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Abstract: The problem of selecting in an optimal way κ sensors from a given set of K sensors providing
noisy measurements of some physical variable has received a growing interest in the literature. The
problem has been shown to be combinatorial, and several computable relaxations have been presented.
In this paper, we consider a particularly interesting variant of the sensor selection problem. Motivated by
the increase in the application of wireless sensor networks, i.e. networks of sensors which take remote
measurements of the quantity of interest and then communicate their values through a (noisy) wireless
communication link, we propose a scheme for optimally selecting the wireless sensors taking into
account also the available channel state information. The optimality conditions are formally derived in an
information-theoretic context, and specific semi-definite programming relaxations leading to computable
techniques for large values of κ and K are presented. Also, we derive specific results for the cases of
high and low signal-to-noise ratios. Numerical simulations show how knowledge of the channel state
information may lead to an increase of the achievable mutual information, and determine a different
choice of sensors.

1. INTRODUCTION

In recent years, wireless sensor networks (WSNs) and wireless
sensor-and-actuator networks (WSANs) have found applica-
tion in many fields, like, for example, traffic control, weather
forecast, pollution control, etc. In WSNs/WSANs, a number of
sensors measure a given physical variable, and transmit their
measurements to a gateway, which processes the received in-
formation, possibly in order to apply a consequent response to
the measured physical system. Often, the number of deployed
sensors is larger than needed for processing, so that, at fixed
time intervals, the gateway performs sensor selection, with the
purpose of enabling a subset of sensors to transmit, while keep-
ing the others in sleep mode. Such a strategy allows saving
power and prolonging the lifetime of sensor batteries.

The problem of optimally selecting a subset of sensors from
a set of possible choices has received an increasing interest
in the literature. Clearly, optimal sensor selection turns out to
be a combinatorial problem, so that several papers propose
suboptimal approximations or relaxations to make the problem
feasible even for a moderate-to-large number of sensors. More-
over, different optimization criteria can be adopted in defining
optimal sensor selection. For example, Joshi and Boyd (2009)
consider as a parameter the volume of the confidence ellipsoid
and adopts a convex relaxation technique to reduce the com-
binatorial problem to a convex one, which can be solved in
polynomial time. Instead, in order to minimize the same pa-
rameter a greedy selection algorithm is proposed in Shamaiah
et al. (2012), with a guaranteed lower bound on its performance.
In Mo et al. (2011), the problem is extended to the case where
the sensors measure the output of a dynamical system, and a
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different criterion is proposed, related to the Kalman-filter error
covariance matrix.

Although implicitly assuming that the sensors send their obser-
vations to a fusion center, none of these works considers the
unavoidable influence of the wireless channel characteristic,
which can largely affect the quality of the received signal.
Motivated by this observation, in this paper we consider a
WSN with K sensors transmitting with multiple antennas to
a common receiver (i.e., the network gateway or the system
controller). We suppose that there is no interference between
signals received from different sensors, i.e., they transmit on
orthogonal channels. Among the total of K received signals,
the receiver has to choose κ, κ < K , according to some crite-
rion. To formally define the optimality conditions, we take an
information-theoretic approach and adopt as objective function
of the wireless sensor selection problem the mutual information
between the measured variable and the set of selected signals.

In this work we formulate the sensor selection problem in terms
of an optimization problem for both high and low signal-to-
noise ratios (SNR) on the wireless links. We also show that
such an optimization problem can be relaxed into a subopti-
mal semi-definite program (SDP) (Joshi and Boyd, 2009) or
approximated through a greedy algorithm.

The paper is structured as follows. In Section 2, we give a brief
review of the main information-theoretic concepts used in the
paper. Section 3 contains the considered scenario. In Section 4,
we formulate the problem of optimal sensor selection for our
scenario. In Section 5, we describe two suboptimal solutions
based on relaxation and greedy search. In Section 6, we con-
sider the limit regimes for high and low received signal-to-noise
ratio (SNR). In Section 7 we show numerical results with the
comparison of different algorithms for sensor selection. Finally,
in Section 8, we draw some conclusions.
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Fig. 1. Wireless sensor network

2. REVIEW OF INFORMATION-THEORY CONCEPTS

In this section, we briefly review the concepts of information
theory that will be used throughout the paper.

Let the vector 1 x of size n be a continuous multivariate
random variable (rv) with probability density function (pdf)
fx(z) defined over the regionX ⊆ R

n. The differential entropy
of x, h(x), is defined as

h(x)
.
= −

∫

X

fx(z) log fx(z) dz (1)

provided that the integral exists. The measure units are bits or
nats if the logarithm base is 2 or e, respectively. Roughly speak-
ing, the differential entropy measures the average uncertainty
of the realizations of x. If x is a complex Gaussian rv with
covariance Σ, then h(x) = log |πeΣ|.

Now, let the vector y of size m be a continuous rv with pdf
defined over the region Y ⊆ R

m. Then conditional entropy of
y given x, h(y|x), is defined as

h(y|x)
.
= −

∫

X

∫

Y

fx,y(z1, z2) log fx,y(z2|z1) dz1 dz2 (2)

where fx,y(z1, z2) is the joint pdf of x and y and fx,y(z2|z1) =
fx,y(z1,z2)

fx(z1)
is the conditional pdf of y given x. Conceptually, the

conditional entropy of y given x has the meaning of the average
uncertainty of y given that the value of x is known.

In communication theory, it is often important to estimate the
quantity of information flowing through a channel. Let the
channel input and output be described by the rv’s x and y,
respectively. Then, we define the mutual information of such
channel as I(x,y), which is given by

I(x;y)
.
= h(x) − h(x|y) (3)

which can be interpreted as the average amount of information
about x (the unknown channel input) that can be extracted from
the observation y. The value of I(x;y) is always non-negative
and is 0 if and only if x and y are independent rv’s.

1 Column vectors and matrices are denoted by bold lowercase and bold
uppercase letters, respectively. The matrix transpose operator is denoted by
(·)T while the conjugate transpose operator is denoted by (·)H. I indicates the
identity matrix and the determinant of a matrix A is denoted by |A|.

In the most typical example of continuous channel, the output
y is a version of the input x corrupted with additive noise n,
i.e.,

y = x+ n (4)
where n is complex Gaussian with zero mean and covariance
Σn and independent of x. If x is complex Gaussian with
covariance Σx, then the mutual information I(x;y) is given
by

I(x;y) = log |πe (Σx +Σn) | − log |πeΣn|

= log
|Σx +Σn|

|Σn|
(5)

3. SYSTEM MODEL

Following an approach similar to the one discussed in Joshi
and Boyd (2009), we consider the problem of estimating an
unknown vector x ∈ R

nx from the measurements performed
by K sensors, each one providing ny linear measurements,
corrupted by additive noise. That is, the output of these sensors
is given by

yk = Ckx+ vk, k = 1, . . . ,K

where yk is a vector of size ny and Ck is the k-th observation
matrix of size ny × nx. The terms vk , k = 1, . . . ,K , represent
the measurement noise and are modeled as i.i.d. Gaussian
random vectors with zero mean and covariance matrices Σvk

.
However, differently from previous works, we consider here
the more realistic situation where the sensors act remotely, and
their measures are to be sent to a common receiver (system
controller) through a wireless channel. In particular we assume
that all sensors are equipped with a wireless transceiver with ny

antennas and that at the k-th sensor the i-th entry of yk can be
transmitted by the i-th antenna, i = 1, . . . , ny.

Transmissions from sensors to the receiver take place on K
orthogonal multiple-input multiple-output (MIMO) channels so
that they do not interfere with each other. Also, the wireless
receiver is equipped with nr antennas so that the signal yk ,
transmitted by the k-th sensor is received as

rk = Hkyk + nk = HkCkx+Hkvk + nk (6)

where nk represent additive noise, assumed independent on
vk, and modeled as a complex Gaussian random vector with
zero mean and covariance matrix σ2I. The nr × ny matrix
Hk represents the k-th MIMO channel. Specifically the (i, j)-
th entry of Hk is the complex amplitude gain of the link
connecting the i-th transmitting antenna to the j-th receiving
antenna.

The signal received by all sensors can then be arranged in a
vector, r = [r1

T, . . . , rK
T]T, of size Knr given by

r=




H1C1

...
HKCK


x+




H1v1

...
HKvK


+




n1

...
nK




(7)

or, more compactly, as

r=HCx+Hv + n
.
=Φx+ η (8)
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where Φ
.
= HC, H is a Knr ×Kny matrix given by

H =



H1

. . .
HK


 ,

C is a Kny × Knx matrix given by C
.
= [C1

T, . . . ,CK
T]T,

v
.
= [v1

T, . . . ,vK
T]T and n

.
= [n1

T, . . . ,nK
T]T. The random

vector η = Hv + n represents the equivalent noise at the
receiver (i.e., it accounts for the thermal noise n and for the
measurement noise v) and has covariance matrix

Ση = HΣvH
H + σ2I (9)

where Σv = diag(Σv1 , . . . ,ΣvK
) is the covariance matrix

of v. The considered setup is summarized in Figure 1.

4. SENSOR SELECTION

The sensor selection problem consists of selecting a suitable
subset of sensors of cardinality κ < K , maximizing an appro-
priate performance metric. In practice, the system controller ac-
cepts to estimate the quantity x by using the signals received by
κ sensors only, out of the K available sensors, at the advantage
of a lower complexity. Clearly, better estimates can be obtained
if the amount of information transmitted by the selected sensor
is higher. Therefore, in the selection problem it is natural to
consider the maximization of the mutual information between
the selected signals and the measured vector x.

Sensor selection can be mathematically described by left-
multiplying the vector r by the κnr × Knr selection matrix
S. Such matrix is made of κ×K blocks of size nr × nr each.
The (i, j)-th block of S, Sij , is defined as

Sij
.
=

{
I if sensor i is the j-th selected sensor
0 otherwise

for i = 1, . . . ,K and j = 1, . . . , κ. Also S is such that for
each j = 1, . . . , κ there exists one and only one index i such
that Sij = I (i.e., exactly κ sensors are selected) and for each
i = 1, . . . ,K there is no more than one index j such that
Sij = I (i.e., sensors are selected no more than once).

Optimal sensor selection can thus be formulated as the problem
of choosing the selection matrix Ŝ that maximizes the mutual
information I(Sr;x), i.e.,

Ŝ = arg max
S

I(Sr,x). (10)

The maximum mutual information obtained by processing sig-
nals received from κ sensors is thus given by I(Ŝr,x). Note
that with this formulation, selection is made based on the
knowledge of the sensor/channel characteristics only (i.e. the
matrices Ci,Hi and the noise covariances). This selection is
made prior to transmitting the actual measurements, thus allow-
ing to switch off the non-selected sensors. As a consequence,
sensor selection not only results in a complexity reduction at
the controller, but also in a possibly large energy saving in
transmission.

4.1 Problem reformulation

By using the definition given in (3) and by assuming that x
is Gaussian distributed with zero mean and covariance matrix

Σx, the mutual information I(Sr,x) can be rewritten in terms
of differential entropies as

I(Sr,x) = h(Sr)− h(Sr|x)

We then observe that Sr|x is a multivariate complex Gaussian
random variable with mean SΦx and covariance SΣηS

H,
while Sr has zero mean and covariance S(ΦΣxΦ

H +Ση)S
H.

From (5) it follows that

I(Sr,x) = log
∣∣πe(SΦΣxΦ

HSH + SΣηS
H)
∣∣

− log
∣∣πe(SΣηS

H)
∣∣

= log
(∣∣SΦΣxΦ

HSH + SΣηS
H
∣∣ ∣∣SΣηS

H
∣∣−1

)

= log
(∣∣SΦΣxΦ

HSH + SΣηS
H
∣∣ ∣∣(SΣηS

H)−1
∣∣)

= log
∣∣SΦΣxΦ

HSH(SΣηS
H)−1 + I

∣∣ (11)

In order to proceed further we observe that the covariance
matrix Ση has a block-diagonal structure with blocks of size
nr × nr. Such a property is due to the fact that both H and
Σv are block-diagonal matrices. In particular Σv is block-
diagonal due to the independence of the measurement noises
vk. Therefore we can write (SΣηS

H)−1 = SΣ−1
η

SH, whence
it follows that the mutual information (11) can be rewritten as

I(Sr,x) = log
∣∣SΦΣxΦ

HSHSΣ−1
η

SH + I
∣∣

(a)
= log

∣∣ΣxΦ
HSHSΣ−1

η
SHSΦ+ I

∣∣

= log
∣∣ΣxΦ

HZΣ−1
η

ZΦ+ I
∣∣ (12)

where (a) is due to the fact that for any two matrices A and B,
the equality |I+AB| = |I+BA| holds (Sylvester’s Theorem).
Moreover Z = SHS is a Knr × Knr block-diagonal matrix
with blocks Z1, . . . ,ZK . Specifically the i-th block of Z, Zi,
can be written as Zi = ziI where zi ∈ {0, 1}, i = 1, . . . ,K are
Boolean variables.

Hence, sensor selection can be summarized by the boolean
selection vector z ∈ {0, 1}K defined as

z
.
= [z1 · · · zK ]T (13)

were zi = 1 means that the i-th sensor has been selected. Note
that the matrix Z is idempotent (i.e., Z2 = Z) and that, because
of the block-diagonal structure of Ση, ZΣη = ΣηZ. It follows
that the determinant in the last line of (12) can be rewritten as

∣∣ΣxΦ
HZΣ−1

η
ZΦ+ I

∣∣=
∣∣ΣxΦ

HZZΣ−1
η

Φ+ I
∣∣

=
∣∣ΣxΦ

HZΣ−1
η

Φ+ I
∣∣ (14)

Finally, we observe that the matrixZΣ−1
η

is block-diagonal and
its i-th block is given by ziΣ

−1
ηi

where Σηi
is the i-th diagonal

block of Ση and is given by

Σηi
= HiΣvi

Hi
H + σ2I

thus

ΦHZΣ−1
η

Φ=

K∑

i=1

ziCi
HHi

H
(
HiΣvi

Hi
H + σ2I

)−1
HiCi

=

K∑

i=1

ziAi

where

Ai = Ci
HHi

H
(
HiΣvi

Hi
H + σ2I

)−1
HiCi. (15)
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By substituting (15), (14) in (12), the mutual information can
be expressed as

I(Sr,x) = log

∣∣∣∣∣

K∑

i=1

ziΣxAi + I

∣∣∣∣∣ (16)

The previous developments allow us to state the next proposi-
tion, which provides a formulation of the optimal sensor selec-
tion problem in terms of the selection vector z.

Proposition 1. (Optimal wireless sensor selection). The selec-
tion vector ẑ that maximizes the mutual information is given
by the solution of the following optimization problem

ẑ= arg max
‖z‖0=κ

log

∣∣∣∣∣

K∑

i=1

ziΣxAi + I

∣∣∣∣∣
subject to zi ∈ {0, 1}, i = 1, . . . ,K (17)

where ‖z‖0 denotes the ℓ0 norm, corresponding to the number
of nonzero elements in z.

5. NUMERICAL SOLUTION

It should be noted that solving the optimal wireless sensor se-
lection problem formulated in Proposition 1 amounts at solving
a hard non-convex optimization problem, due to its intrinsic
combinatorial nature. In fact, it requires in principle to evaluate
the performance index for each of the

(
K
κ

)
possible choices of

sensor measurements. Specific branch-and-bound techniques,
in the spirit of Lawler and Wood (1966); Welch (1982), can
be devised for the numerical solution of this problem, but this
approach is clearly not practical unless κ and K are relatively
small. In the other cases, different approximations or relax-
ations are possible, as discussed in the next subsections.

5.1 Convex relaxation

It is immediate to observe that the optimization problem (17)
can be relaxed into a semi-definite program (SDP) by relaxing
the requirement that the selection vector z is to be binary.

Indeed, the cost function log
∣∣∣
∑K

i=1 ziΣxAi + I

∣∣∣ is a concave

function for z ∈ R
K . This approach, which is the analogous of

that introduced in Joshi and Boyd (2009), leads to the following
concave relaxation

ẑCR = arg max
‖z‖1=κ

log

∣∣∣∣∣

K∑

i=1

ziΣxAi + I

∣∣∣∣∣
subject to zi ∈ [0, 1], i = 1, . . . ,K (18)

Note that in the above maximization problem, the ℓ0-norm is
replaced by the ℓ1-norm. This is a standard technique applied
in optimization to derive convex relaxations to combinatorial
problems, and has been applied, e.g., in the context of com-
pressive sensing in Donoho (2006). The complexity of this
SDP algorithm scales as O(K3), and hence it can be applied
also to rather large networks. Note that the solution of this
SDP relaxation will in general take fractional values, and some
kind of sorting and rounding is necessary to obtain the desired
solution. The simplest approach consists in selecting the κ
elements of ẑCR with the largest values. A more sophisticated
approach, which in general leads to better solutions, consists
in applying an iterative procedure, where each iteration solves

a weighted ℓ1-problem. This procedure has been suggested in
Candés et al. (2008) to enhance the sparsity of the solution of
ℓ1-minimization problems.

5.2 Greedy algorithm

A second approach to derive a computable approximate so-
lution to the wireless sensor selection problem discussed in
Proposition 1 consists in applying a greedy procedure, that is
by choosing the sensors one at a time, until κ sensors are finally
selected. At the ν-th step (1 ≤ ν ≤ κ), the selected sensor
is the one maximizing the objective function when combined
with the previously chosen ν − 1. The procedure is described
in Algorithm 1. As it can be seen, in this case the objective
function can be rewritten as the following set-function (where
a set-function is a function whose input is a given set K)

I(K)
.
= log

∣∣∣∣∣
∑

i∈K

ΣxAi + I

∣∣∣∣∣ (19)

Algorithm 1 GREEDY SENSOR SELECTION

(1) Initialization: ν = 1, K(1) = ∅, K
(1)

= {1, . . . ,K}
(2) Select greedily the next sensor:

k̂ν = arg max
j∈K

(ν)

I(K(ν) ∪ j) (20)

(3) Update the measurement set:

K(ν+1) = K(ν) ∪ k̂ν , K
(ν+1)

= K
(ν)
\ k̂ν (21)

(4) Set ν ← ν + 1, IF ν ≤ κ GOTO 2.

The use of Algorithm 1 in the context of sensor selection has
been proposed in Shamaiah et al. (2012), where its subopti-
mality properties are discussed in details, based on the concept
of submodularity 2 . Submodularity plays for discrete functions
the same role than convexity for continuous functions, see e.g.
the survey Krause and Golovin (2014), and has been leveraged
in various problems in the contexts of optimal sensor placement
(Krause et al., 2011) and leader selection (Clark et al., 2014).

Lemma 1. (Suboptimality of the greedy algorithm). Let ÎGR be
the mutual information obtained with the solution of Algorithm
1 and let Î be the optimal solution of the problem in (17). Then,

ÎGR ≥

(
1−

1

e

)
Î (22)

Proof. The lemma is immediately proved by observing that
I(K) in (19) is submodular and monotone for given K, and
applying the reasoning in (Shamaiah et al., 2012, Lemma 1).

6. HIGH- AND LOW-SNR REGIMES

In this section, we consider the sensor selection problem in the
case of high and low signal-to-noise ratio (SNR) on the wireless
channel. Specifically we first consider the case σ2 → 0 (high-
SNR regime) and then the case σ2 → +∞ (low-SNR regime).

For the high-SNR regime, we will make the further assumption
that nr ≥ ny and that the channel matrices Hi are full rank.
2 For a given finite set K, a set-function f : 2K → R, where 2K denotes the
power set, is said to be submodular iff ∀A ⊆ B ⊆ K, and ∀j ∈ K\B, it holds
f(A + j) − f(A) ≥ f(B + j) − f(B), that is the function f satisfies the
so-called diminishing increments property. Note that the submodular function
f is monotone if f(A) ≤ f(B), ∀A ⊆ B.
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Proposition 2. (High-SNR regime). If nr ≥ ny and the ma-
trices Hi, i = 1, . . . ,K , are all full rank then, for σ2 → 0,
the optimal sensor selection problem defined in (17) can be
rewritten as

ẑH = arg max
‖z‖0=κ

log

∣∣∣∣∣

K∑

i=1

ziΣxCi
HΣ−1

vi
Ci + I

∣∣∣∣∣
subject to

zi ∈ {0, 1}, i = 1, . . . ,K (23)

Proof. The term
(
HiΣvi

Hi
H + σ2I

)−1
Hi in (15) can be

rewritten as

(
HiΣvi

Hi
H + σ2I

)−1
Hi

=
1

σ2

(
HiΣvi

Hi
H

σ2
+ I

)−1

Hi

=

(
HiΣvi

Hi
H

σ2
+ I

)−1
HiΣ

1/2
vi

Σ−1/2
vi

σ2

=
(
H̃iH̃i

H + I
)−1

H̃i

Σ−1/2
vi

σ
(24)

where H̃i = HiΣ
1/2
vi

/σ. We then observe that for any matrix

H̃i the following equality holds
(
H̃iH̃i

H + I
)−1

H̃i = H̃i

(
H̃i

HH̃i + I
)−1

hence

(
HiΣvi

Hi
H + σ2I

)−1
Hi = H̃i

(
H̃i

HH̃i + I
)−1 Σ−1/2

vi

σ

=Hi

(
Σvi

Hi
HHi + σ2I

)−1

(25)

It follows that in the high-SNR regime the term involving the
matrix Hi in (15) can be rewritten as

lim
σ2→0

Hi
H
(
HiΣvi

Hi
H + σ2I

)−1
Hi

= lim
σ2→0

Hi
HHi

(
Σvi

Hi
HHi + σ2I

)−1

=Σ−1
vi

(26)

provided that Hi
HHi is invertible. Under such conditions, (17)

turns to (23).

Note that in the high-SNR regime the sensor selection problem
does not depend on the channel matrices Hi, as far as they
are full rank and nr ≤ ny . This result is also of importance
whenever the channel rapidly varies over time, so that it cannot
be tracked optimally or, in other words, when the channel
coherence time is much lower than the time required to choose
the optimal set of sensors.
Proposition 3. (Low-SNR regime). If σ2 → ∞, the optimal
sensor selection problem in (17) reduces to

ẑL = arg max
‖z‖0=κ

K∑

i=1

ziTr
{
ΣxCi

HHi
HHiCi

}

subject to

zi ∈ {0, 1}, i = 1, . . . ,K (27)

Proof. We start from the expression of the mutual information
given in (12) and we observe that, for σ2 → ∞, Σ−1

η
≃ σ−2I.

Under this condition and from (12) we have:

I(Sr,x)≃ log
∣∣σ−2ΣxΦ

HZZΦ+ I
∣∣

= log
∣∣σ−2ΣxΦ

HZΦ+ I
∣∣

≃ σ−2
Tr

{
ΣxΦ

HZΦ
}

= σ−2
K∑

i=1

ziTr
{
ΣxCi

HHi
HHiCi

}
(28)

where we used the fact that for ǫ→ 0, |I+ǫA| = 1+ǫTr{A}+
o(ǫ2), and log(1 + ǫTr{A}) ≃ ǫTr{A}. Under the arg max
operator the constant terms independent of z can be removed
so that the optimal sensor selection can be written as in (27).

Note that the problem in (27) can easily be solved by a greedy
algorithm that takes the κ largest values of

pi = Tr
{
ΣxCi

HHi
HHiCi

}
,

i = 1, . . . ,K . Also, the solution depends on the channel
matrices Hi (as opposed to the high-SNR case). Moreover, the
value of pi can be interpreted as the total useful power reaching
the receiver from the i-th sensor.

7. NUMERICAL RESULTS

In this section, we show some simulation results to assess
the performance of the different sensor selection algorithms
described in the previous sections.

In our tests, three sensors have to be chosen out of a set
of twenty, i.e., K = 20 and κ = 3. The vector x to be
estimated has length nx = 4 and a covariance matrix Σx = I.
Each sensor performs ny = 2 scalar measurements, while the
receiver is equipped with nr = 2 antennas. The measurement
noise vectors have covariance matricesΣvi

= I, k = 1, . . . ,K .
The entries of the Ck matrices, k = 1, . . . ,K , are chosen
i.i.d. from a zero-mean real Gaussian distribution, and then the
Ck’s are normalized to a constant Frobenius norm and kept
fixed for the whole simulation. The entries of the Hk matrices,
k = 1, . . . ,K , are chosen i.i.d. from a zero-mean unit-variance
circular complex Gaussian distribution, as in the case where the
wireless channel is affected by Rayleigh fading. We define the
channel signal-to-noise ratio as SNR = 1/σ2.

In a first test, whose results are depicted in Fig. 2 we kept fixed
the set of Hk’s for the whole simulation. The figure shows the
mutual information achieved by the optimal sensor selection of
Prop. 1, together with the mutual information achieved by the
high-SNR and low-SNR versions of the same optimal selection,
as defined in Props. 2 and 3, respectively. In the lower part of
Fig. 2, we show the selected sensor set by each algorithm as
a function of SNR. As it can be seen, the low-SNR algorithm
of Prop. 3 merges with the optimal selection only for SNRs
lower than -25 dB, while it is largely suboptimal for medium-
to-high SNRs. The high-SNR algorithm of Prop. 2 merges with
the optimal selection for SNR = 14 dB, while it loses up to 1.5
bits of mutual information for medium SNR values. The slope
changes in the optimal selection curve correspond to changes
in the selected sensor set.

In a second test, depicted in Fig. 3 we average over 100
Rayleigh-fading channel realizations. The figure shows the mu-
tual information achieved by the optimal sensor selection of
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Fig. 2. (Top) Achievable mutual information versus SNR for the
optimal wireless sensor selection (solid blue curve) and
its counterparts at high SNR (dash-dotted red) and low
SNR (dashed green). (Bottom) Optimal wireless sensor
selection for different SNR (blue circle markers), and
low- and high-SNR counterparts (green and red triangle
markers). Fixed channel realization.

Proposition 1, a re-weighted implementation of the convex re-
laxation described in Section 5.1 and the greedy sensor selec-
tion of Algorithm 1. As it can be seen, the two approximated
algorithms reach the optimal performance up to SNR = 4
dB, while they become slightly suboptimal for higher SNR,
while neither of the two dominates the other. Notice that both
suboptimal solutions exhibit bumps, i.e., the achieved mutual
information is not everywhere an increasing function of SNR, a
fact which is probably related to the choice of the Ck’s. Finally
notice that the penalty incurred by the approximated algorithms
always remains within 1 bit of mutual information.

8. CONCLUSIONS

In this paper, we studied the problem of optimal sensor selec-
tion in the case when the sensed information is to be transmitted
through a noisy wireless channel. The optimality conditions
have been derived in an information-theoretic framework, and
numerical simulations clearly show the importance of taking
into account channel state information to perform the best sen-
sor selection. Further studies will consider the problem of re-
mote Kalman filtering in the same wireless context. Finally, the
possibility of introducing additional constraints in the choice of
the sensors can be considered, as in Wang et al. (2013).
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Fig. 3. Comparison among the optimal sensor selection (blue
curve), the convex-relaxation algorithm (red) and the
greedy sensor selection (green) in terms of achievable mu-
tual information versus SNR. Average over 100 channel
realizations.
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