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Abstract: With the increasing scale of renewable generations and uncertain loads that connected to power 

systems, the uncertainties of power injections in both source side and load side have become significant, 

due to their randomness and intermittency. How to model the uncertainties with an appropriate method and 
analyse the influence of uncertainties on power flow has become the basis of power system planning and 

operation. This paper proposes interval models for wind power and electric vehicles, and then applies an 

interval arithmetic-based algorithm to analyse the influence on power flow caused by the uncertainties. 

IEEE 30-bus test system with integration of wind power and electric vehicles is used as a simulation 

example to analyse the influence in details.  



1. INTRODUCTION 

Power flow analysis is one of the most fundamental and most 
frequently used tools in power system analysis both for 

planning and operation. It deals with the calculation of 

voltages and line flows based on the given network 

parameters and load injections. Traditionally, all of the 

parameters in power flow equations are certain values which 

never change over time and many classical algorithms have 
been proposed to calculate the power flow, such as Newton-

Raphson and Fast Decoupled algorithms. However, with the 

increasing scale of renewable generations and uncertain loads 

connected to power systems, power injections at some buses 

have become to be significant uncertainties, which make it 

difficult for the traditional deterministic method to calculate 

the power flow. How to model the uncertainties and choose 

an appropriate algorithm to calculate the uncertain power 
flow is the key to analyse the uncertainties’ influence on 

power flow. 

Three modelling approaches have been reported to analyse 
the problems of uncertainties, which respectively are 

probability analysis, fuzzy sets and interval arithmetic 

(Dimitrovski & Tomsovic, 2004). In probability analysis, 

uncertainties are represented by probability distribution 

functions. However, quantitative probability distribution 

function is not given objectively and mainly depended on the 

historical data or assumptions. As a result, the inherent error 
in probability function may bring larger error to the results. 

In fuzzy sets, uncertainties are represented as fuzzy numbers 

and calculated according to the fuzzy number algorithm. The 

membership functions of the uncertain parameters are needed 

when utilizing fuzzy sets, while the membership function is 

not given objectively. Compared with probability distribution 

function, setting membership functions includes more 

subjective factors. In interval arithmetic, uncertainties are 

expressed using two boundary values, which are upper bound 

and lower bound respectively. Interval doesn’t contain any 

extra information, thus avoiding subjective factors in the 

calculation results. Furthermore, compared with the above 
modelling approaches, interval arithmetic has a faster speed 

because of its less information, which is very important in 

some applications like power flow analysis. 

This paper presents interval models of wind power and 
electric vehicles, which are respectively typical renewable 

generation and uncertain load. After modelling the 

uncertainties, interval arithmetic is employed to carry out 

power flow analysis with the integration of wind power and 

electric vehicles.  

The organization of this paper is as follows. In Section 2, 
interval models of wind power and electric vehicles are 

presented. Section 3 applies the interval arithmetic-based 

algorithm for power flow analysis. Simulation results are 
analysed in Section 4 to describe the influence on power flow 

caused by integration of wind power and electric vehicles. 

Lastly, Section 5 concludes this paper. 

2. INTERVAL MODELS OF WIND POWER AND 

ELECTRIC VEHICLES 

As typical renewable generation and uncertain load, wind 
power and electric vehicles are respectively analysed in this 

section. 

2.1 Interval Models of Wind Power 

The output of a wind farm is considered to be related to the 
third power of the wind speed 
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where Pw(v) is the wind power when the wind speed is v and 
PR is the rated power. N is the number of wind turbines, ρ is 

the air density, Cp is the energy conversion efficiency, R is 

the radius of the wind turbine blade, vR is the rated wind 

speed. vci is the cut-in wind speed and vco is the cut-out wind 

speed. 

The interval model of wind power should be built according 
to the random characteristic of wind speed. Wind speed 

follows a Weibull distribution (Hetzer et al., 2008): 
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where κ is the shape parameter and μ is the predicted value of 

the wind speed. 

An interval which meets the following two conditions is 

needed to describe the uncertainty of wind power: (1) there is 
a high enough possibility that the wind power lies within the 

interval, (2) the interval length should not be too large (at 

least it is finite). So the interval [Pw
down, Pw

up] is created using 

the following formulation: 

                        
w

up

w

down

ww PPPprob 21]),[(                   (3) 

where prob(A) is the probability that event A is true, and  ɛw 

is a coefficient related to probability that the wind power lies 

out the interval, which is usually set between 0.01 and 0.25. 

Considering the Pw
down and Pw

up is hard to be calculated 

analytically according to the probability distribution of wind 

power, they could be calculated using Monte-Carlo method. 

Due to the asymmetry of wind power output, the interval 
[Pw

down, Pw
up] is always asymmetrical about the predicted 

output of wind power so as to make the interval have a 

smaller range. 
Assuming the power factor of a wind farm is a constant, the 
reactive power of wind farm can be calculated using 

                                    
w
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w
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P
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                                (4) 

where cosθw is the power factor. So the [Qdown, Qup] can be 
calculated using [Pdown, Pup]. 

2.2 Interval Models of Electric Vehicles 

Until recently there are three mainstream interactive modes 
of EVs: normal interaction (NI) mode, fast charging mode 

and battery exchange (BE) mode. Since the normal 

interaction EVs are most widely distributed, only NI mode is 

considered in this paper. 

At any given time, demand of NI EVs is mainly influenced 
by two major factors: the amount of EVs connected to power 

facilities, the charging power of EVs. 

The amount of EVs connected to the power facilities in a 

given time convert to Poisson distribution P(λ) (Yu et al., 
2012): 

                                 e
k

kNprob
k

!
)(                           (5) 

where λ is the predicted amount of EVs and N represents the 
practical value. 

In order to estimate the possible power demands of connected 
EVs, an assumption is required: The charging power of a 

connected EV is considered to be under uniform distribution 

between 4 to 5 kW. 

So at a given time, the power demand of EVs can be 
calculated as follows: 

                                   
















N

i

iev

i

PP

PN

UP

1

)(~

)5,4(~


                                    

(6) 

Pev is a stochastic variable whose probability distribution is 
hard to be calculated, so the Monte-Carlo method is used to 

set an interval [Pev
down, Pev

up], which satisfy the following 

formulation: 

                      ( [ , ]) 1 2down up

ev ev ev evprob P P P                     (7) 

where ɛev is a probability related coefficient. 

To make sure the interval is balanced, the formulation can be 

rewritten as formulation (8): 

               
ev

down

evev

up

evev PPprobPPprob  )()(           (8) 

3. AN INTERVAL ARITHMETIC-BASED ALGORITHM 

FOR POWER FLOW ANALYSIS 

3.1 Interval Arithmetic 

A real interval X is a nonempty set of real numbers 

                        }:{],[ xxxRxxxX                    (9) 

where x  and x  are called lower bound and upper bound 

respectively. If xx  , the interval is called a point interval 

or thin interval，which stands for a rational number. 

Consider two interval numbers ],[ xxX   and ],[ yyY  , 

addition, subtraction, multiplication, division, intersection 

and union of these two interval numbers can be described as 
below (Moore et al., 2009): 
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Addition: ],[ yxyxYX                                          (10) 

Subtraction: ],[ yxyxYX                                        (11) 

Multiplication:

)],,,max(),,,,[min( yxyxyxyxyxyxyxyxYX   

                                                                                            (12) 

Division:

)]/,/,/,/max(),/,/,/,/[min(/ yxyxyxyxyxyxyxyxYX   

                                                                                            (13) 

Intersection: )],min(,),[max( yxyxYX                      (14) 

Union: )],max(,),[min( yxyxYX                               (15) 

If either yx   or yx  , YX  is empty and denoted by  . 

3.2 Krawczyk Method Based on Current Injection (Pereira et 

al., 2012) 

Krawczyk method (Mori & Yuihara, 1999) is one of the most 

heavily used approaches for solving a set of nonlinear 
equations. Consider a set of nonlinear interval equations  

0)( Xf                                    (16) 

where variable X is an interval vector. Krawczyk operator can 

be represented as 

                ))](('[)()( xXXFYIxfYxXK              (17) 

and the iteration process is shown as below: 
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where I is an unit matrix, function mid(A) means the 
midpoint of the interval variable A and F’(Xk) represents the 

Jacobian matrix with interval elements in iteration k. 

Convergence of krawczyk method is related to the infinite 
norm of matrix R, which in iteration k is represented as 

                              )(' kkk XFYIR  .                            (19) 

Krawczyk method is easy to converge when the infinite norm 
of R is less than 1 and always get divergence while the 

infinite norm of R is large. In order to reduce the infinite 

norm of R, power flow equations based on current injection 

instead of traditional power injection is chosen to calculate 

the power flow with the integration of wind power and 

electric vehicles, which is represented as below: 
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PV buses: 
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where, 
rkI : real part of current injection at bus k 

 
mkI : imaginary part of current injection at bus k 

 
k : set of buses directly connected to bus k 

 
kiG : conductance of branch between bus k and i 

 
kiB : susceptance of branch between bus k and i 

 
rkV : real part of voltage at bus k 

 
mkV : imaginary part of voltage at bus k 

            
kV : voltage magnitude at bus k 

 kP : active power injection at bus k 

 
kQ : reactive power injection at bus k 

According to the current injection equations, Newton-
Raphson algorithm is given in Appendix A.  

For each PQ bus, the current injection equations contain two 
variables, Vr and Vm, while for each PV bus, the amount of 

unknown variables increases to three, which respectively are 

Vr, Vm and Q. Consequently, Jacobian matrix based on 

current injection equations has a larger size, although it 

contributes to decreasing the infinite norm of matrix R and 

improving the convergence. 

3.3 Steps of Power Flow Analysis based on interval 
arithmetic  

Concrete steps of power flow analysis that based on 
krawczyk method and current injection equations are as 

follows. 

Step 1: Calculate the midpoints of the given interval power 
injections at all of the buses with uncertainties.  

Step 2: Use the midpoints to calculate the deterministic 
power flow, which would be the basis of the initial values to 

the power flow analysis with uncertainties. 

Step 3: Initialize the real parts and imaginary parts of 
voltages at all the buses and reactive power injections at PV 

buses. Actual formulas are 

                     )]1(),1([   d
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d
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where variables with superscript d represent the solutions of 

deterministic power flow,  is a percentage stands for a 

tolerance which make the  initial intervals completely contain 

the power flow solutions. 

Step 4: Use the midpoints of interval variables in step 3 to 

calculate the mismatches of current injections at all the buses 
and voltages’ square value at PV buses according to (20)-(24), 

which correspond to the column vector in the left of 

Appendix A. 

Step 5:  calculate the krawczyk operator using (17). 

Step 6: Update the unknown variables with intersection 

operation according to (18). 

Step 7: check whether the solution reach the specified 

convergent accuracy. After intersection operation in iteration 
k, to any unknown variable xi, calculate the distance between 

xi
k-1 and xi

k, which is denoted by di: 

                        ]|||,|max[
11 


k

i

k

i
k

i

k

ii xxxxd .              (28) 

Use Npq and Npv to represent the amount of PQ and PV buses 

respectively. If max(di),i=1,2,…,2Npq+3Npv, is less than the 

specified convergent accuracy, the power flow analysis is 

converged, otherwise the algorithm goes back to Step 4 to 

proceed with next iteration. 

4. SIMULATION RESULTS 

IEEE 30-bus test system is used to analyse the influence on 

power flow caused by the integration of wind power and 
electric vehicles. Different scenarios are calculated and 

analysed as below. 

Scenario A: Assume the buses numbered 7, 12 and 21 in 
IEEE 30-bus test system are connected with different wind 

generations. At each selected bus, the predicted wind power 

injection is 6MW and coefficient ɛw is 0.05. Based on the 

current predication level, wind power injections are 

calculated to have a tolerance of -50% to +33%, more 

specific, they vary in the range [3MW, 8MW]. Suppose the 

power factor cosθw is 0.8, then the reactive power range is 

[2.25MVar, 6MVar]. The power flow solutions obtained by 
the interval arithmetic-based algorithm are compared with 

that of deterministic power flow analysis in Fig. 1-2, with Fig. 

1 showing the bus voltage magnitude bounds and Fig. 2 

depicting the bus voltage angle bounds. 
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Fig. 1 Bus voltage magnitude bounds of scenario A 
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Fig. 2 Bus voltage angle bounds of scenario A 

Scenario B: Assume the buses numbered 4, 10, 14, 15, 24 
and 30 are connected with EV charging stations. At each 

selected bus, suppose the predicted EV amount is 1000 and 

the total load is 4.5MW, which is regarded as a part of the 

original load in the test system. Set the coefficient ɛev as 0.05 
and the tolerance of load can be analysed through the interval 

models of EVs, which as a result is -5.3% to +5.3%, thus the 

load of each EV charging station varies in the range 

[4.26MW, 4.74MW]. The computed interval arithmetic-

based solutions are compared with the deterministic power 

flow solutions in Fig. 3 and Fig. 4, which correspond to the 

bus voltage magnitude bounds and the bus voltage angle 

bounds respectively. 
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Fig. 3 Bus voltage magnitude bounds of scenario B 
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Fig. 4 Bus voltage angle bounds of scenario B 

Scenario C: Both of wind power and electric vehicles are 
considered in this scenario. Based on IEEE 30-bus test 

system, nine buses are assumed to be connected with 

uncertainties, which respectively are the three buses with 
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wind power in scenario A and the six buses with EVs in 

scenario B. For the models of wind power and electric 

vehicles, different coefficient ɛ (ɛw or ɛev) corresponds to 

different intervals, which would result in different power 

flow solutions. ɛ ranged from 0.05 to 0.25 is analysed in this 

scenario and the solutions are shown in  Fig. 5-6. 
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Fig. 5 Bus voltage magnitude bounds at different ɛ 
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Fig. 6 Bus voltage angle bounds at different ɛ 

Obviously, the power flow solutions have turned into 

intervals with lower and upper bounds due to the 

uncertainties at some buses. Ranges of the interval solutions 
in scenario A is asymmetrical about the deterministic power 

flow solutions, which result from the asymmetry of interval 

models of wind power. While in scenario B, both of the EVs’ 

load and solution ranges are almost symmetrical. Notice also 

that the solution ranges of the system connected with wind 

power is larger of that connected with EVs when the 

coefficient ɛ takes the same value. On one hand, it because 

that the predicted power injections of wind are larger than 
EVs’, on the other hand, the current predication method of 

EVs is more accuracy than that of wind power, in other 

words, wind power has a greater uncertainty than EVs under 

the current predication level.   

With different requirements and applications for uncertain 
models, different value of coefficient ɛ should be chosen. ɛ 

represents the probability that the given interval model 

containing the actual power injection and smaller ɛ  

corresponds to larger ranges of  interval models. For example, 

ɛ equals to 0.05 means the interval model have a probability 

of 90% to contain the actual power injection while 0.25 
stands for 50%. In scenario C, ɛ ranged from 0.05 to 0.25 is 

analysed. It can be easily observed that the solution bounds 

increasingly deviate from deterministic power flow solutions 

as the value of ɛ decreases, which is same with the variation 

of the ranges of interval models.  

5. CONCLUSIONS 

Taking into consideration the uncertainties of renewable 
generations and uncertain loads, an interval arithmetic-based 

algorithm is applied to analyse the influence on power flow 

caused by the uncertainties. As typical renewable generation 

and uncertain load, interval models of wind power and 

electric vehicles are presented in this paper. Based on the 

above-mentioned interval models, power flow solutions of 
IEEE 30-bus test system are calculated and three different 

scenarios are analysed. The presented analysis and simulation 

results demonstrate that the power flow solutions vary in 

certain ranges and have the same property of symmetry as 

the power injections. Furthermore, for the same wind farm or 

EV charging station, different probabilistic requirements can 

result in interval models with different ranges, which are 

important for the power flow analysis and directly determine 
the ranges of power flow solutions. Future work will be 

focused on the method to select appropriate probabilistic 

requirements for different uncertainties thus make the interval 

power flow solutions have more practical significance. 
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where the amount of PQ buses is denoted by m and PV buses that numbered from m+1 to n are placed behind PQ buses in the 

matrix. 
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