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Abstract: Supply fan takes up to 30% of Heating, Ventilation and Air Conditioning (HVAC)
systems’ in-building energy consumption. Since the fan power consumption is a cube function of
the mass flow rate of supply air, it is thus possible to reduce the energy consumption significantly
by elongating and scheduling the pre-cooling processes. To handle the computational complexity
raised for large scale buildings, two distributed consensus-like scheduling algorithms are
proposed in this paper. Simulation studies indicate higher energy efficiency compared to
uncoordinated pre-cooling processes; the computation is faster than centralized optimization,
although with performance sacrifice.
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1. INTRODUCTION

HVAC systems consume 40% of the building energy in
USA as estimated by Department of Energy. The efficiency
of HVAC system design, operation and control has received
extensive research attention for the purposes of resource
conservation, cost reduction and etc. Through energy
disaggregation analysis for variable air volume (VAV)
systems (Englander [1990]), it was found that a large
portion of energy use in HVAC systems is attributed to
air movement devices. Therefore, an accurate estimation of
fan power model and efficient operation of fans are critical
for reducing energy consumptions.

The problem of energy consumption saving of the supply
fan is studied in this paper. As reported in the literature,
this problem can be discussed from different perspectives.
Firstly, a good fan controller, regardless of the control
structure and controlled variables, which produces more
stable system performance is foundation for comfort guar-
antee and fan’s routine operation (Haines et al. [2005]).
Secondly, it was noticed that energy is wasted at the termi-
nal dampers or economizer dampers. The static pressure
and correspondingly the fan power will not be unneces-
sarily high if these damper positions are chosen properly
(Englander [1990]Nabil [2010]). Here another angle from
temporal perspective is adopted. The cooling or heating
tasks are properly scheduled along the time line such that
the total energy is reduced. This approach is motivated
by the fan’s power function, which is proportional to the
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cube of the mass flow rate. Rooms have to be cooled
down to predefined temperature setpoints before occupied
according to the room occupancy schedule. This process is
called pre-cooling. By elongating pre-cooling with a lower
supply air mass flow rate, the energy consumption can be
significantly reduced.

Pre-cooling strategies, in its various forms, have been
proposed in the literature. The potential to reduce peak-
period electrical demand by adjusting HVAC controls was
validated in Xu et al. [2004]. Morgan et al. [2007] explored
the effectiveness of different pre-cooling strategies in dif-
ferent locations. Optimization based pre-cooling strategies
were investigated in Yin et al. [2010]. All these proposals
achieve either energy savings or peak cost reduction via
pre-cooling the thermal masses.

However, it is common that groups of rooms require
pre-cooling at similar times, for example in the morning
around 08 : 00AM. If individual rooms operate inde-
pendently without a central coordinator, an aggregated
energy demand peak is often observed. Thus a pre-cooling
scheduler, which coordinates the pre-cooling processes for
all rooms supplied by a single supply fan, may provide po-
tential energy saving. In fact, optimization based schedul-
ing for HVAC systems has shown great potential for en-
ergy conservation and cost reduction. An approach called
‘Green Scheduling’ was proposed in Nghiem et al. [2011]
to reduce the peak demand. The approach was further
extended and successfully applied to chiller plants and
radiant systems in buildings (Behl et al. [2012]Nghiem et
al. [2013]).

An optimal scheduling of the pre-cooling processes was
proposed in previous study Radhakrishnan et al. [2014].
Different with the Xu et al. [2004]Yin et al. [2010]Morgan
et al. [2007], which either consider assignment of temper-
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ature setpoint and chiller performance or develop uniform
pre-cooling strategy for the whole building, it determines
the optimal air mass flow rate profiles for all rooms based
on detailed system models and optimization. Substantial
energy saving was observed via simulation. The method re-
quires to solve a centralized optimization problem, which is
computationally formidable if there are hundreds of rooms.
In this paper, two distributed consensus-like algorithms
are proposed for computational efficiency. The convergence
of the optimization algorithms is investigated. The effec-
tiveness on energy demand reduction and computation is
illustrated via simulation studies.

The rest of the paper is organized as follows. The in-
building part of HVAC systems is described in section 2;
the centralized scheduling problem is formulated in section
3; two distributed scheduling algorithms are proposed in
section 4; simulation results are presented in section 5;
finally conclusions are drawn in section 6.

2. HVAC SYSTEMS AND OPERATION

The in-building part of HVAC systems normally consists
of outdoor dampers, air handling units(AHU), ducts, ter-
minal units and etc. AHU is responsible to filter the air
and to cool it to the setpoint temperature; the supply fan
blows the cool air into the supply ducts. Based on the feed-
back from thermostat located in each room, the damper
position in the terminal unit is adjusted to maintain the
room temperature within a comfort bound. A return fan
transports the exhaust to outside or recycles it within
the building. The out-building part, including chillers etc.,
provides enough coolant to cool down the supply air. In the
following part, the models of HVAC components relevant
to this paper are presented first.

(1) Room thermal model
Assume that there are J rooms supplied by a sup-
ply fan. The temperature dynamic of each room is
governed by a first order model:

Ṫj +
ṁj

Mj
Tj =

ṁjcpTca + Q̇j

Mjcp
, (1)

where Tj , ṁj , Mj , Q̇j are the temperature, cool air
mass flow rate, air mass and the cooling load of
room j; Tca is the temperature of the cool air and
cp = 1kJ/kg ·K is the specific heat capacity.

(2) Fan power model
According to Mitchell et al. [2012], the fan power can
be approximated by the cube function of the supply
air mass flow rate:

Pfan = kfanṁ(t)3, (2)

where the constant kfan is obtained via curve fitting.
(3) Distribution network

The distribution duct can be treated as a tree struc-
ture with rooms as the leaf nodes. The pressure drop
over a piece of constant-area duct is given by

∆P = fD
ρLv2

2D
= fD

8L

π2D5
ṁ(t)2, (3)

where fD, L, D, ρ, v are the friction factor, duct
length, duct diameter, fluid density, the average fluid
velocity and ṁ(t) = π

4D
2ρv is the air mass flow rate

along the duct.

(4) Damper model
The pressure drop across an opposite blade damper
is determined by

∆P = kdṁ(t)2, (4)

where the flow resistance coefficient kd varies with the
damper position θ (Nabil [2010]). Here the leakage is
ignored such that kd can vary between kmin to ∞,
which correspond to the fully open and fully closed
damper positions respectively.

3. OPTIMAL SCHEDULING

It is assumed that the cooling load Q̇j(t) is predictable,
which may be obtained from historical data. Each room
has its own occupancy time [tsj tej ] and the temperature
setpoint T s

j . Pre-cooling process is required to cool down
the room temperature such that Tj(t

s
j) ≤ T s

j ; during the
occupancy time, assume that an ideal controller produces

the exact mass flow rate ṁj(t) =
Q̇j(t)

(T s
j
−Tca)cρ

such that Q̇j is

compensated and Tj(t) always stays below the setpoint. A
pre-cooling scheduling problem is formulated in Radhakr-
ishnan et al. [2014] that the optimal mass flow rate profiles
are determined such that the overall energy consumption is
minimal and the temperature constraints are fulfilled. It is
necessary to include all relevant components, such as water
pumps and chillers, in the energy consumption function.
Here for simplicity, only the supply fan is considered. The
optimization problem is stated as Pc:

min
ṁj(t), 1≤j≤J

E =

∫ teve

tmor

Pfan(t)dt (5)

subject to

(1) Pfan(t) = kfanṁ(t)3 = kfan(
∑J

j=1 ṁj(t))
3,

(2) ṁj(t) =
Q̇j(t)

(T s
j
−Tca)cρ

, tsj ≤ t ≤ tej , 1 ≤ j ≤ J ,

(3) room thermal model (1) and Tj(t
s
j) ≤ T s

j .
(4) balancing constraint

The mass flow rates ṁj have to be assigned in such a
way that the corresponding fan’s speed and dampers
positions {θ1, . . . , θJ} are within their capacities.
Otherwise, mass flow rate profiles are artificial since
the resulted pressure distribution is not balanced.
The mathematical formulation of this constraint is
determined by the topology of the duct network as
shown in Radhakrishnan et al. [2014].

In Radhakrishnan et al. [2014], ṁj(t) during pre-cooling
phase is characterized by only two parameters, air flow
rate amplitude and pre-cooling duration. Even though the
number of decision variables is greatly reduced, the compu-
tational burden is still formidable for large scale schedul-
ing problems which may consider hundreds of rooms in
a building. In section 4, two distributed scheduling al-
gorithms based on discrete-time system models are pre-
sented. It is expected that the proposed algorithms would
ease the computation with an acceptable performance loss.

4. DISTRIBUTED SCHEDULING

To have a finite number of decision variables, the time
interval [tmor teve] is divided into N partitions evenly with
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δ minutes for each partition Pi, 1 ≤ i ≤ N . The mass flow
rate to room j is a constant, i.e. ṁj(t) = ṁi

j ∀t within
partition Pi (hereafter the superscript and subscript of
ṁ refer to the partition and room indexes, respectively).
The occupancy-start time tsj is approximated by an integer
index ij . The model (1) is discretized accordingly as

T i+1
j = (1−

ṁi
jδ

Mj
)T i

j +
ṁi

jcρTca + Q̇i
j

Mjcρ
δ. (6)

Assumption 1. There is a given profile of mass flow-rate
ṁi

j(0) for 1 ≤ j ≤ J and 1 ≤ i ≤ N , which satisfy the
physical constraints and temperature requirements.

ṁi
j(0) may be obtained as an aggregation of each room’s

local scheduling result. It is common that the supply
fan is designed to be powerful enough to cool the whole
building quickly in peak time. Therefore the constraints
violation may rarely occur. The distributed algorithms
aims to improve the optimality of ṁi

j(0) progressively
in a distributed fashion. Simulation studies, as shown in
section 5 later, indicate that the optimal ṁ(t) tends to
be flat. This observation suggests to replace the original
energy cost with a ‘flatness’ function, which is adopted
here. The scheduling problem is converted to a consensus-
like one, which attempts to minimize the differences among
all partitions while satisfying various constraints.

4.1 Distributed algorithm 1

(1) Consensus-like optimization
For simplicity, it is assumed that N = 4J . As
shown in Figure 1, every adjacent 4 partitions are
treated as a group in series. For example, group
Gj = {Pq, Pq+1, Pq+2, Pq+3}. There are J groups
in total. The roles of each partitions within a group
are defined as below. The second partition labeled
with slashes is called an active partition, which is to
make a decision on how much to shift the mass flow
rate forward and backward. The mass flow rate of
the first and third partitions will change according to
the decision of the active partition. The forth one is
called idle partition, which is included to separate the
adjacent groups.
The consensus algorithm is an iteration based al-

gorithm. Correspondingly, the grouping is dynami-
cally evolving with iterations. At iteration k, group
Gj = {Pq, Pq+1, Pq+2, Pq+3}; at iteration k+ 1, Gj

will shift one partition forward with Pq+2 as the new
active partition. The iteration is illustrated in Figure
1, as well. It is easy to see that each partition will
become active once in a cycle of 4 iterations.
The adjustable mass flow rate variables associated

with group Gj is defined as a set Mj , for example

Mj = {ṁq+1
j }. During each iteration, every group will

execute its own local optimization Pa,j,k, where the
subscripts j, a and k refer to the index of group Gj ,
the index of active partition in group Gj and iteration
number. The designed mass flow rate to room j for
partition i in the kth iteration is denoted as ṁi

j(k).
The optimization problem Pa,j,k is defined as below:

min
∆b, ∆f

1∑
i=−2

|ṁa+i(k)− ṁa+i+1(k)|2 (7)

Fig. 1. Grouping and shifting

subject to

ṁa−2(k) = ṁa−2(k − 1), (8)

ṁa+2(k) = ṁa+2(k − 1), (9)

ṁa−1(k) = ṁa−1(k − 1) + ∆b, (10)

ṁa(k) = ṁa(k − 1)−∆b −∆f , (11)

ṁa+1(k) = ṁa+1(k − 1) + ∆f , (12)

ṁa
j (k + 1) = ṁa

j (k)−∆b −∆f ≥ 0, (13)

ṁa−1
j (k) = ṁa−1

j (k − 1) + ∆b, (14)

ṁa+1
j (k) = ṁa+1

j (k − 1) + ∆f , (15)

∆b ≥ 0,∆f ≥ 0, (16)

Tj(ij) ≤ T s
j , (17)

balancing constraints (18)

where ∆b and ∆f are the shifted mass flow rate
towards backward and forward, respectively.

(2) Convergence analysis
The problem of interest is the convergence of the
overall cost function along the consensus iterations,
which is defined as:

Jk =
N−1∑
i=1

(ṁi(k)− ṁi+1(k))2, (19)

which is the sum of the cost function of all J groups.
Since

∑1
i=−2 |ṁa+i(k)− ṁa+i+1(k)|2 ≤

∑1
i=−2 |ṁa+i

(k−1)−ṁa+i+1(k−1)|2 as in (7) holds for each group,
Jk ≤ Jk−1. It is easy to see that the series Jk is lower
bounded. So according to the monotone convergence
theorem, Jk will converge to a constant.

(3) Variants
(a) more or less rooms
In case there are more rooms, i.e. N ≤ 4J , it is
advantageous to allocate each group more than 1
decision variable, i.e. Mj = {ṁq+1

r |r ∈ Rj}, where
Rj ⊂ {1, . . . , J} and Rj ∩ Rv = ∅ if j ̸= v.
The condition Rj ∩ Rv = ∅ implies at anytime, at
most 1 group is allowed to modify the mass flow rate
profile for a particular room. In case of N ≥ 4J , it
may be advantageous to divide the whole time-span
into a few segments. Each segment has less than 4J
partitions. Then it is possible to apply the above
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proposed approach to each segment. If necessary, it
is also possible to change the segmentation online.
(b) free adjustment, no active partition
In fact, it is not necessary to define an active partition
Pa and to allow only Pa to shift its mass flow rate
forward and backward. It is more general to allow
partitions Pa−1, Pa, Pa+1 to shift mass flow rate
among them freely. It is also possible to reduce the
total mass flow rate of the three partitions, while
remaining the constraints satisfied.
(c) updating the set Mj in a more intelligent way
For some groups, the values of the adjustable vari-
ables in Mj may be quite small, so the cost reduction
may be marginal. It is reasonable to choose other vari-
ables of large value to adjust, which means to choose
the adjustable variables dynamically. However a local
decision may violate the requirement Rj ∩ Rv = ∅.
Therefore an intelligent approach for adjustable vari-
able selection may be preferred. Otherwise, the con-
straint (17) may be replaced with a local temperature
constraint.
(d) original energy cost function
If the energy cost function is adopted in local opti-
mization, there is no need to insert an idle partition
since there is no coupling between groups.

4.2 Distributed algorithm 2

(1) Consensus-like optimization
Instead of insertion of an idle partition to decouple
the cost functions among groups as in section 4.1,
a different consensus-like strategy is proposed here.
For iteration k, assume that each partition i only has
the information of partitions {i − 1, i, i + 1}. Each
partition will make a decision whether to shift some
amount of air to left, right or not by comparing the
3 variables {ṁi−1(k), ṁi(k), ṁi+1(k)}. Let di(k) =
argmaxj∈{i−1,i,i+1}(ṁ

i(k) − ṁj(k)) − i. The values

of di(k), −1, 0, 1, represent left, till, and right,
respectively. An example of the shifting direction
decisions is depicted in Figure 2.

Fig. 2. Shifting directions and grouping

Based on the shifting directions, it is possible to
divide the partitions into several groups(for analysis
purpose only). The principle of grouping is the con-
nection of the shifting directions. It is possible to as-
sign certain adjustable variables Mi to each partition
as in Algorithm 1, but without the restriction of Rj ∩
Rv = ∅. It is also possible to rotate(or dynamically
change) the assignment along iterations.
Take partition i, di(k) = 1 and Mi = {ṁi

j} as
example. The amount of shifting air is determined by
the optimization Pi(ṁi(k − 1), ṁi+1(k − 1)):

min
∆̂i

| ˆ̇mi(k)− ˆ̇mi+1(k)|2 (20)

subject to

ˆ̇mi(k) = ṁi(k − 1)− ∆̂i, (21)

ˆ̇mi+1(k) = ṁi+1(k − 1) + ∆̂i, (22)

ˆ̇mi
j(k) = ṁi

j(k − 1)− ∆̂i ≥ 0, (23)

ˆ̇mi+1
j (k) = ṁi+1

j (k − 1) + ∆̂i (24)

∆̂i ≥ 0, (25)

where ∆̂i is the shifted mass flow rate. The objective
of Pi is solely to flatten the mass flow rate profile
without consideration of temperature requirement
and balancing condition, therefore the solution of
Pi may not be feasible. Obviously, the constraint
violation is due to the unconscious large adjustments.
To enforce these constraints, the adjustments are
scaled by a scalar α, which is determined by a central
optimization Pg:

max
α

α (26)

subject to

∆i = α∆̂i, , 1 ≤ i ≤ N, (27)

ṁi
j(k) = ṁi

j(k − 1)−∆i + |d
i+1(k)− 1

2
|∆i+1

+ |d
i−1(k) + 1

2
|∆i−1, 1 ≤ i ≤ N, (28)

Tj(ij) ≤ T s
j , 1 ≤ j ≤ J, (29)

balancing constraints, 1 ≤ i ≤ N, (30)

where ∆i is the scaled shifted mass flow rate. It
is noted that Pg may involve a large number of
constraints due to (30). However, if it is assumed
that there exists a αi, 1 ≤ i ≤ N such that the
balancing constraint for partition i is satisfied for any
0 ≤ α ≤ αi, (30) can be checked in a distributed
manner. Then a bound of α is chosen as mini αi.
Similarly for constraint (29), the J inequalities can be
checked in parallel. Therefore, Pg would not increase
computation burden significantly.

(2) Convergence analysis
Except for the groups of till partitions(ṁ1 for exam-
ple), there are only 2 patterns of shifting direction
connection within a group, as shown in Figure 3 and
4. We will analyze the energy cost within each group.

Fig. 3. Pattern 1 Fig. 4. Pattern 2

For groups of pattern 1 shown in Figure 3, a special
case as shown in Figure 5 is examined first. Partition
1 moves ∆1 to partition 2 at iteration k. The cost
function at k+1 is Jk+1 = f(ṁ1(k+1))+f(ṁ2(k+1)),
where f(·) is the energy cost function of ṁ.
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Assumption 2. f(x) is a differentiable function and
f ′(x) is a monotonically increasing function.

Jk+1 = f(ṁ1(k)−∆1) + f(ṁ2(k) + ∆1) (31)

= f(ṁ1(k)) +

∫ ṁ1(k)−∆1

ṁ1(k)

f ′(x)dx

+ f(ṁ2(k)) +

∫ ṁ2(k)+∆1

ṁ2(k)

f ′(x)dx

= f(ṁ1(k)) + f(ṁ2(k))

+

∫ ∆1

0

f ′(ṁ2(k) + x)− f ′(ṁ1(k)−∆1 + x)dx

Since ṁ2(k) ≤ ṁ1(k)−∆1, Jk+1 ≤ Jk. Now consider
the case as shown in Figure 3. Assume that for a
group of s− 1 partitions Jk+1 ≤ Jk holds. Then for a
group of s partitions,

Jk+1 = f(ṁ1(k)−∆1) +
s−2∑
i=1

f(ṁi+1(k) + ∆i −∆i+1)

+f(ṁs(k) + ∆s−1) ≤ f(ṁ1(k)−∆1)

+f(ṁ2(k) + ∆1) +
s∑

i=3

f(ṁi(k)) ≤ Jk. (32)

For groups of pattern 2 shown in Figure 4, consider
the special case shown in Figure 6 first.

Jk+1 = f(ṁ1(k)−∆1) + f(ṁ2(k) + ∆1 +∆3)

+ f(ṁ3(k)−∆3) = f(ṁ1(k)) +

∫ ṁ1(k)−∆1

ṁ1(k)

f ′(x)dx

+ f(ṁ2(k)) +

∫ ṁ2(k)+∆1+∆3

ṁ2(k)

f ′(x)dx+ f(ṁ3(k))

+

∫ ṁ3(k)−∆3

ṁ3(k)

f ′(x)dx = Jk (33)

+

∫ ∆1

0

−f ′(ṁ1(k)−∆1 + x) + f ′(ṁ2(k) + x)dx

+

∫ ∆3

0

f ′(ṁ2(k) + ∆1 + x)− f ′(ṁ3(k)−∆3 + x)dx

Assume that ṁ3(k) ≥ ṁ1(k) ≥ ṁ2(k) , ∆1 ≤
ṁ1(k)−ṁ2(k)

2 and ∆3 ≤ ṁ3(k)−ṁ2(k)
2 (generally it

requires ∆i is smaller than half of the difference
between partition i and its neighbor partition which
it is moving mass to). It is easy to see that

ṁ2(k) ≤ ṁ1(k)−∆1 (34)

ṁ2(k) + ∆1 ≤ ṁ3(k)−∆3, (35)

therefore Jk+1 ≤ Jk. Now assume that for a group of
s + v − 1 partitions Jk+1 ≤ Jk holds. Consider the
case as shown in Figure 4.

Jk+1 = f(ṁ1(k)−∆1) +

s+v∑
i=2

f(ṁi(k + 1))

≤ f(ṁ1(k)−∆1) + f(ṁ2(k) + ∆1) +
s+v∑
i=3

f(ṁi(k))

≤ Jk (36)

Table 1. Room specifications

1 2 3 4

tsj 09:30 10:00 10:00 09:30

T s
j 22◦C 21◦C 20◦C 20◦C

The above analysis indicates that the energy cost
in each group is non-increasing. Therefore the overall
cost function is non-increasing, which will converge
to a constant. The fan power function Pfan obviously
satisfies Assumption 2. Since other equipments, such
as water pumps and chillers, consume much energy
as well, it is advantageous to use a composite power
function in a single optimization problem. If it still
satisfies Assumption 2, the proposed scheduling algo-
rithm can also be applied.

Fig. 5. Special pattern 1 Fig. 6. Special pattern 2

5. SIMULATION STUDIES

A small scale simulation is conducted to illustrate the
proposed algorithms. Four rooms are considered with de-
tails presented in Table 1. The period for pre-cooling
scheduling starts at 08 : 00AM and ends at 10 : 00AM.
The temperature at 08 : 00AM is 24◦C and Mj = 100kg
for all rooms. The data in Causone et al. [2010] is taken

as cooling load Q̇(t). For simplicity, the distribution net-
work is not included in simulation. A sampling interval
δ = 0.1hour is adopted. The energy spent on supply fan
is minimized. Firstly, the optimal profiles obtained from
central optimization Pc, which is solved by MATLAB R⃝

optimization toolbox are plotted in Figure 7. The optimal
energy cost is 1.7 × 106(dimensionless); the optimization
took 9.12s to complete. The trend of ṁ empirically jus-
tifies the ‘flatness’ function as a reasonable alternate for
distributed optimization, as chosen in section 4.
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Fig. 7. Optimal mass flow rate profile by Pc

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10455



Table 2. Scheduling results(Ci, Co: cost of
initial and optimized profiles, tc: computation

time.)

ipp/mins 12 18 30 42 60 90 120

Ci/10
6 36.5 17.6 7.03 6.36 4.17 2.29 2.02

Co/106 17.8 10.9 6.4 4.62 3.08 1.88 1.86

tc/s 2.12 2.70 3.52 2.35 2.98 3.40 2.48

Next, examine the performance of the proposed algo-
rithms. For the sake of limited space, only the results
of Algorithm 1 are reported. The initial mass flow rate
profile, as required in Assumption 1, is obtained as the
aggregation of all the rooms’ initial local scheduling re-
sults. Similar to Xu et al. [2004]Morgan et al. [2007]Yin et
al. [2010], in which a fixed pre-cooling duration and a con-
stant temperature setpoint are adopted during pre-cooling
phase, here each room’s local scheduler fixes a pre-cooling
period(called initial pre-cooling period, i.e. ipp) and de-
termines the minimal constant mass flow rate to satisfy
the temperature requirement. Then distributed scheduling
algorithms start to improve its optimality. Therefore, the
adopted procedure may also be interpreted as an add-
on component to improve the uncoordinated pre-cooling
processes.

Simulations with different ipp values are performed. En-
ergy costs are summarized in Table 2. Although the energy
efficiency is worse than centralized optimization especially
for small ipp values, the distributed optimized profiles can
improve the initial profile up to 7% to 37%. The compu-
tation time is at least less than 50% of it for centralized
optimization. Take ipp = 30mins as example. The com-
parison of individual room and aggregated mass flow rates
between the initial one and optimized one are presented in
Figure 8 and 9, respectively. Note that the selection of ipp
is critical, which is not addressed here. It may be obtained
by optimizations or based on historical experience.

08:00 08:30 09:00 09:30 10:00

0

20

40

60
ṁ1
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ṁ4
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Fig. 8. Comparison of individual mass flow rates ṁj for
the case of ipp = 30mins

6. CONCLUSION

Distributed algorithms are proposed for scheduling the
pre-cooling processes in HVAC systems. Their perfor-
mance is examined via a small scale simulation. A more
realistic simulation with detailed model information is
the next step to verify their applicability. Other possible
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Fig. 9. Comparison of ṁ for the case of ipp = 30mins

future works may include realizing the scheduling result
via feedback control and experimental case study.

REFERENCES

M. Behl, T. X. Nghiem and R. Mangharam. Green
Scheduling for Energy-Efficient Operation of Multiple
Chiller Plants. IEEE Real-Time Systems Symposium
(RTSS), 195-204, 2012.

F. Causone, S. P. Corgnati, M. Filippi and B. W. Olesen.
Solar radiation and cooling load calculation for radiant
systems: Definition and evaluation of the Direct Solar
Load, Energy and Buildings, 42, 305-314, 2010.

S. L. Englander. Ventilation Control for Energy Conserva-
tion: Digitally Controlled Terminal Boxes and Variable
Speed Drives. Princeton University, 1990.

R. W. Haines and D. C. Hittle. Control systems for
heating, ventilating and air conditioning. Springer, 2005.

J. W. Mitchell and J. E. Braun. Heating, ventilation and
air conditioning in buildings. Wiley, 2012.

S. Morgan and M. Krarti. Impact of electricity rate
structures on energy cost savings of pre-cooling controls
for office buildings. Building and environment, 42, 2810-
2818, 2007.

N. Nabil. Performance analysis of supply and return fans
for HVAC systems under different operating strategies
of economizer dampers. Energy and Buildings , 42, 1026-
1037, 2010.

T. X. Nghiem, M. Behl, R. Mangharam and G. J. Pappas.
Green Scheduling of Control Systems for Peak Demand
Reduction. IEEE Conference on Decision and Control,
5131-5136. 2011.

T. X. Nghiem, M. Behl and R. Mangharam. Event-based
Green Scheduling of Radiant Systems in Buildings.
American Control Conference (ACC), 455-460, 2013.

N. Radhakrishnan, R. Su, K. Poolla. Optimal Scheduling
of HVAC Pre-cooling Operations with Non-preemptive
Cooling Air and Fresh Air Distribution Aiming for Just-
in-time Room Comfort. American control conference,
2014, accepted.

P. Xu, P. Haves, J. Braun and L. Hope. Peak demand
reduction from pre-cooling with zone temperature reset
in an office building. Proceedings of ACEEE, 2004.

R. Yin, P. Xu, M. A. Piette, and S. Kiliccote. Study on
Auto-DR and pre-cooling of commercial buildings with
thermal mass in California, Energy and Buildings, 42,
967-975, 2010.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10456


