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Abstract: In this work a kinetic model for the enzymatic transesterification of rapeseed oil using a 

solubilised lipase (Callera Trans L-Thermomyces lanuginosus) was developed from first principles. The 

model is based on a Ping-Pong Bi-Bi mechanism, with methanol inhibition, along with consideration of 

the differences in the interfacial and bulk concentrations of the enzyme. The model is then used to 

evaluate various feeding strategies to improve the enzymatic biodiesel production. The feeding strategies 

investigated, gave insight into how the methanol should be fed to potentially mitigate enzyme 

deactivation while improving the biodiesel yield. The best experimental results gave a yield of 703.76 g 

FAME L
-1

 and a reactor productivity of 28.12 g FAME L
-1

 h
-1

. In comparison, to reach the same yield, 

the optimised two step feeding strategy took 6.25 hours less, which equates to an increase the reactor 

productivity of 36.9 %.  
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1. INTRODUCTION 

Compared to the conventional alkali-catalysed biodiesel 

process, the enzymatic process is considered a “green 

reaction”. It requires less energy and is also highly selective 

producing a very high purity product with less downstream 

operations (Xu et al. 2011, Akoh et al. 2007, Nielsen et al. 

2008). If the biocatalyst is to be reused, one challenge is 

mitigating the effects of inhibition and deactivation of the 

enzyme by the methanol substrate. To overcome the effects 

due to the methanol, researchers employ a stepwise feeding 

of methanol to the reactor (Samukawa et al. 2000, Lv et al. 

2010, Du et al. 2005). However the methods that are 

employed are far from optimal. In order to optimize the 

enzymatic biodiesel process, numerous experiments are done 

to help characterize the system. Modelling can be a valuable 

tool to help focus the experimental work needed for process 

understanding and to support further process development. 

Integral to the modelling of the biodiesel process from first 

principles, is the availability of reliable kinetic models. 

Descriptions of the various kinetic models for enzymatic 

transesterification of vegetable oils are quite numerous (Al-

Zuhair 2005, Pilarek and Szewczyk 2007, Cheirsilp et al. 

2008, Calabrò et al. 2010, Li et al. 2010, Lv et al. 2010, 

Fedosov et al. 2012). In terms of determining the optimal 

methanol feeding profile, the current kinetic models in 

literature are not able to predict the concentration of the 

major species over the entire course of the reaction, for 

changes in the process conditions such as: 

1. Alcohol/oil molar ratio 

2. Water and Free fatty acid concentrations 

3. Different enzyme loadings 

4. Interfacial area of the oil–water interface 

 

The aim of this work is to: 

 Develop a mechanistic model from first principles that 

takes into consideration the effects of the process 

conditions outlined. 

 Use the proposed model to evaluate various feeding 

strategies to improve the biodiesel production while 

constraining the maximum allowable concentration of 

methanol in the reactor. 

The article is organised as follows. The model formulation is 

presented, along with the two feeding strategies. The results 

of the parameter estimation are discussed along with the 

results of the feeding strategies. The uncertainty in one of the 

feeding strategies due to the uncertainty in the parameter 

estimates is then investigated. 

2. MODEL FORMULATION AND METHODS 

2.1. Model formulation 

The mathematical model describing the transesterification 

reaction in the biphasic oil–water system with a soluble lipase 

(Callera Trans L-Thermomyces lanuginosus) was formulated 

on the basis of the following assumptions: 

1. The reaction proceeds via a Ping-Pong Bi-Bi 

mechanism  

2. No inhibition by the substrate 

3. Competitive alcohol inhibition  

4. The interfacial and bulk concentrations of the 

substrate and products are the same (mass transfer 

from the bulk to the interface is instantaneous)  

5. Acyl migration can be ignored  

6. All reaction steps are reversible 
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By including the interfacial enzyme concentration (E), the 

reaction scheme then proceeds as shown in Table 1.  

The total specific interfacial area of a droplet (aT [m
2
/m

3
]) 

can be represented as: 

6
.

p

T

s

V
a

d V
 (1)  

Where ds is the Sauter mean diameter of the droplets in the 

system - 5.88 x 10
-6

 [m], Vp is the size of the polar volume 

[m
3
] and V is the bulk volume [m

3
]. 

Given the enzyme coverage Ae [m
2
/mole], it is possible to 

calculate the free specific interfacial area, af [m
2
/m

3
] as seen 

in (2). Note, it is assumed the size of the various enzyme 

substrate complexes don’t vary significantly from the size of 

the free enzyme (Jurado et al. 2008).  

( ).     
f T e

a a A E EX ET ED EM ECH  (2)  

The free specific interfacial area can then be expressed as a 

concentration (Af [mol/ m
3
]) by using the enzyme coverage to 

estimate a theoretical upper limit of the moles of enzyme 

molecules that can occupy the interface. 

/
f f e

A a A  (3)  

 

Fig. 1. Diagrammatic representation of the enzyme at the 

oil water interface. The polar phase contains water, 

methanol, glycerol and the Free enzyme (Ebulk). The non-

Polar phase contains the oil components along with the 

biodiesel formed. At the interface is the penetrated enzyme 

(E) and the Acyl Enzyme complex (EX) 

 

Table 1. Rate and differential mass balance equations for a Fed-batch reactor 

i Reactions Rate of reaction (ri) Differential mass balance Eqns. for Fed-Batch 

1 Ebulk + Af  ↔  E 
Enzyme in bulk absorbed at the 

interface 11

[ ] [ ] [ ]


   
bulk f

k E A k E  
 

 
2

[ ]
 

d T V
Vdt r  

2 T + E  ↔  E.T   
In reactions 2, 4 and 6 the 
penetrated enzyme can react 

with the substrate to form an  

enzyme substrate complex E.T, 
E.D or E.M (Ping) 

 

In reactions 3, 5 and 7 the 
enzyme substrate complex 

forms the Acyl enzyme 

complex and releases the first 
product D, M or G (Pong) 

22

[ ] [ ] [ ]


   k T E k ET  
 

3 4

[ ]
( )


 

d D V

dt V r r  

3 E.T  ↔ EX + D 
3 3

[ ] [ ] [ ]


   k ET k EX D  
 

5 6

[ ]
( )


 

d M V

dt V r r  

4 D + E  ↔  E.D 
44

[ ] [ ] [ ]


   k D E k ED  
 

 
9

[ ]


d BD V
Vdt r  

5 E.D ↔ EX + M 
5 5

[ ] [ ] [ ]


   k ED k EX M  
 

 
8

[ ]


d FA V
Vdt r  

6 M + E  ↔  E.M 
6 6

[ ] [ ] [ ]


   k M E k EM  
 

 
7

[ ]


d G V
Vdt r  

7 E.M  ↔  EX + G 
7 7

[ ] [ ] [ ]


   k EM k EX G  
 

 
8

[ ]
 

d W V
Vdt r  

8 EX + W  ↔  FFA + E 
The acyl enzyme complex can 

then react with water or 

methanol (Pong) and then 
release the second product FA 

or BD (Ping) 

8 8

[ ] [ ] [ ] [ ]


    k EX W k FFA E  
 

9 10

[ ]
( )


  

d CH V

dt V r r  

9 EX + CH  ↔  BD + E 
9 9

[ ] [ ] [ ] [ ]


    k EX CH k BD E  
 

1 8 9 2 4 6 10

[ ]
( )


      

d E V

dt V r r r r r r r  

10 CH + E  ↔  E.CH 
Reversible competitive 
methanol inhibition 10 10

[ ] [ ] [ ]


   k CH E k ECH  
 

3 5 7 8 9

[ ]
( )


    

d EX V

dt V r r r r r  

Note: 

1. T,  D, M, G ,CH ,BD , W ,FFA, Af, Ebulk, E, EX, Fa , RG, and RW are 

Triglyceride, Diglyceride, Monoglyceride, Glycerol, Alcohol, Biodiesel, 

Water, Free fatty acid, Free Interfacial area, Free enzyme bulk 

concentration, Penetrated enzyme, acyl enzyme complex, volumetric flow 

fate of methanol and the volumetric net rates of production of Glycerol and 

Water respectively. E.T represents the Enzyme Triglyceride complex 

formed and extends to the other complexes formed. Units for the 

concentrations are in mol/ m
3
. 

2. Intermediate steps for reactions 2 - 9 were grouped together given 

interest is in the overall rate  

3. The differential equation to estimate the polar volume neglects the 

change in density of the system. 
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The mass balance for the system is then combined with the 

kinetics to give the system of ordinary differential equations 

presented in Table 1. An illustration of the enzyme and its 

complexes is presented in Fig. 1. 

2.2. Parameter Estimation 

The 20 unknown kinetic constants (k1-k10,k-1-k-10) were 

estimated by fitting the model equations with six sets of 

experimental data  and a seventh validation data set is used to 

judge the quality of the fitting. The experiments considered 

can be seen in Table 2. 

The parameter estimation was performed in Matlab. The 

differential equations are solved using a stiff variable order 

solver based on the numerical differentiation formulas 

(ode15s). The parameter fitting minimizing the squared-sum 

of the relative errors between the simulated and experimental 

values for T, D, M, BD and FFA using fminsearch which is 

based on a simplex search algorithm (Jeffrey C. Lagarias 

1998). 

2.3. Methanol Feeding Optimization 

Given that the transesterification reaction is reversible, an 

excess of methanol is needed to push the reaction to its 

equilibrium conversion. For this enzyme formulation, at least 

1.5 molar equivalents (Eq.) of methanol are necessary (1 Eq. 

of methanol corresponds to the ratio of 3 moles of methanol 

to 1 mole of triglyceride). However, high concentrations of 

methanol will cause the activity of the enzyme to decrease  

due to methanol inhibition and irreversibly deactivate the 

enzyme (Al-Zuhair et al. 2007). The mechanism for methanol 

inhibition is covered in the model presented, however 

deactivation of the enzyme is not, due to insufficient 

experimental data to characterise the phenomena. Samukawa 

and co-workers found that they can increase the reuse of the 

immobilised enzyme (a clear indication of a reduction in 

enzyme deactivation), by using a stepwise feeding strategy. 

This kept the methanol content in the reactor below the 

concentration that gave the highest initial rate of FAME 

production (Samukawa et al. 2000). Hence we wished to 

extend their work by actually being able to maintain the 

concentration of methanol in the reactor ({CHcritical}) that 

gave the best initial rate, at each time increment ti, by 

minimizing the objective function in (4). 

 
2

m in { { }} 
i i

Eq t critical tEq

F

J C H C H  (4)  

The control vector for the methanol feed rate is,    
 [          ]

  [    ⁄ ] and the same experimental settings 

in Exp. 1-7 are used along with the simulation settings in 

Table 3 to investigate the effects how the lower number of 

feed increments (Opt.1, N=2) and upper number of feed 

increments (Opt.2, N=20) affects the process.  

The objective function in (5) is used to find the initial amount 

of methanol dosed, that achieves the highest initial rate of 

FAME production (IRFAME). A value of 0.525 Eq. is found, 

and is used in the rest of the simulations. 

0

m ax 
IR FAM E

C H

J IR  (5)  

2.4. Uncertainty analysis 

As in our previous work (Price et al. 2013), the Monte Carlo 

method was used to propagate the uncertainty of the kinetic 

parameters on the output (prediction) uncertainty of the 

model (Sin et al. 2009). The confidence intervals from the 

parameter fitting is used to specify the input uncertainty in 

the parameter estimates and Latin hypercube sampling with 

correlation control is used for sampling of the parameters in 

the sample parameter space (Helton and Davis 2003). 

3. RESULTS AND DISCUSSION 

3.1. Parameter Estimates and model validation 

The histogram of the residuals (Fig. 2), for the fitting of Exp. 

1-6 is used to assess the quality of the model fitting. With a 

mean of -0.07 mass % and standard deviation of 2.62 mass 

%, this signifies that 95 % of the residuals lie within                

-0.07±5.24 mass %. Given a mass balance on the acyl groups 

close to within 3 mass %, this means that the proposed model 

explains the experimental data quite well.  
Table 2. Experiments used for the data fitting 

Exp.* Enzyme 

[wt.% oil ] 

Water 

[wt.% oil ] 

Methanol Feed rate 

[Eq./h] 

1 0.1 3 0.06 

2 0.2 3 0.06 

3 0.3 3 0.06 

4 0.2 5 0.06 

5 0.5 5 0.06 

6 0.3 5 0.1 

7 0.5 5 0.185 first 2hrs. 0.06 

thereafter 

*Experiment settings: 1.5 Equivalents of CH is reacted with 

110g of Rapeseed oil (1 Eq. is 1 mol oil : 3 mol CH). The 

reaction takes place in a 0.25L reactor at 35 °C with mixing by a 

rushton turbine, spinning at 1400 rpm. Initial Methanol dosed is 

0.2 Eq. 

Table 3. Simulation settings for the Feeding strategy 

Settings 
Strategy 1 

Opt.1 Opt.2 

{CHcritical} [Eq.]  0.525 0.525 

CH@ t=0 [Eq.] 0.525 0.525 

Enzyme [wt.% oil ] 0.5 0.5 

Water [wt.% oil ] 5 5 

N - number of feed increments 2 20 

tend [min] 1500 1500 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6206



 

 

     

 

The parameter estimates are shown in Table 4 along with the 

confidence intervals obtained. Generally, the narrower the 

confidence interval, the higher the quality of the parameter 

estimate. Fig. 3 shows the performance of the parameter 

estimates on the validation data set (Exp.7). For the 

validation data set, a different methanol feeding scenario is 

used. Initially the methanol feeding is high (0.185 Eq./h) in 

the first 2 hrs. of the reaction after which it is decreased to 

0.06 Eq./h. The model captures the dynamics for the five 

components quite well, however the prediction for the FFA 

and the MAG show some deviation from the experimental 

data. The model mismatch observed may be due to the 

process phenomena not taken into consideration as well as 

the uncertainty in the parameter estimates. How the 

uncertainty in the parameter estimates affects the model 

outputs can be quantified via Monte-Carlo simulations. The 

uncertainty of the parameters is investigated later on one of 

the feeding strategies.  

3.2. Feeding Strategy Simulations 

The two feeding strategies simulated (Opt.1 and Opt.2), are 

able to satisfy the objective function in (4) at each time 

increment for N=2 and N=20. One possible measure to 

ascertain which feeding strategy is better, is to use the FAME 

yield. For the two feeding strategies simulated, it was 

possible to increase the FAME concentration throughout the 

entire course of the reaction as seen in the parity plot in Fig. 

4. Exp.7 had the highest FAME yield (703.76 g/L) of all the 

experiments and a reactor productivity of 28.12 g FAME L
-1 

h
-1

. For Opt.1 and Opt.2 the increase in the FAME yield 

compared to Exp.7 was 4.14 % and 3.94 % respectively. 

What this means, from a production perspective, is that using 

Opt.1’s feeding strategy, the reaction could be stopped 6.25 

hours earlier and still have the same FAME yield as in Exp. 7. 

This equates to an increase in the reactor productivity of 36.9 %. 

The increase in reactor productivity due to the optimal 

Table 4. Parameter estimates and confidence intervals 

Parameter Mean Estimate Confidence 

Interval [±%] 

k1   [L/mol.s] 2.07E+05 4.4 

k-1   [1/s] 3.89E+04 9.0 

k2   [L/mol.s] 1.32E+05 4.7 

k-2   [1/s] 8.10E+04 5.0 

k3    [1/s] 1.66E+05 0.8 

k-3   [L/mol.s] 5.76E+04 7.3 

k4    [L/mol.s] 6.46E+04 2.7 

k-4   [1/s] 1.53E+05 7.6 

k5    [1/s] 2.38E+04 3.1 

k-5   [L/mol.s] 9.92E+03 7.6 

k6    [L/mol.s] 2.15E+04 5.4 

k-6   [1/s] 1.56E+05 4.4 

k7    [L/mol.s] 3.76E+04 7.6 

k-7   [L/mol.s] 1.43E+04 11.3 

k8    [L/mol.s] 3.36E+04 5.4 

k-8   [L/mol.s] 8.58E+03 6.5 

k9     [L/mol.s] 4.00E+04 13.6 

k-9    [L/mol.s] 7.93E+03 6.7 

k10   [L/mol.s] 1.42E+05 22.9 

k-10  [1/s] 1.77E+00 11.5 
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feeding of methanol can be can be explained by the plots 

shown in Fig. 5. For feeding strategies Opt.1 and Opt.2 the 

concentration of methanol in the reactor is below or at the 

optimal value of 0.525 Eq. which gave the fastest initial rate. 

It is known that initial reaction rate increases with increasing 

methanol content, reaches a maximum, and thereafter 

decreases when the methanol content is further increased (Al-

Zuhair 2005). From the simulations (not shown) this 

behaviour also occurs during the reaction. Given the 

methanol concentration never crosses the critical value of 

0.525 Eq. for the two feeding strategies; the inhibition is not 

as severe, as compared to Exp.7. 

Opt.1 has the highest FAME yield in the end of the reaction 

compared to Opt.2 even though it does not operate at the 

critical FAME concentration for the entire reaction. This is 

due to the fact that Opt.1 is fed more methanol than Opt.2 but 

still less than Exp.7. This means the optimised feeding 

increased the biodiesel yield while decreasing the amount of 

methanol that needs to be recovered in the downstream 

processing. The increase in FAME production for Opt.1 and 

Opt.2 compared to Exp.7, in the first half of the reaction is 

due to the increase in methanol concentration. This means 

there is more methanol substrate to react, giving a faster 

reaction before the interface is filled with other competing 

enzyme substrate complexes, which ultimately slows down 

the reaction in the later half.  

Another interesting observation is that Opt.1’s (also Exp.7) 

methanol profile for the first 700 minutes stays below 0.525 

Eq. This means the enzymes in Opt.1, is not exposed to as 

harsh conditions as the enzymes in Opt.2 during the first half 

of the reaction and may provide a better environment for the 

enzyme, thereby decreasing the amount of enzyme that is 

 

Fig. 5 Simulation of the feeding strategies for Opt.1 and Opt. 2 along with the simulation results of Exp.7 for 

comparison 
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irreversibly deactivated. However this conclusion needs to be 

validated in the lab by repeated reuse of the enzyme.  

In Fig. 6 we use the Monte-Carlo simulations to investigate 

for Opt.1, how reliable the model is given the uncertainty in 

the parameter estimates. The uncertainty in the model outputs 

is represented using the results of the Monte-Carlo 

simulations, obtained from the dynamic simulation of the 500 

Latin hypercube samples. The interpretation of the results is 

straightforward; the higher deviation of the 500 simulations, 

the worse the model prediction quality is. Overall the 

parameter uncertainty can be considered negligible on the 

model outputs even though the FFA model output shows 

some deviation. To understand which parameters are 

significantly influencing the uncertainty in a particular model 

output (such as FFA of MAG) a sensitivity analysis would 

need to be done, however this is beyond the scope of this 

paper. 

4. CONCLUSIONS 

The developed mechanistic kinetic model combined with the 

reactor mass balance enabled the evaluation of various 

feeding strategies to improve biodiesel production. Increasing 

the number of feed increments won’t necessarily give a better 

yield but is dependent on the total amount of methanol that is 

fed to the reactor. It is important that the methanol 

concentration in the reactor is very close to the critical value 

to maximize the reactor productivity. In the end the two step 

feed feeding strategy, Opt.1 gave an increase in biodiesel 

yield off 4.14 %, lowered the amount of methanol that needs 

to be recovered and since the enzymes experiences much 

lower methanol concentrations this strategy  may very well 

serve to mitigate methanol deactivation. 
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