
     

Medical decision support in mechanical ventilation employing combined model 
information of gas exchange and respiratory mechanics 

 
Jörn Kretschmer*, Axel Riedlinger*, Christoph Schranz*, Knut Möller* 

 

Abstract: Mechanical ventilation has become a routine therapy that is mostly applied in critical clinical 
conditions. It allows a patient to overcome the physiological impact of trauma, critical illness or surgeries 
by providing sufficient oxygenation and carbon dioxide removal. Though being such a lifesaving 
intervention, mechanical ventilation may also cause further impairment of the lung tissue if ventilator 
settings are chosen inappropriately. Moreover, without titration the clinician usually is not able to find 
suitable settings to reach a desired oxygenation in the patient. We are therefore proposing a concept to 
implement a model based medical decision support system that is able to provide appropriate settings for 
FiO2, minute ventilation, respiration rate, I:E, peak inspiratory pressure and inspiration time to reach a 
desired level of PaO2 and PaCO2 based on patient specific physiological properties. Hierarchically 
ordered models of gas exchange are employed to ensure a robust identification of model parameters from 
patient data. Currently, performance of the model based predictions is evaluated in a clinical application 
test, but preliminary results are physiologically correct.  
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1. INTRODUCTION 

Mechanical ventilation is a life-saving therapy that allows a 
patient to overcome the physiological impact of trauma, 
critical illness or surgeries. The primary goal of the clinician 
is to achieve a sufficient oxygenation and appropriate carbon 
dioxide removal in the patient. Additionally, the clinician will 
try to minimize the physical impact of this therapy on the 
patient’s lung tissue, which could be harmed furthermore by 
inappropriate ventilator settings. Both the lack of time to 
constantly monitor the patient’s disease state and the complex 
interactions between the various ventilator settings and the 
physiological outcome make finding optimal settings for an 
individual patient challenging. 

We therefore propose to employ medical decision support to 
provide appropriate ventilator settings that help to pursue 
therapeutical strategies defined by the clinician. These 
strategies might include a certain level of oxygenation, fast 
weaning from the ventilator or tight lung-protective 
ventilation. Decision making should be model based as 
opposed to knowledge based systems, which do not include 
the patient specific properties. Model based systems allow 
calibration based on patient data and therefore provide 
individual optimization of ventilator settings. Mathematical 
models for optimization of ventilator settings should not be 
solely based on pulmonary mechanics, but should also 
include other physiological processes that are influenced by 
artificial ventilation. We have therefore developed a system 
of interacting models that include pulmonary mechanics, gas 
exchange and cardiovascular dynamics (Kretschmer, et al. 
2011). Each of these model families comprises multiple 

model versions, which are suitable for different clinical 
questions and contain a various number of free parameters. 
All models are ordered hierarchically, i.e. each model is 
related to its next simpler predecessor and its more complex 
successor.  

The aim of the proposed concept is to demonstrate how 
information obtained from different mathematical models can 
be exploited to provide medical decision support on a global 
physiological scale. The presented example combines a 
hierarchically ordered family of gas exchange models with a 
lung mechanics model in order to get both advice on how to 
set minute ventilation and inspired oxygen fraction (FiO2) to 
achieve a certain oxygenation and carbon dioxide removal in 
the patient and at the same time computing an optimal minute 
inspiration to expiration (I:E) ration that allows both full 
expiration and a minimal inspiratory peak pressure. 

2. METHODS 

2.1  Models of gas exchange 

The presented system comprises a family of mathematical 
models that focus on gas exchange. Each model differs in 
simulation focus and complexity, i.e. the number of 
differential equations defining the model and the quantity of 
model parameters that need to be identified when calibrating 
the model. Moreover, the implemented models include 
different representations of ventilation and perfusion 
distribution. Figure 1 shows a schematic overview of the 
model family. Here, model complexity rises from top to 
bottom. 
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Model I consists of an alveolar compartment receiving 100% 
of ventilation and a shunt compartment with no ventilation, 
i.e. it defines the amount of venous blood that does not 
participate in gas exchange but is mixed directly into the 
oxygenated end-capillary blood. This model can be calibrated 
with only one blood gas measurement and showed good 
results when comparing simulated with clinical PaO2 (arterial 
partial pressure of oxygen) data (Kretschmer, et al. 2013a). 
However, reproducing measured PaCO2 (arterial partial 
pressure of carbon dioxide) is not possible in this model 
(Kretschmer, et al. 2013b). Model II comprises a different 
approach; it includes a dead space compartment, i.e. a 
compartment with ventilation but no perfusion instead of the 
shunt compartment in model I. The model is derived from the 
three compartment model proposed by Riley (Riley 1980). It 
allows simulation of PaCO2 in the patient, tests with 
measured data showed consistent results in a comparable 
version of this model (Kretschmer, et al. 2013b). Both of the 
above models include one model parameter that needs to be 
identified. Combining both models allows simulation of both 
PaO2 and PaCO2; the resulting model (III) now comprises 
two parameters (Riley 1980). Although comprising 
compartments with different distributions of ventilation and 
perfusion, this model is not able to reproduce effects of 
ventilation/perfusion (V̇/Q)-mismatch. Such may be achieved 
by extending model I by an additional alveolar compartment, 
allowing ventilation to be distributed among the two 
compartments. Fixing perfusion distribution to 10% in one 
compartment (low perfusion) and 90% in the other 
compartment (high perfusion), results in a model (IV) that 
still includes only two model parameters (Karbing, et al. 

2011, Kjaergaard, et al. 2001).  Finally, model V includes a 
variable perfusion distribution among the alveolar 
compartments, thus three model parameters need to be 
identified (Karbing, et al. 2011, Melo, et al. 1993). Karbing et 
al. showed that model V is superior to model IV in 
reproducing PaO2 and PaCO2 at different levels of FiO2 
(Karbing, et al. 2011). 

2.2  Respiratory mechanics model 

Respiratory mechanics are simulated by an RC-model of first 
order. The electrical analogue thus includes a serial 
arrangement of a resistance to reproduce the resistive effects 
and a capacitor to reproduce the compliant effects of the lung 
tissue. Figure 2 shows a representation of the electrical 
analogue. The model comprises three parameters, i.e. R, C 
and τE which represents the expiratory time constant 
(Schranz, et al. 2013). 

 

Fig. 2. Electric analogue of the first order RC-model to 
simulate respiratory mechanics. R – lung resistance, C – 
lung compliance, Paw – airway pressure, V̇ – air flow.  

2.3 Parameter identification 

Model calibration to patient-specific properties is necessary 
to ensure calculation of individually optimized ventilator 
settings. The presented models of gas exchange are identified 
hierarchically, i.e. parameter values of simple models are 
exploited as initial values for the identification of complex 
models. This approach has proven to be beneficial to avoid 
reaching global minima in the error surface, thus increasing 
robustness of the identification process (Riedlinger, et al. 
2013a, Schranz, et al. 2011).  Figure 3 schematically 
describes the identification process of the applied models of 
gas exchange. Model I is calibrated directly by calculating 
shunt fraction from measured patient data (Kretschmer, et al. 
2013a). Models II-V are identified employing the Nelder-
Mead Simplex Method (Lagarias, et al. 1998) to minimize the 
summed squared difference between measured and simulated 
PaO2 and PaCO2. Following the hierarchical structure, 
models I and II are identified using average values of healthy 
subjects as the initial values. Results for shunt fraction (fS) 
and ventilation distribution to dead space (fA) are then used as 
initial values to calibrate model III. Ventilation distribution in 
model II is not equivalent to ventilation distribution among 
the compartments in model IV, thus calibration of model IV 
can only exploit shunt fraction of model I. The initial value 
for ventilation distribution is set to 50%. Finally, calibration 
of model V employs parameter values for ventilation 
distribution and shunt as identified in model IV, initial value 
for perfusion distribution (fQ) is set to 50%.  
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Fig. 1. Schematic overview showing the family of gas 
exchange models that is used in the proposed decision 
support system. Each model is related to its simpler 
predecessor and its more complex successor. (I) Shunt model, 
(II) Dead space model, (III)  Shunt model with dead space, 
(IV) Shunt model with V̇/Q mismatch and fixed perfusion 
distribution, (V) Shunt model with V̇/Q mismatch and 
variable perfusion distribution 
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The data used for calibration includes FetO2 and FetCO2 
(end-tidal gas fraction of oxygen and carbon dioxide, 
respectively), SpO2 (peripheral oxygen saturation) at four 
different FiO2 levels. Additionally, measurements or 
estimates of current minute ventilation, dead space volume, 
respiration rate, cardiac output, CO2 production and 
respiratory quotient as well as blood gas data from one blood 
gas sample is needed, including pH, base excess, 
Haemoglobin concentration, temperature, PaO2, and PaCO2 
are necessary. All of the aforementioned data needs to be 
recorded at a steady state, i.e. after each change in FiO2, the 
clinician needs to until equilibrium is achieved in the patient. 

Resistance and compliance of the respiratory mechanics 
model are identified by fitting it to inspiratory data of 
measured ventilation cycles (pressure controlled mode) using 
multiple linear regression, τE is determined by fitting an 
exponential function to the expiratory flow data (Schranz, et 
al. 2013). 

2.4 Optimization of ventilator settings 

The proposed system is intended to find appropriate 
ventilator settings to reach certain levels of PaO2 and PaCO2 
in the patient defined by the clinician. Additionally, the 
clinician is asked to define the PEEP that should be used as 
well as the ramp time (tRamp) that should be applied during 
inspiration. Based on these parameters, the system is defined 
to find suitable values for FiO2, minute ventilation (MV), 
respiration rate (fR), inspiration to expiration ratio (I:E), 
inspiratory peak pressure (PInsp) and total inspiration time 
(tInsp). 

FiO2 can either be calculated directly using model I 
(Kretschmer, et al. 2013a) or be identified by tuning it to 
minimize the quadratic difference between desired PaO2 and 
simulated PaO2 using models III-V with the tested FiO2. 

Optimal minute ventilation may be calculated analogously, 
i.e. by tuning it to minimize the quadratic difference between 
desired PaCO2 and the PaCO2 that is simulated by models II-
V. In models III-V, influence of FiO2 and MV is not limited 
to PaO2 or PaCO2, respectively. Thus tuning of those 
parameters has to be done synchronously. The applied 
penalty function is stated in eq. 1. 

( ) ( )2
22

2
22 PsCOPaCOkPsOPaOE −⋅+−=  (1) 

Here, PaO2 and PaCO2 are the desired oxygen and carbon 
dioxide partial pressures in arterial blood, while PsO2 and 
PsCO2 are the simulated values. The difference between 
desired and simulated PaCO2 is multiplied by a factor (k=2) 
to account for its lower value. 

Optimal PInsp is chosen as the minimal peak inspiratory 
pressure that is necessary to ensure the MV calculated by the 
gas exchange models. Additional boundary conditions are the 
PEEP and ramp time defined by the clinician as well as a 
fixed expiration time of three times the identified expiratory 
time constant τE to ensure an expiration of at least 95% 
(Lourens, et al. 2000). Given the just mentioned boundary 
conditions, PInsp can be expressed as a function of tInsp 
(Schranz, et al. 2013): 
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Here, VT is the tidal volume that can be derived from minute 
ventilation, the current dead space and the sum of inspiration 
and expiration time. Plotting the above function as a relation 
between tInsp and PInsp reveals a unique minimum allowing 
selection of an appropriate tInsp that ensures minimal pressure 
while avoiding the build-up of intrinsic PEEP. fR and I:E can 
then be derived from the selected tInsp. 

Using gas exchange models II and III allows a stepwise 
optimization of parameters, i.e. optimal MV is calculated 
before optimizing PInsp and tInsp. Models IV and V however 
require input signals of FetO2 and FetCO2, which are  
functions of fR. Thus, in models IV and V optimization is 
done synchronously using the algorithm described in Figure 
4. 

3. RESULTS 

3.1 Graphical user interface 

The above described method for optimizing ventilator 
settings has been implemented in a graphical user interface 
programmed in MATLAB® (R2012a, The Mathworks®, 
Natick, USA) to provide the clinician with a tool to enter the 
measured patient data and to retrieve the recommended 
ventilator settings. In addition, the user interface shows the 
identified model parameters, thus providing the clinician with 
additional information about the patient’s disease state. The 
user interface requires the user to manually enter results from  

 

Fig. 3. Schematic description of hierarchical parameter 
identification of the gas exchange model family. Complex 
models exploit identified model parameters of their simpler 
predecessors as initial values for parameter identification. 
Green – Model parameters that are calibrated, Red – Model 
parameters that are used as initial values in the next 
hierarchy layer. fS – shunt fraction, fA – ventilation 
distribution, fQ – perfusion distribution. 
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blood gas analysis and measurements at four different levels 
of FiO2. Respiration data is taken directly from the ventilator. 
The current setup is intended for a clinical application study, 
thus it shows recommended ventilator settings based on each 
of the gas exchange models presented above. Additionally, 
the interface displays the remaining error after parameter 
identification and allows the user to specify the O2 and CO2 
dissociation curves to be employed in simulation of gas 
exchange. Figure 5 shows a screenshot of the user interface. 

3.2 Simulation results and predicted ventilator settings 

Each of the presented models has been tested in isolation 
before and has proven to be physiologically plausible with 
the ability to reproduce clinical data (Karbing, et al. 2011, 
Kretschmer, et al. 2013a, Kretschmer, et al. 2013b, Schranz, 
et al. 2013). Ventilator settings calculated by proposed 
system employing the various gas exchange models were also 
physiologically plausible. The recommended FiO2 that has 
been computed by the gas exchange models differed by a 
maximum of 6%. Models II and III showed a difference in 
the recommended minute ventilation compared to MV 
recommended by models IV and V. Models II and III 
proposed a higher MV to reach the desired PaCO2 than 
models IV and V. 

4. DISCUSSION 

Selecting appropriate ventilator settings in patients admitted 
to intensive care is a challenging task due to both a lack in 

deeper insights into the patient’s physiology as well the 
inability to predict complex physiological interactions and 
thus the outcome of a certain ventilation strategy. Several 
researches have tackled this task in the past. However, they 
were based on knowledge based systems (Campbell, et al. 
2001, Dojat, et al. 1997, Lozano, et al. 2008, Shahsavar, et al. 
1994), thus not including the possibility to adapt the decision 
support to an individual patient, did not have any anatomical 
or physiological relation (Rudowski, et al. 1991, Tehrani and 
Roum 2008) or were limited to one physiological domain or a 
fixed combination of models (Rees, et al. 2006, Rutledge, et 
al. 1993), thus inhibiting the possibility of adapting the 
simulation to changes in the patient’s disease state. The 
proposed system includes both a combination of different 
physiological domains to allow a global simulation of the 
patient and enables a decision support system to adapt itself 
to changes in the patient by providing different models of the 
same family. It thus provides the required tools for 
optimizating FiO2 and minute ventilation to provide sufficient 
oxygenation and carbon dioxide removal in the patient. 
Additionally, it implements a lung-protective strategy, i.e. a 
minimal inspiratory peak pressure to achieve the 
recommended minute ventilation. The lung is thus protected 
from high mechanical stress as well as intrinsic PEEP build-
up. 

Moreover, the hierarchical structure of the presented family 
of gas exchange models allows robust identification of model 
parameters by exploiting the existing model relations 
(Riedlinger, et al. 2013b). Identification results are shown on 
a graphical interface to provide the clinician with additional 
information on the patient’s disease state. 

However, the proposed system includes some limitations. In 
order to employ the optimization of inspiratory peak pressure, 
patients need to be ventilated in pressure controlled mode, 
thus the system can neither be applied to patients ventilated 

 

Fig. 4. Schematic description of synchronous optimization 
of FiO2, MV, PInsp and tInsp.  Models IV and V require FetO2 
and FetCO2 as input signals. Both are functions of fR, thus 
MV and PInsp/tInsp cannot be optimized sequentially.  

 

Fig. 5. Screenshot of the graphical user interface. It allows the 
user to enter results from blood gas analysis and 
measurements of SpO2, FetO2 and FetCO2 at four different 
levels of FiO2. It shows the results of parameter identification 
to provide the user with additional information about the 
patient’s disease state and shows recommendations for 
ventilator settings based on each of the implemented gas 
exchange models. 
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in volume controlled modes nor in assistive modes. 
Moreover, the current system provides multiple 
recommendations, each using a different model of gas 
exchange, thus leaving it to the clinician to select one of the 
suggested ventilator settings. Future versions need to 
implement an algorithm to select the best model in terms of 
agreement with patient data, number of model parameters and 
the current clinical question. 

Although computing physiologically sound recommenda-
tions, the proposed system still needs to be evaluated in a 
clinical setting comparing model predictions with real patient 
outcome. The presented graphical user interface is currently 
employed in a clinical application study to evaluate the 
predictive performance of the proposed system. Nonetheless, 
the implemented models have been evaluated in isolation 
before, thus promising accurate results in the presented 
system. 
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