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Abstract: This paper is concerned with power and rate control for wireless networks. In the control 

theoretic framework, a new power and rate control system model is derived for uncertain wireless 

networks with time-varying delays in both state and control input. A robust power and rate controller is 

presented, which is designed based on the 


H  control approach with linear matrix inequality (LMI). 

Simulation results verify the effectiveness of the proposed algorithm. 



1. INTRODUCTION 

Time delays have critical effects on the performance of 

power and rate control in wireless networks, which will 

reduce the quality of service (QoS), or even lead to system 

instability. Therefore, power and rate control for time-

delayed wireless networks have received considerable 

attention for the last decade.  

Power control algorithms for wireless networks with  

constant time delays have been presented based on time delay 

compensation (TDC) by Gunnarsson, Gustafsson and Blom 

(2001), and based on a hidden Markov model by Zhang and 

Pathirana (2013). Yang and Chen (2010) presented a power 

control algorithm using a multiple-mode Smith prediction 

filter (MMSPF) to deal with time-varying delay. Based on 

Lyapunov-Razumikhin functions, Lestas (2012) has proven 

that, if a feasible power allocation exists, then the power 

control system is asymptotically stable for arbitrary time 

varying delays. However, all the proposed results did not 

consider the rate control.  

Power and rate control algorithms for wireless networks with 

time delays have been presented based on a MMSPF by 

Chen, Yang and Li (2008); and based on a high order model 

by Moller, Jonsson, Blomgren and Gunnarsson (2011). 

Subramanian and Sayed (2005) presented a robust power and 

rate control algorithm based on a state-delayed state space 

model; Kong, Zhang, Zhang and Zhang (2007) extended the 

results of Subramanian and Sayed (2005) to input delay and 

presented a predictive control algorithm. However, the time 

delays were assumed to be known and constant in the design 

procedure. In fact, the time delay is often unknown even 

time-varying in real network environments.   

Power and rate control algorithms for wireless networks with 

time-varying state delay were presented via adaptive control 

in Han, Sun, Shi and Bi (2013) and via robust 


H  control in 

Han, Sun and Liu (2013). However, only the time delay in 

rate control was considered in Subramanian and Sayed 

(2005), Han, Sun, Shi and Bi (2013), and Han, Sun and Liu 

(2013), while the time delay in power control was not 

considered. In fact, the power control is more sensitive to 

time delay than the rate control. Additionally, only the state 

time delay was considered in these papers, but the input delay 

was not considered. To the authors’ best knowledge, research 

on power and rate control for wireless networks with time-

varying delays in both state and control input has not been 

investigated, which motivates the work of this paper. 

This paper considers the power and rate control for wireless 

networks with time-varying delays in both state and input, 

not only in the rate control but also in the power control. 

Firstly, we focus on the modelling and analysis of the power 

and rate control dynamics, and derive the system model for 

wireless networks with time-varying delays in Section 2. And 

then, we present a robust power and rate controller in Section 

3. Simulation results are given in Section 4. Conclusion 

remarks and related future work are discussed in Section 5. 

Notation: In this paper, 
T

A  and 
1

A


denote the transpose and 

the inverse of a matrix A, respectively; 
n m

R


 denotes the set 

of all n m  real matrices; A > 0 (A < 0) means that A is 

symmetric positive definite (negative definite);  I  is an 

appropriately dimensioned identity matrix; diag{· · ·} 
denotes a block-diagonal matrix; and the symmetric terms in 

a symmetric matrix are denoted by *, e.g., 

*
T

X Y X Y

Z Y Z

   
   

   

. 
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Figure 1. Time delays in power control 

2. SYSTEM MODEL AND PROBLEM FORMULATION 

Consider a wireless network with one node as a master node 

and others as active nodes which will communicate with each 

other only through the master node.  

Time delays are mainly caused by the signal processing at the 

master and active nodes and signal transmission through the 

wireless channel in the network. In the following, we will 

analyze the effects of time delay in power control. The effects 

in rate control can be easily straight forwarded. 

As depicted in Figure 1 for the power control loop, let 
1

  denote 

the time delay in uplink channel (including the signal 

processing delay at the master node and the signal 

transmission delay from the active node to the master node), 

2
  denote the time delay in downlink channel (including the 

signal processing delay at the active node and the signal 

transmission delay from the master node to the active node). 

The total round trip delay in the network is 
1 2

    . 

Practical value of the round-trip delay is between 2 and 4 at 

the sampling rate of 800 Hz (Gunnarsson, Gustafsson, and 

Blom, 2001; Zhang and Pathirana, 2013).  

In the uplink power controller, at time instant k, the master 

node sends a power control update command ( )
p

u k  to power 

multiplier (PM) at the active node. Then PM generates a 

transmit power ( )p k  according to ( )
p

u k . Because of the 

downlink time delay 
2

 , the transmit power at the active 

node should be 
2

( )p k  . It is then transmitted to the master 

node with the uplink time delay 
1

 . That is, the transmitted 

power at the active node is 
2

( )p k  , while the received 

power at the master node is 
2 1

( ) ( )p k p k      , and the 

received signal-to-interference ratios (SIR) ( )k  is related to 

the received power ( )p k  . Therefore, the SIR for node i at 

time k can be expressed as 

2

1

( ) ( )
( )

( ) ( )

ii i i

i n

j ij j j i

j i

G k p k
k

G k p k




 







 
,                (1) 

where )(kγ
i

 is the actual SIR, ( )
ij

G k  is the channel gain, 

)(kp
j

 is the transmit power, n is the number of nodes using 

the same channel, 2

i
  is the noise power, and 

j
  is the round 

trip time delay. Define 

2

1

( )
( )

( ) ( )

ii

i n

j ij j j i

j i

G k
k

G k p k


 





 

,                (2) 

then 

( ) ( ) ( )
i i i i

k k p k    ,                         (3) 

or, in dB scale 

( ) ( ) ( )
i i i i

k k p k     ,                       (4) 

where ( ) ln ( )
i i

k k  , ( ) ln ( )
i i

k k  , and ( ) ln ( )
i i

p k p k . 

Subramanian and Sayed (2005) introduced the random walk 

model for )(kβ
i

as follows 

)()()( knkβkβ
iii

 ,                        (5) 

where )(kn
i

 is a zero-mean disturbance with variance 2

n
 .  

The power control algorithm (in dB scale) is given by 

)]()([)()(
*

kγkγαkpkp
iiiii

 ,              (6) 

where 
i
α  is a step-size factor, )(

*
kγ

i  
is the desired SIR, and 

* *
( ) ln ( )

i i
k k  . 

In order to make the actual SIR )(kγ
i

 track the desired SIR 

)(
*

kγ
i

, as in Subramanian and Sayed (2005), we add a power 

control ( )
ip

u k  in (6) given by 

*
( 1) ( ) [ ( ) ( )] ( )

i i i i i ip ip
p k p k k k b u k       ,     (7) 

for a given factor 
ip

b and control ( )
ip

u k  to be determined. 

From (4), (5), and (7), we have 

*
( 1) ( ) ( ) ( )

i i i i i i i
k k k k              

 ( ) ( )
ip ip i i

b u k n k   .                           (8) 

Remark: The power and rate control algorithms, presented in 

Subramanian and Sayed (2005), Han, Sun, Shi and Bi (2013), 

and Han, Sun and Liu (2013), just considered the time delay 

in rate control, while the time delay in power control was not 

considered, i.e., in the case 0
i

   in (1). Because the power 

control is more sensitive to time delay than the rate control, 

the effect of time delay in power control must be considered. 

Furthermore, the time delay in control input was not 

considered in those algorithms, i.e., in the case 0
i

   of 

( )
ip i

u k   in (8).  

The rate control algorithm is given by (Subramanian and 

Sayed, 2005) 

1 2
( 1) ( ) [ ( ) ( ) ( ) ( ) ( )]

i i i i i
f k f k d k c k f k c k f k       , (9) 

where ( )
i

f k  is the flow rate at node i, 0 is a step-size 

factor, )(kc


and )(kc


 are congestion factors, )(kd  is a 

zero-mean random variable with variance 2

d
 , and 

i
  is the 

round trip delay time.  

From Shannon’s capacity formula, we obtain 

)]([log)(
*

kγkf
ii







 .                     (10) 

Usually )(
*

kγ
i

, then )(kf
i

 is proportional to *

2
log ( )

i
k .  

Therefore, the desired SIR can be obtained as follows (in dB 

scale) 
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* * *

1 2
( 1) [1 ( )] ( ) ( ) ( ) ( )

i i i i
k c k k c k k d k            , (11) 

where )(log/ 


μμ . 

Like that in power control, as in Subramanian and Sayed 

(2005), and considering the round trip time delay, we add a 

rate control ( )
if

u k  in (11) as follows 

* * *

1 2
( 1) [1 ( )] ( ) ( ) ( )

i i i i
k c k k c k k           

( ) ( )
if if i

b u k d k    ,                            (12) 

For simplicity, we drop the node index i in the following. 

Define 












)(

)(
)(

*
kγ

kγ
kx ,                             (13) 

then from (8) and (12), we have 

1 2

1 0
( 1) ( ) ( )

0 1 ( ) 0 ( )
x k x k x k

c k c k

 


 

   
      

    

 

0 ( )
( )

0 ( )

p

f

b n k
u k

b d k




   
     

  

,                         (14) 

or 

( 1) ( ) ( ) ( ) ( ) ( ) ( )
d

x k A k x k A k x k Bu k k         ,  (15) 

with  

1

1 0
( ) ,

0 1 ( )
A k

c k

 
  

 

    
2

( )
0 ( )

d
A k

c k

 



 
  

 

,   (16) 

0

0

p

f

b
B

b

 
  
 

,                
( )

( )
( )

n k
k

d k




 
  
 

,               (17) 

where τ is the round trip time delay, ( )k is a zero-mean 

random vector with covariance matrix 

2

2 2

0
{ ( ) ( )}

0

T n

d

E k k


  
 

 
   

 

.               (18) 

Since the congestion factors )(kc


and )(kc


 are usually not 

known exactly, we consider uncertainties in )(kc


 and )(kc


 

as follows (Subramanian and Sayed, 2005) 

dkHFckc )()( 


,  
2 2
( ) ( )

d
c k c HF k d   ,     (19) 

where )(kF is a zero mean random noise with variance 

F
σ , 

H , d and 
d

d  are known scalars, and 


c  and 
2

c  are 

unknown but bounded as 

ul
ccc

,, 
 ,   

ul
ccc

,, 
 .                 (20) 

Therefore, we rewrite )(kA  and ( )
d

A k  in (15) as follows  

)()( kAAkA  ,  )()( kAAkA
ddd

 ,       (21) 

where 

1

1 0

0 1
A

c

 
  

 

,     
2

0
d

A
c

 



 
  

 

,          (22) 

and 

DkHFkA )()(  ,    
dd

DkHFkA )()(  ,         (23) 

with 
















dμ
D ,    















d

d
dμ

D .            (24) 

The goal of power and rate control is to drive the actual SIR  

obtained from (8) by the power control rule towards the 

desired SIR obtained from (11) by the rate control rule for 

wireless networks with time-varying state and input delays 

and uncertainties )(kA and )(kA
d

 . The controlled output 

can be chosen as )()( kCxkz   and  11 C , which yields  

)()()(
*

kγkγkz  .                         (25) 

Then the power and rate control system with time-varying 

state and input delays and uncertainties can be rewritten as 

( 1) ( ( )) ( ) ( ( )) ( )
d d k

x k A A k x k A A k x k          

( ) ( ),
k

Bu k k     

)()( kCxkz  , 

)(kx ,  ],[ 
M
τk .                                      (26) 

where 
k
τ is a round-trip time-varying delay and satisfies 

Mkm
τττ  , where 

m
τ  and 

M
τ  are known lower and 

upper delay bounds. 

The problem of this paper is to design a state feedback power 

and rate controller such that the resulting closed-loop system 

is asymptotically stable with ( ) 0k  and satisfies 

   2

0

( ) ( ) ( ) ( ) 0
T T

k

J z k z k k k  




   , ( ) 0k  ,  (27) 

for any 0  . If such conditions are satisfied, the system (26) 

is said to be with an 


H  performance index less than  . 

Before ending this section, we introduce the following lemma 

which is useful to prove our results. 

Lemma 3.1: (Xie, 1996) Given matrices 
T

S S , H , D  and 

0
T

V V   with appropriate dimensions, 

( ) ( ) 0
T T T

S HF k D D F k H   ,             (28) 

for all )(kF  satisfying ( ) ( )
T

F k F k I  if and only if there 

exists a scalar ε  such that 

1
0

T T
S H H D VD


   .                (29) 

3. ROBUST 


H  POWER AND RATE CONTROL 

For convenience of analysis, we firstly consider the following 

power and rate control system without any uncertainty 

( 1) ( ) ( ) ( ) ( )
d k k

x k Ax k A x k Bu k k         , 

)()( kCxkz  ,                                                     (30) 

)(kx , ],[ 
M
τk .  

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9723



 

 

     

 

The controller structure is chosen as 

( ) ( )u k Kx k .                               (31) 

Then the closed-loop system is given by 

( 1) ( ) ( ) ( ) ( )
d k

x k Ax k A BK x k k       .         (32) 

Theorem 3.1: For given integers 
m
τ  and 

M
τ , if there exist 

matrices 0
T

P P  , 0
T

Q Q  ， 0
T

R R  , 

11 11
0

T
X X  , 

22 22
0

T
X X  ， 0W  , Z , 

12
X , 

1
Y , and 

2
Y  

satisfying the following LMI 

11 12 1

22 2
* 0

* * 2

X X Y

X Y

W R

 

 
 

  

,                    (33) 

11 12

22 24 25

0 ( )

* 0 0

* * 0
0

* * * 0 0

* * * * / 0

* * * * *

T T T

M

W A W A I W C

I I I

W

R

I





   
 

   

 
   

 

 
 

  

, (34) 

then the closed-loop system (32) is asymptotically stable and 

with an 


H  performance index less than  . Furthermore, the 

state feedback power and rate control law is given by 

1
( ) ( )u k ZW x k


 ,                            (35) 

where   

11 1 1 11
( 1)

T

M m M
Q W Y Y X          ,  

12 1 2 12

T

M
Y Y X     ,  

22 2 2 22

T

M
Q Y Y X      ,  

24 25

T T T

d
WA Z B     . 

Proof: see Appendix. 

Now we consider the power and rate control for wireless 

networks with uncertainties. By extending Theorem 3.1, we 

obtain a robust 


H  power and rate control for uncertain 

wireless networks (26). 

Under the state feedback power and rate control (31), the 

closed-loop system can be written as 

( 1) ( ( )) ( ) ( ( ) ) ( ) ( )
d d k

x k A A k x k A A k BK x k k          

     )()( kCxkz  .                                                                (36) 

Theorem 3.2: For given integers 
m
τ  and 

M
τ , if there exist 

matrices 0
T

P P  , 0
T

Q Q  ， 0
T

R R  , 

11 11
0

T
X X  , 

22 22
0

T
X X  ， 0W  , Z , 

12
X , 

1
Y , 

2
Y  and 

a scalar λ  satisfying the following LMI 
















Iλ

HDDλ
TT

*
,                     (37) 

then the closed-loop system (36) is asymptotically stable and 

with an 


H  performance index less than  . Furthermore, the 

state feedback control law is given by (35), where 

 
d

DDD ,               (38) 

 


TTTT
THTHH .     (39) 

Proof: Replacing A and 
d

A in (32) with DkHFA )(  and 

dd
DkHFA )( , respectively, we obtain the robust 


H  

performance (34) for the uncertain system (26): 

 HkFDDkFH
TTT

)()( .          (40) 

From Lemma 3.1, a necessary and sufficient condition that 

guarantees (40) is that there exists a scalar λ  such that 




 DDλHH
λ

TT
.                   (41) 

Applying Schur complement formula, we can obtain that (41) 

is equivalent to (37).                                                              □ 

4. SIMULATION RESULTS 

Consider a wireless network with the following channel gain 

(Subramanian and Sayed, 2005)  

0.1 ( )
( ) ( ) 10i i k

ii ii
G k d k

 
  . 

The first term ( )i

ii
d k


 denotes the path loss, where ( )

ii
d k  is 

the distance from the active node i to its master node,  
i

R   

is the path-loss exponent between 2 and 6; the second term  
0.1 ( )

10 i k  denotes the shadow effect (from building, terrain, or 

foliage), where ( )
i

k R   is a white Gaussian noise. The 

congestion factors )(kc


 and )(kc


 are chosen as random 

variables between 0 and 0.5. )(kn  and )(kd  are zero-mean 

with variance 0.01.  .μ ,  .α , and the round-trip 

delay is varied between 2 and 4. 

Figure 2 shows that the proposed algorithm can effectively 

compensate for the time-varying delays and uncertainties, 

and has better performance than the traditional power and 

rate control algorithm which is shown in Figure 3.  

5.  CONCLUSION 

This paper presents a robust 


H  power and rate control for 

uncertain wireless networks with time-varying state and input 

delays. The power and rate controller is designed based on a 

new system model and via 


H  control approach with LMI.  

For convenience of analysis, this paper assumes that the time 

delay in power control is same as that in rate control. The 

different time delays in power control and in rate control will 

be considered in the future work. 
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Figure 2. Performance of the proposed algorithm 
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Figure 3. Performance of the traditional power and rate control algorithm 

APPENDIX. Proof of Theorem 3.1 

Consider a Lyapunov-Krasovskii functional 

   )()()()()( kVkVkVkVkV


 ,                (42) 

where  

1
( ) ( ) ( )

T
V k x k Px k ,                                         (43) 

1

2
( ) ( ) ( )

k

k
T

i k

V k x i Q x i




 

  ,                                   (44) 

1 1

3
2 1

( ) ( ) ( )
m

k

k
T

i j k i

V k x j Q x j




  

     

   ,                       (45) 

1 1

4
( ) ( ) ( )

M

k
T

j i k j

V k e i R e i


 

   

   ,                             (46) 

and )()()( kxkxke  , 0P   , 0Q   and 0R  are 

matrices to be determined.  Define )()()( kVkVkV  , 

then 

1
( ) ( 1) ( 1) ( ) ( )

T T
V k x k Px k x k Px k      

            [ ( ) ( ) ( ) ( )]
T

d k
Ax k A BK x k k P                              

[ ( ) ( ) ( ) ( )] ( ) ( )
T

d k
Ax k A BK x k k x k Px k       , 

1

1

2
1

( ) ( ) ( ) ( ) ( )
k k

k k
T T

i k i k

V k x i Q x i x i Q x i
 



    

       

( ) ( ) ( ) ( )
T T

k k
x k Qx k x k Qx k       

1

( ) ( )
m

M

k
T

i k

x i Q x i






  

  , 

3
1

( ) ( ) ( ) ( ) ( ) ( )
m

M

k
T T

M m
i k

V k x k Q x k x i Q x i




 


  

     , 

4
( ) [( ) ( ) ( ) ( ) ( )]

T

d k
V k A I x k A BK x k k R         

[( ) ( ) ( ) ( ) ( )]
d k

A I x k A BK x k k        

1

( ) ( )
M

k
T

i k

e i Re i




 

  . 

Using the similar method in Xiong and Lam (2006), we have 

0
*

a a
X Y

R

 
 

 

,                            (47) 
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for any matrices 
11 11

T n n
X X R


  , 

12

n n
X R


 , 

22 22

T n n
X X R


  ,  

1

n n
Y R


 , and 

2

n n
Y R


 , where  

11 12

12 22

a T

X X
X

X X

 
  
 

     and    
1

2

a

Y
Y

Y

 
  
 

.  

Then 

1 ( ) ( )
0

( ) * ( )k

T
k

a a

i k

k X Y k

e i R e k

 

 

     
       

     

 

1 1

( ) ( ) 2 ( ) ( ) ( ) ( )
k k

k k
T T T

k a a
i k i k

k X k k Y e i e i Re i
 

   
 

   

     

2

1
1 1 1 2

2 2

( ) ( ) ( ) ( )
*

T T
k

T T

M aT
i k

Y Y Y Y
k X k e i Re i

Y Y 

  


 

    
         

 

a
  ,                                                                             

where ( ) [ ( ), ( )]
T T T

k
k x k x k   . It implies 

1 2 3 4
( ) ( ) ( ) ( ) ( )

a
V k V k V k V k V k            

( ) ( )
T

k k   ,                                             

where 

( ) [ ( ), ( ), ( )]
T T T T

k
k x k x k k    ,  

11 12

22

0

* 0

* * 0

T
T T

T T

d d

A A

A P A

I I

     
    

        
         

 

( ) ( )

( )

T
T T

T T

d M d

A I A I

A R A

I I



    
   

    

   
   

, 

11 1 1 11
( 1)

T

M m M
Q P Y Y X          ,  

12 1 2 12

T

M
Y Y X     ,  

22 2 2 22

T

M
Q Y Y X      , 

d d
A A BK  . 

A sufficient condition on the stability of system (32) is given 

by 0.  Since 

2

2

0 0

( ) ( ) ( ) ( ) ( ) * 0 0 ( )

* *

T

T T T

C C

z k z k k k k k

I

    



 

 
   

 
 

, 

then 
2

( ) ( ) ( ) ( ) ( )
T T

V k z k z k k k      

2

0 0

( ) * 0 0 ( )

* *

T

T

C C

k k

I

 



  
  

    
  

  

. 

If  

2

0 0

* 0 0 0

* *

T
C C

I

 

 
   

 
 

,                    (48) 

we have 
2

( ) ( ) ( ) ( ) ( ) 0
T T

V k z k z k k k      . 

When ( ) 0k  , we have  )(kV , then the stability with 

( ) 0k   is established. Summing up from k  to k , 

we can get  JVV )()( . Because  )(V  and 

)(V , we have J . Therefore, the closed loop system 

(32) is asymptotically stable and with an 


H  performance 

index less than  . 

In the following, we will prove that (48) is equivalent to (33) 

and (34). Rewrite (48) as 

11 12

22

2

0

* 0

* *

T
T T

T T

d d

A A

A P A

I I

     
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      
         

 

( ) ( )

( )

T
T T

T T

d M d

A I A I

A R A

I I



    
   

    

   
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,           (49) 

where 
11 11

T
C C    . 

By using Schur complement, we can get that (49) is 

equivalent to the following inequality 

11 12

22

1

0 ( )

* 0 0

* * 0
0

* * * 0 0

* * * * 0

* * * * *

T T T

T T

d M d

M

M

A P A I C

A P A

I P I

P

R

I











   
 

 

 
 

 

 
 

  

,     (50) 

In order to obtain the state feedback gain K, we pre- and post-

multiply { , , , , , }diag W W I W I I  and { , , }diag W W W  with 

1
W P


  to (47) and (50), respectively; and apply the change 

of variables such that Q WQW , 
11 11

X WX W , 

12 12
X WX W , 

22 22
X W X W , 

1 1
Y W Y W , 

2 2
Y WY W , 

1
R R


 , and Z K W , we can get (34), (35) and 

11 12 1

22 2
* 0

* *

X X Y

X Y

W RW

 

 
 

 
 

.                     (51) 

W RW

1
R W


  to 

0
T

W W   and 

0
T

R R  , then

1 1
[ ] [ ] 0

T
W R R W R

 
  

1
2WRW W R


 

W RW
1

2W R




(48) is equivalent to (33) and (34)

□
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