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Abstract: In this paper, the consensus problem for multi-agent systems with general linear
dynamics is studied. A novel event-triggered control scheme with some desirable features,
including distributed, asynchronous and independent, is proposed. It is shown that consensus
of the controlled multi-agent system can be reached asymptotically. The feasibility of the event-
triggered strategy is further verified by the exclusion of both singular triggering and Zeno
behaviors. The proposed control scheme is applied to solve a spacecraft formation flying problem.
Simulations illustrate the effectiveness of the control scheme.

1. INTRODUCTION

In the past few years, various control problems of a
group of networked subsystems called agents have been
extensively studied. These problems include formation,
synchronization, flocking, swarming, rendezvous, to name
just a few. In many circumstances, the states of all agents
need to reach a common quantity of interest while each
agent only has access to information of its neighboring
agents. This is the so-called consensus problem of multi-
agent systems under distributed framework, which plays a
fundamental role in study of multi-agent systems. Typical
results on this topic can be found in Cortés and Bullo
[2005], Jadbabaie et al. [2003], Olfati-Saber [2006], Olfati-
Saber et al. [2007], Ren [2007], Ren and Atkins [2007] and
references therein.

It should be noted that each individual agent is usually e-
quipped with simple embedded microprocessors, on-board
communication modules, and actuation modules, which
have limited energy resources to perform such functions as
gathering information, communicating with neighboring
agents, and driving the agent. For most existing control
strategies in consensus problems, an agent needs to mea-
sure its state, send the state to its neighbors, and update
its control signal continuously or in a fixed sampling rate.
Such control laws might become infeasible or impractical
in many applications due to their excessive consumption
of on-board energy resources. It is thus desirable to design
novel control schemes, such that the load of communica-
tion and controller update for each agent can be reduced
significantly. In this way, limited energy resources of agents
can be greatly saved and operational lifespan of multi-
agent systems can be thus prolonged. To address this issue,
Tabuada [2007] introduces an event-triggered strategy for
a stabilization problem, where the control actuation is trig-
gered whenever a defined error exceeds a threshold with
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respect to the norm of the state. Dimarogonas et al. [2012]
apply the distributed event-driven scheme to a first order
agreement problem in multi-agent systems. Most recently,
a new combined measurement approach to event-based
design is developed in Fan et al. [2013]. As a result, control
of agents is only triggered at their own event time, which
is a significant improvement. The authors in Seyboth
et al. [2012] present an event-based broadcasting strategy
for multi-agent systems with double-integrator dynamics,
where a time-dependent threshold is used to bound each
agent’s measurement error. Some other relevant studies on
the topic can be found in Hu et al. [2011], Liu et al. [2012],
Wang and Lemmon [2011], Wang and Ni [2012].

In spite of the advances in event-triggered consensus of
multi-agent systems, there are still some challenging issues
to be addressed. One of the issues is to consider more gen-
eral agent dynamics as most existing works focus on single
or double integrators. Another issue is to develop more
efficient triggering mechanisms that have the following
features. First, each agent only needs the information of its
neighbors and itself, termed as distributed. Second, all the
agents are not required to be triggered at a synchronous
way, termed as asynchronous. Third, triggering of an agent
should not affect or be affected by triggering of other
agents, termed as independent. However, the triggering
mechanisms in most existing works only have some but
not all of these features. For example, all the agents are
triggered at the same time, namely, in a synchronous
fashion in Hu et al. [2011], Liu et al. [2012], Wang and
Ni [2012]. The controllers in Dimarogonas et al. [2012] are
required to be triggered at the neighbors’ event time.

Motivated by the above-mentioned considerations, in this
paper, we propose a novel distributed event-triggered s-
trategy with those desirable features for the consensus
problem of multi-agent systems with general linear dynam-
ics.

The rest of the paper is organized as follows. Section 2
introduces some preliminaries and problem formulation. In
Section 3, we propose a novel distributed event-triggered
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control scheme for multi-agent systems with general linear
dynamics and analyze its feasibility. The proposed control
scheme is then applied to solve a spacecraft formation
flying problem in Section 4 and conclusions are drawn in
Section 5.

2. PROBLEM FORMULATION

2.1 Notations

We will use the notation ‖·‖ to denote the Euclidean norm
for vectors or the induced 2-norm for matrices. Given a
symmetric matrix M , M > 0 (or M ≥ 0) means that
M is a positive definite (or semi positive definite) matrix.
The notation A ⊗ B represents the Kronecker produc-
t of matrices A and B, with the following properties:

(A⊗B)
T

= AT ⊗BT and (A⊗B) (C ⊗D) = AC ⊗BD.
Denote N = {1, · · · , N}. In is the identity matrix with
dimension n.

2.2 Algebraic Graph Theory

We will state some useful facts from algebraic graph
theory. One can refer to Godsil and Royle [2001] for more
details.

Given a graph G = (V, E) consisting of a set of vertices
or nodes V = {1, · · · , N} and edges E ⊆ V × V, if
there is an edge (i, j) ∈ E between nodes i and j, then
nodes i and j are called adjacent. Graph G is called
undirected if (i, j) ∈ E ⇔ (j, i) ∈ E . The adjacency
matrix A = A (G) = (aij )N×N is an N ×N matrix defined

by aij = 1 if and only if (i, j) ∈ E , and aij = 0
otherwise. A path from i to j is a sequence of distinct
nodes, which starts with i and ends with j while each pair
of consecutive nodes is adjacent. If there is a path between
any two nodes of the graph G, then G is called connected.
The degree matrix D of G is a diagonal matrix with
element di equaling the cardinality of node i’s neighbor
set Ni = {j ∈ V | (i, j) ∈ E}. The Laplacian matrix L of
G is defined as L = D − A. For undirected graphs, L
satisfies L = LT ≥ 0 with the vector of ones 1 as an
eigenvector corresponding to the eigenvalue zero. If an
undirected graph is connected, the Laplacian has a single
zero eigenvalue, and the other eigenvalues can be listed
in an increasing order, 0 = λ1 (G) < λ2 (G) ≤ · · · ≤
λN (G). The second smallest eigenvalue λ2 (G) is called
the algebraic connectivity or Fiedler eigenvalue (Fiedler
[1973]).

2.3 Problem Formulation

Consider a multi-agent system with N agents. The dynam-
ics of the i-th agent are described by

ẋi = Axi +Bui, i ∈ N , (1)

where xi ∈ Rn is the state, ui ∈ Rm is the control input, A
and B are constant matrices with compatible dimensions.
If agents i and j are adjacent, then the pair of agents
can communicate with each other, and the communica-
tion topology among all the agents is represented by an
undirected graph G.

In order to develop our event-triggered strategy, we con-
sider the combined measurement

qi (t) =
∑N
j=1 aij (xj (t)− xi (t)) (2)

as in Fan et al. [2013]. In this case, the measurement error
can be defined as

ei (t) = qi
(
tik
)
− qi (t) . (3)

We propose the following control law for agent i

ui (t) = Kqi
(
tik
)
, t ∈

[
tik, t

i
k+1

)
, (4)

where K is the feedback gain matrix to be designed. The
event triggering time sequence

{
ti0, t

i
1, · · ·

}
for agent i will

be determined by the following triggering condition which
is also to be developed,

h
(
ei
(
tik
)
, qi
(
tik
))

= 0. (5)

Definition 2.1. The consensus problem for multi-agent
systems described by (1) is said to be solved if and only if
for any finite xi (0) , ∀i ∈ N , the states of agents satisfy:

lim
t→∞

‖xi (t)− xj (t)‖ = 0, ∀i, j ∈ N . (6)

In this paper, the objective is to develop, for each agent i, a
control law and an event-triggered mechanism of the form
(4) and (5), respectively, such that the consensus problem
is solved.

To achieve this, we introduce the following assumptions
and lemma.

Assumption 2.1. (A,B) is stabilizable.

Assumption 2.2. The undirected communication graph
G is connected.

Lemma 2.1. (Kucera [1972]) Consider a linear system
(A,B,C), if (A,B) is stabilizable and (C,A) is observable,
then there is a unique solution P > 0 to the following so-
called algebraic Riccati equation

PA+ATP − PBBTP + CTC = 0. (7)

3. DISTRIBUTED EVENT-TRIGGERED CONTROL
DESIGN

3.1 Distributed Event-Triggered Control Scheme

In this subsection, a distributed event-triggered control
scheme for the multi-agent system with linear dynamics
(1) will be developed.

Theorem 3.1. Under Assumptions 2.1 and 2.2, there
always exists at least one solution P > 0 for the following
inequality

PA+ATP − αPBBTP + βIn ≤ 0, (8)

where 0 < α ≤ 2λ2, β ≥ 2λN , with λ2 and λN the Fiedler
eigenvalue and the largest eigenvalue of the Laplacian
matrix associated with graph G, respectively. Then, letting
K = BTP , the consensus problem of the multi-agent
system (1) can be solved by the control law (4) with the
triggering condition

h (ei (t) , qi (t)) = ‖ei (t)‖ − ηi ‖qi (t)‖ = 0, (9)

where ηi =
√

σi·a(2−aρ)
ρ with σi ∈ (0, 1), ρ =

∥∥PBBTP∥∥,

and a being a positive number satisfying a < 2
ρ .

The proof is provided in the Appendix A.
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Remark 3.1. Our results contain several existing results
as special cases. On one hand, if we let A = 0, B = 1,
for any topology with N agents, inequality (8) always

holds with P ≥
√

β
αIn, thus our results can be used to

tackle the problem in Fan et al. [2013] where multi-agent
systems with single integrator dynamics are considered.

On the other hand, it can be seen that when A =

[
0 1
0 0

]
,

B =

[
0
1

]
, inequality (8) can be always solved, thus our

results can also be used to handle the consensus problem
for double-integrator agents in Seyboth et al. [2012].

Remark 3.2. The proposed event-triggered control scheme
has the three desirable features mentioned in Introduction,
that is, it is distributed, asynchronous, and independent.
However, it is noted that continuous monitoring of the
combined measurement is required to check condition (9),
which is a disadvantage of this control scheme. How to
avoid this continuous monitoring is an interesting and
challenging problem, which we are still working on.

3.2 Feasibility

Now we investigate the feasibility of this proposed trig-
gering mechanism by excluding both scenarios of singular
triggering and Zeno behavior.

Singular triggering means that there will be no more
triggering after a single triggering. We will prove that such
scenario will not happen for our proposed control scheme
in the following theorem.

Theorem 3.2. Consider the multi-agent system with lin-
ear dynamics (1), controller (4) and triggering rule (9). No
agent will exhibit singular triggering behavior.

The proof is attached in the Appendix B.

As for Zeno behavior, which means that there are infinite
number of triggering instants in a finite time (Tabuada
[2007]), we have the following result.

Theorem 3.3. Consider the multi-agent system with lin-
ear dynamics (1), controller (4) and triggering rule (9). No
agent will exhibit Zeno behavior.

The proof is given in the Appendix C.

4. AN EXAMPLE

In this section, we will apply the proposed control scheme
to solve a spacecraft formation flying problem in the low
Earth orbit (Ren [2007], Li et al. [2010]).

 

 

1  2 3

4 

5 

Fig. 1. Communication graph G of the multi-agent system

Consider the relative dynamics of the ith satellite with
respect to the virtual spacecraft in the following linearized
form,

¨̃xi − 2ω0
˙̃yi = uxi

¨̃yi + 2ω0
˙̃xi − 3ω2

0 ỹi = uyi
¨̃zi + ω2

0 z̃i = uzi (10)

where x̃i, ỹi, and z̃i represent the position of the ith
satellite in the rotating coordinates, uxi , uyi , uzi are the
control inputs, and ω0 is the angular rate of the virtual
satellite.

Rewrite the position components in vector form as ri =

[x̃i, ỹi, z̃i]
T

, velocity vector as ṙi = [vxi , v
y
i , v

z
i ]
T

and the

control vector as ui = [uxi , u
y
i , u

z
i ]
T

. Satellite formation
flying is said to be reached if the velocity vectors of all
satellites converge to the same value and they keep a
prescribed distance with each other, that is, ri−hi → rj−
hj , ṙi → ṙj , ∀i, j ∈ N as t→∞, where hi = [hxi , h

y
i , h

z
i ]
T

,
and hi− hj ∈ R3 is the desired constant distance between
satellite i and j, we define position error as (ri−hi)−(rj−

hj) =
[
exij , e

y
ij , e

z
ij

]T
. Let xi =

[
ri − hi
ṙi

]
, then (10) can be

rewritten as,

ẋi =

[
0 I3
A1 A2

]
xi +

[
0
I3

]
ūi, (11)

where

A1 =

 0 0 0
0 3ω2

0 0
0 0 −ω2

0

, A2 =

[
0 2ω0 0
−2ω0 0 0

0 0 0

]
, ūi = ui +

A1hi. It can be seen that (11) is in the form of (1).
Therefore, the satellites formation problem can be viewed
as a consensus problem.

Consider the scenario that the formation flying model
consists of five satellites with a communication topology
described by Fig. 1 and the virtual satellite moves in a
circular orbit at rate ω0 = 0.001. It can be verified that
the conditions of Theorem 3.1 are all satisfied, and thus
the problem can be solved by utilizing the proposed control
scheme. For all i ∈ N , choose σi = 0.999, a = 1

ρ <
2
ρ . The

time response of the satellites’ position error and velocity
on x-axis via event-triggered scheme are shown in Fig. 2
and Fig. 3, respectively.

To better demonstrate the triggering situations for each
agent, we further present a figure describing the control
inputs on x-axis for all agents with Theorem 3.1 applied, as
shown in Fig. 4. It can be seen that, by the proposed event-
triggered control scheme, consensus is achieved asymptot-
ically.

5. CONCLUSIONS

In this paper, a novel event-triggered control scheme
for the consensus problem of linear multi-agent systems
is proposed. It is shown that with this event-triggered
control scheme, consensus can be reached asymptotically,
and singular triggering and Zeno behavior can be both
excluded. As a result, the communication load among all
agents can be significantly reduced.
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Appendix A. PROOF OF THEOREM 3.1

Proof: With K = BTP and (3), the closed-loop system
consisting of (1) and (4) can be expressed as

ẋi = Axi +BBTP (ei (t) + qi (t)) , i ∈ N . (A.1)

Let x (t) = col (x1 (t) , · · · , xN (t)), e (t) = col
(
e1 (t) , · · · ,

eN (t)
)

and q (t) = col (q1 (t) , · · · , qN (t)). Then q (t) =
− (L⊗ In)x (t), and (A.1) can be rewritten in a compact
form as follows,

ẋ (t) =
(
IN ⊗A− L⊗BBTP

)
x (t)

+
(
IN ⊗BBTP

)
e (t) .

(A.2)
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Consider the following Lyapunov function candidate

V (t) =
1

2
xT (t) (L⊗ P )x (t) . (A.3)

Denote Â = PA+ATP
2 , B̂ = PBBTP , and the time

derivative of V (t) along the trajectory of (A.2) is

V̇ (t) = xT (t)
(
L⊗ Â− L2 ⊗ B̂

)
x (t)

+xT (t)
(
L⊗ B̂

)
e (t) . (A.4)

Let λ1, λ2, · · · , λN be the eigenvalues of matrix L, satis-
fying 0 = λ1 < λ2 ≤ · · · ≤ λN , and U = [v1, v2, · · · , vN ],
where vi ∈ RN is the eigenvector of matrix L associated
with the eigenvalue λi. Since the graph is undirected,
the corresponding Laplacian matrix L is symmetric. Then
there exists a U such that

U−1LU = UTLU = J = diag (λ1, λ2, · · · , λN ) . (A.5)

One can observe that UTU = IN and L = UJUT .
Define y (t) =

(
UT ⊗ In

)
x (t) = col (y1 (t) , · · · , yN (t)),

ê (t) =
(
UT ⊗ In

)
e (t) = col (ê1 (t) , · · · , êN (t)). (A.4) can

be rewritten as

V̇ (t) = yT (t)
(
J ⊗ Â− J2 ⊗ B̂

)
y (t)

+yT (t)
(
J ⊗ B̂

)
ê (t)

=

N∑
i=2

yTi (t)
(
λiÂ− λ2i B̂

)
yi (t)

+

N∑
i=2

yTi (t)
(
λiB̂

)
êi (t) . (A.6)

Since B̂ ≥ 0, it follows from (8) that for any i ∈ N − {1},

Â− λiB̂ ≤ Â−
α

2
B̂ ≤ −β

2
In ≤ −λiIn. (A.7)

Then noting inequality ‖ξ‖ · ‖ζ‖ ≤ κ
2 ‖ξ‖

2
+ 1

2κ ‖ζ‖
2

for
any κ > 0 and any ξ, ζ ∈ Rn, one has

V̇ (t)≤
N∑
i=2

−λ2i yTi (t) yi (t) +

N∑
i=2

λiy
T
i (t) B̂êi (t)

≤−
(

1− aρ

2

) N∑
i=2

λ2i · ‖yi (t)‖2

+
ρ

2a

N∑
i=2

‖êi (t)‖2 (A.8)

where ρ =
∥∥∥B̂∥∥∥ and a is a positive number.

Furthermore, noting q (t) = − (L⊗ In)x (t),

N∑
i=1

‖qi (t)‖2 = xT (t)
(
L2 ⊗ In

)
x (t)

=

N∑
i=2

λ2i · ‖yi (t)‖2 , (A.9)

N∑
i=1

‖êi (t)‖2 = eT (t) e (t) =

N∑
i=1

‖ei (t)‖2 , (A.10)

inequality (A.8) can be written as follows,

V̇ (t)≤−
(

1− aρ

2

) N∑
i=1

‖qi (t)‖2

+
ρ

2a

N∑
i=1

‖ei (t)‖2 . (A.11)

Then, by choosing a < 2
ρ and enforcing the condition

‖ei (t)‖ ≤

√
σi · a (2− aρ)

ρ
‖qi (t)‖ = ηi ‖qi (t)‖ , (A.12)

where σi ∈ (0, 1) for all i ∈ N , (A.11) becomes

V̇ (t) ≤ −
(

1− aρ

2

) N∑
i=1

(1− σi) ‖qi (t)‖2 ≤ 0. (A.13)

Letting eij(t) = xi(t) − xj(t), and denoting the set O =
{eij(t) = 0|i, j = 1, · · · , N}, one has

V (x) =
1

2

1

2

N∑
i=1

N∑
j=1

aije
T
ijPeij

 ≥ 0, (A.14)

It follows from (A.14) that eij = 0, i, j = 1, · · · , N ⇔
V (x) = 0. It can be further verified that

‖qi (t)‖ = 0, i = 1, · · · , N ⇔ eij = 0, i, j = 1, · · · , N.
(A.15)

It then can be concluded from (A.13) that V̇ (x) = 0 only
when eij = 0, i, j = 1, · · · , N .

Hence, according to the corollary of LaSalle’s theorem
(Khalil and Grizzle [2002]), it follows that eij(t) →
0, i, j = 1, · · · , N as t→∞. Thus, the consensus problem
is solved.

As for the existence of the solution P of (8), letting
B′ =

√
αB, C ′ =

√
βIn, inequality (8) can be rewritten as

PA+ATP − PB′B′TP + C ′TC ′ ≤ 0, (A.16)

which has the same form as the algebraic Riccati equation
(7) if the equality sign is taken. It is noted that (C ′, A) is
observable. Thus, by Lemma 1, one knows that if (A,B) is
stabilizable, which implies that so is (A,B′), then at least
one solution P > 0 is guaranteed for inequality (8). Thus,
the proof is completed.

Appendix B. PROOF OF THEOREM 3.2

Proof: For any agent i, i ∈ N , assume its current
triggering time is tik and qi

(
tik
)
6= 0. We need to prove

that the next triggering time after tik, i.e., tik+1 exists, and

qi
(
tik+1

)
6= 0.

Since ‖ei(t)‖ ≤ ηi‖qi(t)‖, by utilizing
∣∣∥∥qi(tik)

∥∥− ‖qi(t)‖∣∣ ≤
‖ei (t)‖, one has∥∥qi (tik)∥∥

1 + ηi
≤ ‖qi (t)‖ ≤

∥∥qi (tik)∥∥
1− ηi

. (B.1)

It is noted that sup ηi =
√
σi

ρ (when a = 1
ρ ), so ηi < 1

can be guaranteed when we choose appropriate a and σi.
By defining γ1 = 1

(1+ηi)

∥∥qi (tik)∥∥, γ2 = 1
(1−ηi)

∥∥qi (tik)∥∥,

one can conclude that ‖qi (t)‖ will always stay between
γ1 and γ2, and events occur once ‖qi (t)‖ reaches the
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boundary values. Next, we will prove the existence of tik+1

such that
∥∥qi (tik+1

)∥∥ = γ1 or
∥∥qi (tik+1

)∥∥ = γ2 with

the condition qi
(
tik+1

)
6= 0. It follows from (A.14) that

V (t) ≥ 1
4λmin (P ) ‖xi − xj‖2 . Then one has

‖qi (t)‖ ≤
N∑
j=1

aij ‖xj (t)− xi (t)‖ ≤ di

√
4V (t)

λmin (P )
. (B.2)

It follows from (A.13) that V (t) strictly decreases to zero.
Thus, ‖qi (t)‖ will eventually decrease to γ1 because of
(B.2), then at least one event will be triggered at that
instant, which can be assigned to be tik+1. The proof is
thus completed.

Appendix C. PROOF OF THEOREM 3.3

Proof: For any agent i, i ∈ N , assume its current
triggering time instant is tik. We need to prove the length
of its next inter-event interval is strictly positive. We first
propose the following sufficient condition to guarantee that
h (ei (t) , qi (t)) ≤ 0,

‖ei (t)‖ ≤ ηi√
2 + 2η2i

∥∥qi (tik)∥∥ , (C.1)

which follows directly from

‖ei (t)‖2 ≤ η2i
2 + 2η2i

‖ei (t) + qi (t)‖2

≤ η2i
1 + η2i

(
‖ei (t)‖2 + ‖qi (t)‖2

)
. (C.2)

Then the time derivative of ‖ei (t)‖ over the interval[
tik, t

i
k+1

)
is

d

dt
‖ei (t)‖ ≤

∥∥∥−Aqi (t) + diBB
TPqi

(
tik
)

−BBTP
N∑
j=1

aijqj

(
tj
k′ (t)

)∥∥∥
≤ ‖A‖ ‖ei (t)‖+

∥∥∥−Aqi (tik)+ diBB
TPqi

(
tik
)

−BBTP
N∑
j=1

aijqj

(
tj
k′ (t)

)∥∥∥
< ‖A‖ ‖ei (t)‖+ αik, (C.3)

where k
′
(t) = arg max

k∈N

{
tjk | t

j
k ≤ t, j ∈ Ni

}
, d
dt ‖ei (t)‖

denotes the right-hand derivative of ‖ei(t)‖ when t = tik,

and αik > ‖(diBBTP−A)qi(t
i
k)−BBTP

∑N
j=1 aijqj(t

j

k′ (t)
)‖,

t ∈
[
tik, t

i
k+1

]
. Then, it follows that

‖ei (t)‖ < αik
‖A‖

(
e‖A‖(t−t

i
k) − 1

)
. (C.4)

Let sik = ηi√
2+2η2

i

∥∥qi (tik)∥∥. Using (C.1) and (C.4) gives

that∥∥ei (tik+1

)∥∥ = sik <
αik
‖A‖

(
e‖A‖(t

i
k+1−t

i
k) − 1

)
, (C.5)

which yields tik+1−tik > 1
‖A‖ ln

(
‖A‖sik
αi

k

+ 1
)

. Thus, one can

conclude that the inter-event time for agent i is strictly
positive. The proof is thus completed.
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