postmultiplying both sides of (13) respectively by Π and
ΠT , with Π = [ΓT

x , . . ., Γ
T
x ], gives















X ∗ ∗

ΓT
x P̂

−1Ψ̄TΓx (1 − λ)X 0






ΓT
x P̂

−1Ψ̃T
1 Γx

...

ΓT
x P̂

−1Ψ̃T
mΓx






0

λ

r2







X
. . .

X





















� 0. (17)

Referring to definitions of Γx,Ψ̄, Ψ̃1, . . ., Ψ̃m in Su et al.
(2011), and noting that P̂−1 =

[

X V
V T U

]

, it is easy to verify

that (17) is equivalent to (15) if X = X̄ and KX +
ΓT
uV

T = Ȳ .

Second we prove that (14) implies (16). With partitioned

P̂−1, (14) is equivalent to

KXKT + ΓT
uV

TKT +KV Γu + ΓT
uUΓu � W. (18)

By Schur complement, P̂−1 � 0 is equivalent to U �
V TX−1V . Hence ΓT

uUΓu � ΓT
uV

TX−1V Γu. Combining
this with (18), it is sufficient to get

KXKT + ΓT
uV

TKT +KV Γu + ΓT
uV

TX−1V Γu � W,

which is (16) when X = X̄ and KX + ΓT
uV

T = Ȳ . �

For MSP sets, (3) is guaranteed by (9) and (10) in Theorem
2. From the definition, it is easy to find that an IWPp
designed in X space (state space in this paper) is a special
form of MSP sets {Ωi}

N
i=0 by setting Ωi = Ω, i = 0, . . . , N .

Hence we have the following remark.

Remark 4. With extra degrees of freedom provided by Ωi,
i = 0, . . . , N , or more specifically provided by Qi and Yi

in (9) (10) in Theorem 2, the voulme of MSP sets {Ωi}
N
i=0

can be larger than the X-space IWPp.

Next we combine this property with Lemma 3 to obtain a
further result.

Remark 5. Lemma 3 already shows that there exists a X-
space IWPp to cover the applicable region of any given
IWPp in Su et al. (2011), and we also know that the
volume of MSP sets can be larger than the X-space IWPp.
It follows from these two results that MSP sets can ensure
a larger applicable region than IWPp in Su et al. (2011).

In the following, we analyze the satisfaction of (4) by MSP
sets. Using Condition 2 and 3 in Definition 1, we can give
the following lemma to ensure (4).

Lemma 6. For MSP sets {Ωi}
N
i=0 defined in Theorem 2, if

(7) holds with α ∈ (0, 1] , and state xk satisfies

xT
k Q

−1

0 xk ≤
1− p∞

αNp+1
, (19)

then (4) is sufficed under the control of feedback {Ki}
N
i=0

in Theorem 2.

Proof. By (7), the sequence {xk+iQ
−1

i xk+i}
∞
i=0, where

Qi = QN for i ≥ N , is a supermartingale. Then we use the
supermartingale inequality in Kushner (1971) and (19) to
get

Pr

{

max
∞>i≥Np+1

xT
k+iQ

−1

i xk+i ≥ 1

}

≤ 1− p∞.

An equivalent form of the equation above is

Pr

{

max
∞>i≥Np+1

xT
k+iQ

−1

i xk+i < 1

}

≥ p∞,
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which implies Pr{xk+i ∈ Ωi} ≥ p∞ for i ≥ Np + 1.
Meanwhile Condition 2 of MSP sets ensures (6) for xk+i ∈
Ωi. These two terms in combination ensure (4). �

Theorem 7. The applicable region of (3) and (4) that can
be ensured under feedback {Ki}

N
i=0 satisfying (9), (10),

(11) and (22) is determined by

xT
kQ

−1

0 xk ≤ ρ, ρ = min{1,
1− p∞

αNp+1
}. (20)

The proof of Theorem 7 is straightforward by using previ-
ous results. Since (20) is the intersection of the region Ω0

(from which (3) is ensured by Definition 1) and (19) (from
which (4) is ensured by Lemma 6), both (3) and (4) can
be satisfied if state belongs to (20).

4. MPC BASED ON MULTI-STEP PROBABILISTIC
SETS

In this section we develop a SMPC algorithm, in which
MSP sets are used to ensure probabilistic constraints. The
expected cost function to be optimized by the algorithm
at time k is

Jk = Ek

{

∞
∑

i=0

xT
k+iQxk+i + uT

k+iRuk+i

}

(21)

where xk+i and uk+i denote predicted values of the state
and input, and Q and R are positive definite weighting
matrices. An upper bound of (21) under the multi-step
feedback policy (5) is deduced by the following theorem.

Theorem 8. An upper bound on Jk defined by (21) is given
by γxT

k Q
−1

0 xk if the following LMIs hold






















Qi ∗ ∗ ∗ ∗
ĀQi + B̄Yi Qi+1 ∗ ∗ ∗







Ã1Qi + B̃1Yi

...

ÃmQi + B̃mYi






0







Qi+1

. . .
Qi+1






∗ ∗

Q1/2Qi 0 0 γ ∗

R1/2Yi 0 0 0 γ























� 0,

i = 0, . . . , N, QN+1 = QN , YN+1 = YN , (22)

where the matrix variables areQi and Yi, and the feedback
law is Ki = YiQ

−1

i .

Proof. By Schur complement, (22) is equivalent to

γQ−1

i −

m
∑

j=1

(Ãj + B̃jKi)
T
γQ−1

i+1
(Ãj + B̃jKi)

−
(

Ā+ B̄Ki

)T
γQ−1

i+1

(

Ā+ B̄Ki

)

� Q+KT
i RKi,

which is sufficient to

xT
k+iγQ

−1

i xk+i − Ek+i{x
T
k+i+1γQ

−1

i+1
xk+i+1}

≥ xT
k+i

(

Q+KT
i RKi

)

xk+i, (23)

where Qi = QN , Ki = KN when i ≥ N . Therefore
the sequence {xT

k+iγQ
−1

i xk+i}
∞
i=0 is a nonnegative super-

martingale. According to Williams (1991), xT
k+iγQ

−1

i xk+i

is finite and converges almost surely. Taking conditional
expectation on time k and summing both sides of (23) for
i = 0, 1, . . . , gives

xT
k γQ

−1

0 xk − lim
i→∞

Ek{x
T
k+iγQ

−1

N xk+i} ≥ Jk, (24)

implying that Jk is bounded from above. Since Q +
KT

i RKi ≻ 0, it can be concluded that

lim
i→∞

Ek{x
T
k+i(Q+KT

i RKi)xk+i} = 0.

This is sufficient for Ek(xk+ix
T
k+i) → 0 as i → ∞, which

together with (24) ensures xT
k γQ

−1

0 xk ≥ Jk. �

In the following, we propose a SMPC algorithm to op-
timize control performance (23) and satisfy probabilistic
constraints (3) and (4). Based on Theorem 7, the calcu-
lation of MSP sets in this algorithm ensures probabilistic
constraints. The multi-step feedback laws are optimized
in each online computation to satisfy conditions on MSP
sets and cost function with the updating measure of system
state.

Algorithm 1. Given system state xk, at time k = 0,1,. . .,
do the following steps:

Step 1 Calculate ρk by

ρk =

{

xT
k Q

−1

1|k−1
xk, if k ≥ 1, and xk 6∈ Ω̂1|k−1,

ρ in (20), if k = 0, or xk ∈ Ω̂1|k−1,

(25)

where Ω̂1|k−1 is defined by Step 3 at time k − 1.
Step 2 Solve P(xk, ρk), which is defined by

minimize
{Qi}

N
i=0

,{Yi}
N
i=0

,{Wi}
N
i=0

,γ
γ

subject to (9), (10), (11), (22),
[

ρk xT
k

xk Q0

]

� 0, (26)

and let Yi|k = Yi, Qi|k = Qi, Ki|k = YiQ
−1

i , γ∗
k = γ.

Step 3 Implement control move uk = K0|kxk, let Ω̂1|k =

{x|xT Q−1

1|k x ≤ ρ}, where ρ is given in (20), and go to

Step 1 at time k + 1.

Remark 9. For k = 1, . . ., Ω̂1|k−1 computed at time k − 1
in Step 3 approximates applicable region of (3) and (4)
at time k. This follows from Theorem 7, which proves
that state starting from Ω̂1|k−1 satisfies (3) and (4) under

feedback {Ki|k−1}
N
i=1.

Remark 10. In Step 1, ρk adjusts volume of Ω̂1|k−1 to
capture xk, for the unbounded system parameter allows
state to escape any finite region. If xk 6∈ Ω̂1|k−1, then ρk
is set by (25), such that (3) and (4) are relaxed to ensure

feasibility of the optimization. If xk ∈ Ω̂1|k−1, then ρk is
set to ρ by Theorem 7.

Theorem 11. Algorithm 1 is recursively feasible. More-
over, the closed-loop system is mean-square stable, so that
both state and input converge to zero almost surely.

Proof. A feasible solution for P(xk+1, ρk+1) is given by

γk+1 = βk+1γ
∗
k , Qi|k+1 = βk+1Qi+1|k,

Yi|k+1 = βk+1Yi+1|k, Wi|k+1 = βk+1Wi+1|k.
(27)

where βk+1 = 1

ρ xT
k+1

Q−1

1|k xk+1 if xk+1 ∈ Ω̂1|k, oth-

erwise βk+1 = 1. It can be verified that constraints of
P(xk+1, ρk+1) hold under the solution in (27), hence re-
cursive feasibility is proved.

According to Theorem 8, Jk has an upper bound ρkγ
∗
k.

At time k+1, solving P(xk+1, ρk+1) yields a smaller γ∗
k+1
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than the feasible γk+1 in (27), hence γ∗
k+1

≤ βk+1γ
∗
k. Then

the expectation of ρk+1γ
∗
k+1

satisfies

Ek{ρk+1γ
∗
k+1} ≤ Ek{ρk+1βk+1γ

∗
k} ≤ Ek{x

T
k+1Q

−1

1|kxk+1γ
∗
k}.

Noting that Q1|k = Q1 for Step 2 in P1(xk, ρk), and

Ek{x
T
k+1

Q−1

1 xk+1γ
∗
k} satisfies (23), it is easy to see

xT
k Q

−1

0 xkγ
∗
k ≥ Ek{ρk+1γ

∗
k+1}+ xT

k (Q+KT
k RKk)xk.

Since xT
kQ

−1

0 xk ≤ ρk by (26), we have xT
k Q

−1

0 xkγ
∗
k ≤ ρkγ

∗
k ,

then the equation above is sufficient to

ρkγ
∗
k ≥ Ek{ρk+1γ

∗
k+1}+ xT

k (Q+KT
k RKk)xk, (28)

which verifies that {ρkγ
∗
k}

∞
k=0

is a nonnegative super-
martingale. By Williams (1991), ρkγ

∗
k converges almost

surely, hence xk converges almost surely. In addition (28)
implies that E0{x

T
k (Q + KT

k RKk)xk} → 0 as k → ∞,
which is sufficient for E0{x

T
k xk} → 0 since Q ≻ 0 in (21).

Thus the closed-loop system is mean-square stable. �

5. NUMERICAL EXAMPLE

Consider system (1) with m = 1 and

Ā =

[

1 0.1
0 0.5

]

, Ã1 =

[

0.004 −0.031
−0.002 0.142

]

,

B̄ =

[

0
0.1

]

, B̃1 =

[

0.003
−0.010

]

.

Performance weighting matrices in (21) are

Q =

[

1 0
0 0.0001

]

, R = 0.0001,

so that the control performance mainly concerns the first
entry of the state xk.

We denote Algorithm 1 as A1, and denote the algorithm
in Su et al. (2011) with N = 5 as S. The one-step ahead
probabilistic constraints take the form

Pr{|uk+i| ≤ 2} ≥ 0.9, i = 1, (29)

which is satisfied by S in Su et al. (2011). (29) can also be
ensured by A1 by setting Np = 1, p = 0.9, p∞ = 0, and α
in (11) to a sufficient large number. λ (appears in (9)) for
both algorithms is set to 0.23, which corresponds to the
largest volume of IWPp under S.

The regions of applicability of A1 with N = 1 and N = 2,
and S are drawn in Fig. 1. It is shown that A1 has a
larger region than S, owing to MSP sets employed. With
the increasing of N in A1, the region of applicability is
enlarged, since more degrees of freedom are provided.

For each of 30 initial points evenly distributed around the
boundary of the applicable region of A1 with N = 2, 500
random simulations are carried out to count the frequency
of x1 escaping Ω̂1 in (25). The total violation times are
1247, showing that x1 ∈ Ω1 in frequency around 0.92,
which satisfies the given probability 0.9.

Among these simulations, input trajectories under A1 from
x0 = [2.495,−13.172]T , when the violation of MSP sets

ever happens (i.e., xk 6∈ Ω̂k in (25) for k = 0, . . . , 10), are
shown in Fig. 2. As expected, input converges to zero, and
the violation time of |u1| ≤ 2 takes value of 44, which is
within the allowable limit.

−3 −2 −1 0 1 2 3
−15

−10

−5

0

5

10

15

[1,0]x
0

[0
,1

]x
0

 

 
A1, N=2
A1, N=1
S

Fig. 1. Initial applicable regions of A1 and S
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Fig. 2. Input trajectories under A1

For x0 = [−0.024, 0.862]T inside the region of applicability
of S, its average control performances of 500 random sim-
ulations under A1 and S are 0.025 and 0.035 respectively.
The average state trajectories are shown in Fig. 3, demon-
strating that the first entry of xk under A1 converges to
the origin faster than that under S.

Then we consider to satisfy both multi-step and infinite-
horizon probabilistic constraints

Pr{|uk+i| ≤ 2} ≥ 0.75, i = 1, 2, 3, 4, 5,

Pr{|uk+i| ≤ 2} ≥ 0.87, i = 6, . . . ,∞,
(30)

which are ensured by setting Np = 5, p = 0.75, and p∞ =
0.87 for A1. λ in (9) is set to 0.4, α is set to 0.709, so ρ in
(20) takes value of 1. The initial applicable regions of A1
under N = 1 and N = 2 are shown in Fig. 4.

For x0 = [1.521,−8.221]T in the initial applicable region
of A1, we run 500 times of random simulations under the
control of A1. In each simulation, the state trajectory lasts
for 10 steps, i.e., xk is computed for k = 1, . . . , 10. As
expected, the finite-length input and state trajectories all
converge to the vicinity of the origin. The violations of
|uk| ≤ 2 occur from time 1 to time 3, as shown in Fig. 5,
and the violation times clearly suffice constraints (30).
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Fig. 3. Average state trajectories under A1 and S
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Fig. 5. Control trajectories under A1

6. CONCLUSION

A stochastic MPC algorithm is developed for systems with
multiplicative uncertainty. Both multi-step and infinite-
horizon probabilistic constraints are ensured by MSP sets
proposed in this paper, which can also enlarge region of

applicability of the MPC algorithm. The results in the
numerical example verifies these properties.
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