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Abstract: In this paper synchronization of both the orientation and velocity for a group of
unicycle robots is studied. It is assumed that a robot can only detect and obtain information
from those robots that lie in the proximity (within certain distance). A minimum dwell time is
imposed on the updating of neighborhood relation in the controller in order to avoid introducing
chattering in the closed-loop system that may be caused by abrupt changes of the relation, which
as a consequence implies that the neighbor information will be updated only at discrete time
instants in the control. In the paper a distributed feedback control law is designed for each agent,
and a sufficient condition for uniformly and independently distributed initial states is provided
for reaching the synchronization, which depends on the neighborhood radius, the maximum

initial translational velocity and the dwell time.
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1. INTRODUCTION

Over the last decade, cooperative control of multiple
mobile robots has attracted increasing attention of re-
searchers in control and robotics fields. Compared with a
single agent, the multi-agent system has some advantages
in fulfilling a a common task, among which synchroniza-
tion can be regarded as a basic one and has been wildly
investigated, see [1]-[4] among many others. Actually, it
is closely related to different engineering applications,
such as rendezvous problem[5], parallel computing[6], dis-
tributed optimization [7] and formation control[8].

In the synchronization study, a typical model is proposed
by Vicsek and his colleagues in 1995 in [9], where the sim-
ulation results show that the system exhibits synchroniza-
tion behavior under some conditions. Due to the simplicity
and importance of this model, great efforts have been paid
on the synchronization of the Vicsek model. Jadbabaie et
al. [1] are the first to study this model, and they show
that the headings of all agents reach synchronization if the
neighbor graphs satisfy the connectivity assumption in a
bounded time intervals. Then, a key question is : how can
we guarantee the connectivity of neighbor graphs? To solve
this, Cucker and Smale [10] modified the local interaction
between agents into global interaction, and gave sufficient
conditions imposed on the initial states only. Recently,
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in [11] and [12] a random framework is introduced, and
theoretical analysis for the original Vicsek model is given
where the prior connectivity assumption can be removed.

As a related topic, formation control of a group of mobile
robots is also widely investigated. Generally speaking,
three approaches for the control design are considered
in the literature: leader-follower method (cf. [13]), virtual
structure method (cf. [14]) and behavior-based method (cf.
[15]). To simplify the analysis, quite often in literature ei-
ther the dynamics of the individual robots is described as a
single/double integrator or/and the communication graph
satisfies an a priori given connectivity. How to analyze a
multi-robot nonlinear system without prior connectivity
assumption is an important and still unresolved issue.

Stimulated by the studies on multi-agent systems, in this
paper we aim to investigate synchronization of both the
orientation and velocity for a group of nonholonomic
unicycle robots connected by proximity graphs that are
induced by the distance between the agents. This can lead
to abrupt changes of the neighbor relation, which in turn
may cause chattering if the feedback control is not properly
designed. Thus, a minimum dwell time on updating the
neighborhood relation is imposed in our control design.
Using partly sampled local information of the agents, we
design a distributed discrete-time updated control law
(angular velocity and translational acceleration) for each
agent, which in conjunction with the continuous-time
unicycle model yields a sampled-data hybrid multi-agent
system. To the best of our knowledge, this paper is the
first attempt to study and analyze the synchronization
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problem for such a sampled-data nonlinear system. By
analyzing the dynamics of the system and estimating the
statistical characteristics of the initial neighbor relation,
we provide a sufficient condition for the synchronization of
unicycle robots without relying on any prior connectivity
assumption on the neighbor graphs.

2. PROBLEM FORMULATION
2.1 Some notations and Preliminaries

First, we introduce some notations in graph theory and
matrix analysis, see [16]-[18] for details. For an undirected
graph G = {V, E}, where V = {1,2,--- ,n} and (4,j) €
E C V xV means that there is an undirected edge between
vertices ¢ and j. The adjacency matrix A = [a;;] isa 0—1
matrix where a;; = 1 if there is an edge between i and j
and otherwise a;; = 0. The degree of the vertex 7 is defined
as the number of neighbors, i.e., d; = Zj aij, and dyax =
max; d; and dpyi, = min; d;. The degree matrix D and the
Laplacian matrix L are defined as D = diag(dy,ds, - -dy,)
and L = D — A respectively. The normalized Laplacian
is defined as £ = D~'/2LD~1/2. Obviously £ is a non-
negative definite matrix and we denote its eigenvalues as
0 =X < A1 < --- < Ap_1. A useful property is that
the graph G is connected if and only if the multiplicity of
the zero eigenvalue of £ equals to one. Another property
of £ is ||L]| < 2. A square matrix A = (a;;)nxn is called
stochastic, if a;; > 0 and Y7, ai; = 1,Vi.

2.2 Unicycles robots

In this paper, we consider n nonholonomic unicycle mobile
robots, which are labeled as 1,2,--- ,n. We denote the set
of the robots as V = {1,2,--- ,n}. Let (x;(¢),y;(¢))” and
0;(t) denote the position of the center and the orienta-
tion of the ith mobile robot at time ¢, respectively. The
evolution of such a robot is described by the following
differential equation:

0 i) smo)

Yill) = v;(1) 810 G,

éi(t):wi(t) , 1€V, (1)
0i(t) = uq(t)

t

where u;(t), v;(t) and w;(¢) denote the acceleration, trans-
lational and rotational velocity of the robot ¢ at time ¢
belonging to the interval [0, 00). for the ith mobile robot,
what we can control is the acceleration wu;(t) and the ro-
tational velocity w;(t). Note that we have chosen here not
to model the physical forces and torques that in practice
affect both the translational and angular motion, while
assuming that we can control directly the translational
acceleration.

We assume that at each time instant, all agents can
only sense the relative translational speed and relative
orientation of its neighbors, i.e., for the robot i, it can
receive the following information:

{j(t) —vilt), 6;(t) = 0i(t), j € Ni(t)}, (2)
where the neighbors are defined via the distance between
agents,

Ni(t) = {j @) — 2,0+ (wilt) — 4y (0)? < }

with r, being the interaction radius depending on n. We
use n;(t) to denote the cardinality of the set N;(¢).

The objective of this paper is to design control law of u;(t)
and w; (t) based on the local information (2), such that the
orientations and velocities become synchronized, that is,
there exists a common vector (v, ), for all i € V|

lim v;(t) = v,
t—oo

t—oo

2.8 Muain results

From the definition of neighbor set (3), we see that the
continuous time variables N;(t) and n;(t) may lead to
chattering because the neighbor relations might change
abruptly when the positions of robots change. Similar to
[1], we introduce a dwell time in the control design, which
means that the neighbor relations of the agents are only

updated at discrete time instants to(= 0),t1,t2, . To
simplify the analysis, we assume that the dwell time is the
same and denoted by 7, i.e., tx41 —tp =7, k=0,1,---. In

this paper, we will adopt the control law of the following
form:

() = —— S (uy(t) — vilt)
Tm(tk) 'e/\f-(t)
JEN:( !
wilt) = ST (000 — 6,(1)

(T

i) jeNiten)

when t € [tkathrl]; k=0,1,---.

Remark 1. What the control laws suggest is that we need
to measure the relative orientation over the whole interval
[tk,trt1] even if some agent j has left the neighborhood
during the period. This can perhaps be justified in practice
that sensors for measuring orientation such as vision has
a longer range. Nevertheless, our future work will aim at
relaxing this requirement.

The relationship of neighbors is completely determined
by the position of all agents, and we will use graphs
to describe it. As mentioned earlier, the graphs only
change at discrete time tg,%1,---, so we will use a graph
sequence G(tr) = {V,E(tx)},k = 0,1,--- to represent
the interaction between robots, where the vertex set is
composed of all robots, and the edge set at discrete-time
ti is defined as follows:

E(tk) = {(173) : dij(tk) S 7nn}~
The graphs formed in this way are undirected.

Remark 2. Different from almost all studies on consen-
sus of unicycles, the neighbor graphs in this paper are
distanced-induced. Notice that the neighbor graphs will
affect the orientation and translational speed, and in turn
the orientation and translational speed affect the neighbor
graphs. This makes the theoretical analysis quite hard.

For the graph G(t;) defined above, the degree of the
node i is denoted as d;(tx), and the minimum degree and
maximum degree are denoted as dumin(tx) and dmax(tx)
respectively. The adjacency matrix, degree matrix, and the
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Laplacian of G(t;) are denoted as A(ty), D(tx) and L(tx),
and the normalized Laplacian is denoted as L(¢x). Denote
the eigenvalue of L(tx) as 0 = A(tx) < A (tg) < -+ <
An—1(tk), and the spectral gap of graph G(tx) is defined
as A(tr) = max{|1 — A1 (tr)], |1 — An—1(t)|}-

Substituting (3) into (1), the closed-loop dynamical system
becomes the following sampled-data hybrid system:

xz(t) = v;(tg) cos 0;(t)

g{i(t) = (ik) sin 60;(t)

ST N
) - v —v;

UZ(t) - T?’li(tk) jej\;(tk)( J(tk) 1(tk))

when ¢ € [tg,tg+1],k =0,1,2,---. By the last equation of
(4), we have

vi(t) = vi(tr) + (t — tr)ui(te)

t—tg
=(1- i (t —_—
< T )U(k)JrTm(tk)
Thus,

> vilte). (5)

JEN(tr)

max v (t) — v; (¢)] < maxfv(te) — v (t)l;

(1) < . .
v;(t) < 11%1%)% vi(tr),t € [tk, tht1); (6)
1
Vi(tgt1) = (e Z v; (k) (7)
AR jeNi(te)

Denote v(t) = [’Ul(t),’Ug(t),"' con(B)] and 0(t) = [01(¢),
O2(t), -+ ,0n(t)] , then we have

O(tk1) = Q(tr)v(te), (8)
O(t) = —P(tp)0(t), t € [tr,trs1), (9)
where Q(t) = D=1 (t)A(t) and P(ty) = D~ (tx)L(ts).

Our analysis is proceeded under the following assumption
on the initial position of all agents:

Assumption 8. At the initial time instant, all agents are
uniformly and independently distributed in the (normal-
ized) unit square [0, 1]2.

The main result of this paper can be stated as follows:

Theorem 4. Assume that the initial translational veloc-
ities of all agents are non-negative and have an upper
bound v,, and the chosen dwell time satisfies 7 < %. If
the neighborhood radius r, and v, satisfy the following

condition:

1 5
4/0gn<<rn<<17 vn=O<r”>,
n logn

then for any initial headings, the system (4) will reach
synchronization in orientation and velocity almost surely
for large n.

Remark 5. If the dwell time is different at different
discrete-time instants, but has a common upper bound
that satisfies the condition of the theorem, then the result
of the theorem still holds.

3. SOME KEY LEMMAS
8.1 Analysis of the translational velocity

By (8), we see that the translational velocity v(t) has the
following form:

v(tet1) = Q(tr)v(tr)

= D72 (1) (I = L(t1)) DY (t1)v(tr), (10)
where L(ty) is the normalized Laplacian of the graph
G(tx). For v(t), we have the following lemma:
Lemma 6. [11] Let {G(tr),k > 0} be a sequence of time-
varying undirected graphs, with the corresponding charac-
teristic quantities {L(tx), Q(tk), dmin(tk), dmax(tx), A(tk),
k > 0} and v(t;) evolves according to equation (10). If
1Q(tr) — Q(to)|| < € with € > 0, then

Su(ty) < V2k(X(to) + K(to)e)®||u(to)]l,
where 0v(ty) = maxi<ij<n |[vi(ty) — vi(te)|, K(to) =

CI;E?:((ES)) and \(to) is the spectral gap of graph G(to).

8.2 Analysis of the orientation

For t € [tg,tr+1), the matrix P(¢) will not change. So the
solution of (9) can be written as

0(t) = exp{—P(tx)(t — t1)}0(tx)
= exp{—D7"2(t) L(tx) D2 (tx) (t — t1)}0(t1),
t e [tk,tk+1). (11)
We can deduce the following lemma concerning the matrix
exp{—P(tx)7} :
Lemma 7. For any k > 0 and 7 > 0, the matrix
exp{—P(tx)7} is a stochastic matrix.

Proof: The matrix exp{—P(t;)7} can be written as

exp{—P(t)7} = exp{—7}exp{D(t) tA(tx)T}.
Note that the entries of the matrix D(t;) " A(tz) are non-
negative, so are the entries of exp{—P(t;)7} in the Taylor
expansion. In addition to this,

exp{—P(tx)7}1,

{4+ (=Dlt)  E(te)r) + 2L

2!

+...}1n

where 1,, = [1,1,---, 1]/. This completes the proof of the
lemma. |

To analyze the dynamical behavior of the system, we
will first provide a preliminary result on the evolution of
orientation for the case where the neighbor graphs does
not change with time.

Lemma 8. Assume that the neighbor graphs keep un-
changed, and denoted by G with the corresponding char-
acteristic quantities {L£, D, dmin, dmax, A1 }- Then we have

max [6;(t) — 0;(t)] < V2r exp{=Ait}[|6(0)],

1<i,j<n

where x is a constant defined as Kk = j“#.
V dmin
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The proof is omitted due to space limitations. From the
above lemma, it is easy to obtain the following corollary:

Corollary 9. If the neighbor graphs keep unchanged and
are connected at all time instants, then we have

max |0;() — 0,(t)] — 0.

1<i,j<n

Based on the above lemma, we can get the following result
for the case where the neighbor graphs change with time:
Lemma 10. Let G(tx) denote the neighbor graph at
time interval [tg,tx4+1), and the corresponding degree,
minimum degree, maximum degree, average matrix, de-
gree matrix and the normalized Laplacian are denoted
as di(tk), dmin(tk:)a dmax(tk)7 P(tk), D(tk) and ﬁ(tk). If
|P(tx) — P(0)|| < e, then we have

60(t) <

RET

[4]
exp{||P<o>|T}) 1001l

where §0(t) = maxi<; j<n |0;(t) — 0;(t)], and the notation
[2] denotes the largest integer no more than x.

Ik (expml(om +

l—er

The proof of the lemma is omitted due to space limitations.
Remark 11. From the above lemma, we see that if

KET
exp{—Mi7}+ —

exp{[[PO)[IT} e <1 (12)

1
holds, then all agents can move with the same heading
eventually. To verify this inequality, we need to estimate
the characteristics of the initial states and deal with the
relationship between the positions and headings of all
agents.

ET

Lemma 12. [11] Let G be a graph formed by changing the
neighborhood of G. If the number of points changed in
the neighborhood of the k-th (1 < k < n) node satisfies
Rk, < Rmax < dmin7 then

DL —D7'L|| = DA - D'A|
< Rmax . dmax + dmin ’
o dmin dmin - Rmax
where A, D,L and A\, ZA), L are the adjacency matrix,
degree matrix and the Laplacian of G and G, respectively.

3.8 Estimation of some characteristics concerning the
initial states

The notation R; is introduced to denote the change of
neighbors of the robot i(1 < i < n):

Ri={j: (L =mn)rn <dij(0) < (L+nn)ra}, (13)
where 7,, can be taken as follows:
2
o
I = 388320 (14)

The cardinality of R; will be denoted as R;, and R4 =
max; Rz
Lemma 13. [11] For the initial random geometric graph

e o<1,

n

G, if the interaction radius satisfies

then the following results hold almost surely for all large
n:

1) The maximum and minimum degrees satisfy

2
nmr;,

dmax = n7r2(14+0(1));  dpmin(0) = (14 0(1)).

2) The maximum number of agents in (13) satisfies

Rumae < 4nmnr2 (1 + o(1)). (15)

3) The second smallest and the largest eigenvalues of
the normalized Laplacian £(0) of the graph G(0) satisfy

2

A(0) > T8 (1 4+ 0(1));

A1(0) <2 (1 _ éu + 0(1))> .

Remark 14. Under Assumption 3, the following assertions
hold almost surely for large n:

(1) The spectral gap of L(tp) satisfies the following in-
equality:

2

X0)<1— %(1 +o(1)).

(2)The constant x in Lemma 6 can be taken as k = 2(1 +
o(1)).

(3) The norm [|P(0)| in Lemma 10 satisfy the following
equations:

[P(O)[| < 4(1 + o(1)).

Proposition 15. Assume the dwell time 7 < &. If the
moving speed and the neighborhood radius satisfy the
following conditions:

3
M

4/logn <
"= 576(1+7)logn’

— <Ly KLl v
n

then for k > 0, we have

|dij(tr) — dij(0)| < 1pnrn; (16)
1P(tx) = P(O)]| < 80nn, [|Q(tx) — Q(O)[| < 807, (17)
where 7,, is taken as (14).

Proof: We will use mathematical induction for k. It is
obvious the inequalities (16) and (17) hold for k£ = 0.

Assume that (16) and (17) hold for all & < k. We will
prove that (16) and (17) hold for k = kg + 1. By (1), we
have

thg+1
xi(tk0+1) — I‘i(tko) = / Uz(t) COS Gz(t)dt,
ko

trg+1
iltign) = mltn,) = [ wit)sindi(o)ds

tiq

Denote X;(k) = (x;(tr), yi(tr))". So, the distance between
agents satisfies the following inequality:

9200



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

ko
|dij(tho+1) — di(0)] < ZZ; |di; (1 +1) — di; (1)] Z Jnax v; (t) | Inax |cos 0;(t:) — cos 0;(ty)]|
k
- 0i(t) — 6 ()
<Z||X I+1)-X;(1+1) - X;() + X;(D)|2 < 2u, 2 (Jpax |sin ———o—"—
tz+1 I=lo
<Z{ )coso()vj(t)cosej(t)}dt‘ < 20, {zo+ Z < W) }
l=s0+1
fat : : ~1 2 1
+ / [0 (t) sin 0;(£) — v; (t) sin 6, (¢)] dt’ }(18) < 21)”{ Oi(” <1f3<1>) 14— }
f log(1 — —ggg—) BT

< % {10g(277\/%) + 2}

For the first term of (18), we have 2880, log n
a2 (1+o(1))
where the inequality logz < x —1,V0 < z < 1 is used.

(20)

t
/ Hl[vi (t) cos 0;(t) — v;(t) cos b, (t)]dt’ On the other hand, by Lemma 6 and induction assump-
t tion, we have for 0 <1 < kg + 1,
tiy1
S/ |(vi(t) — v;(t)) cos 0, (t)|dt + 201 )}
' ’ max |v;(t) — v; ()] < 2v2n0, <1_ 7””<+"())> .
tias 1<4,j<n 288
/ o, (1) (cos B,(t) — cos 6, ()|t
t . 72 (140(1)) )
Denote sy = min <[ : 2v/2nv, (1 — W) < 2vy, ¢,
= T{ 120 %n Joite) = v; (1)l then
+ masx vy(t1) max | cosdy(t) — cosd (tl)|} (19) " gV
- mry (1+o(1))
log (1 - 2880 )
Note that by Lemmas 10, 13, Remark 14 and the induction So,
assumption, we have for 0 <[ < kg + 1, .
0
D, mas ()~ (0
max [0;(t;) — 0;(t1)] < ko 2(1 4 o(1))\ !t
tshasn l < 2alo + 20, Y (1 _ mra(l+o(1) 2;80( »)
ET I=lo+1
V2 (@xp{=20)7} + e (PO ) #lo0)] °
! <2 —logvan 414 ——
arr2(1+0(1))  7ar2 (14 27)(1 + o(1)) > 2Un 772 (1+o(1)) 772 (1to(1))
<2mv2n(1-— ] (1_n7) i (1+o(1)
= ( 144 * 576(1 — 27) 08 288 288
288v,, logn
2(14o0(1)\' = 2 R (14 0(1)). 21
< omy (1= T’ R (1 o(1) (21)
y (19), (20) and (21), we have
where 7 < 1 is used in the last inequalit S|l
=5 q Y. Z / [vi(t) cos 0;(t) — v;(t;) cosb; (t)]dt‘
— mindl:onvon mrry (to(1)) =0
Denote [y = mln{l.?w 2n (1_T) < 1}, 288vn10gn

(14+7)(1+0(1)).

By the similar analysis, we can show

then we have r2

_ N/ ko tr+1
Iy < ——0s@nv2n) 3 (03 () sin 0:() — v; (1) sin 8; ()] dt
1 1— wrr2 (14o0(1))
og( 288 ) =g IVt

288v,, logn
< 72(1 +7)(1+0(1)).

By this, we can derive that Tn

By the assumption of the proposition, we have
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|dij(tko+1) — dij(tro )| < Murn

Now we will prove that (17) holds at time k+1. By (22), we
see that for each agent, the number of neighbors changed
at time ;41 in comparison with the initial neighbors is
bounded by Rpax defined via (13). So by Lemma 12 and
13, we have

(22)

Rmax rmax (O) — dmi“(o)
P(tesr — P(0))] < '
| ( k+1 ( ))H - dmin(o) dmin(o) — Rimax
dnmnr?  nmrl + lmrr?,
] nzn'l Z y /2(1+0(1))
AN, NI, — 4n7’l'777"n

=80n(1 + o(1)).
By the similar analysis, we can deduce ||Q(tx) — Q(0)|| <
80n. This completes the proof of the proposition.

Proof of Theorem 4

By the translational velocity update equation (5), we know
that maxj<;<p v;(tr) (resp. minj<;<p v;(tx)) is a non-
increasing (resp. non-decreasing) sequence. So as k — oo,
maxi<i<n Vi (tx) and min;<;<p v;(tx) have bounded limits
. On the other hand, by Proposition 15, we have for all
k>0

7r2 (14 o(1)) ¥
 max [vi(tr) — vj(te)| < 2V2nov, (1 588 )

— 0, as k — oo.

It is easy to see that the translational velocity tends to the
same value. Moreover, by Lemma 10 and Proposition 15,
we can prove that for 1 < ¢ < n, the orientation 6;(t) will
also tend to the same value. This completes the proof of
the theorem. [ ]

4. CONCLUDING REMARKS

This paper investigated synchronization of the orientation
and velocity for a group of unicycle robots that are
connected by distance-induced graphs, for which a dwell
time is introduced to avoid issues that are caused by the
abrupt change of neighbor graphs. The control laws are
designed using only the local information each robot can
obtain. By analyzing the dynamics of the system and
using the estimation of some characteristics concerning
the initial states, we provided a sufficient condition for
reaching synchronization without relying on any prior
connectivity assumption of the neighbor graphs. Some
interesting problems deserve to be further investigated,
for example, how to design a distributed control of robots
using only sampled information, and how to intervene
the unicycle robots such that the system exhibits more
sophisticated emergence.
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