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Abstract: Multiple Traveling Salesman Problem (MTSP) is an important combinatorial optimization 
problem. However, it is applicable to only the cases in which multiple executing individuals (traveling 
salesman) share the common workspace (city set). It cannot be used to handle many multi-machine 
engineering systems where multiple machines’ workspaces are not the same and partially overlap with 
each other. This paper proposes and formulates a new MTSP called colored traveling salesman problem 
(CTSP). Each of its salesmen is assigned a private city set and all salesmen share a public city set. Every 
set of cities is colored differently. To solve CTSP, we present two improved genetic algorithms (GA) by 
combining the classic one with a greedy algorithm and hill-climbing one to achieve better performance. 
Finally, the algorithms are applied and compared through a case study. The result shows that the hill-
climbing GA enjoys the best performance among the investigated ones. 
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1. INTRODUCTION 

A multiple traveling salesman problem (MTSP) generalized 
from a traveling salesman problem (TSP) is a well-known 
combinatorial optimization problem. It aims to determine a 
family of tours with minimal total cost for multiple salesmen 
to visit each city exactly once within a given set and 
eventually return to the home city. MTSP and TSP arise in a 
variety of applications that require addressing scheduling, 
planning, routing, and/or sequencing issues. Application 
examples of TSP in machine scheduling and sequencing, and 
vehicle routing can be founded in (Gutin and Punnen, 2002). 
Other work reports additional applications in circuit wiring 
(Hirogaki, et al., 2005) and in statistical data analysis 
including ordering and clustering objects, e.g., gene ordering 
in (Ray, et al., 2007) and protein clustering in (Johnson and 
Liu, 2007). The most comprehensive survey on the 
applications of MTSP is given in (Bektas, 2006). Carter and 
Ragsdale (2006) stress its use in pre-print insert 
advertisement scheduling. A similar application in hot rolling 
scheduling is reported in (Tang, et al., 2000). Autonomous 
robot or vehicle motion planning (Basu, et al., 2000, and 
Ryan, et al., 1998) represents other types of its applications. 
Saleh and Chelouah (2004) apply it to satellite surveying 
system design. Toth and Vigo (2002) investigate a vehicle 
routing problem as the generalization of TSP. Cheong and 
White (2012) have investigated how to dynamically 
determine a tour for TSP based on real-time traffic 
congestion data.  

In essence, MTSP is an abstraction of the practical problems 
in which multiple executing individuals (traveling salesmen) 
are involved and they share the common workspace (city set). 
In other words, all the cities of MTSP are identical for each 

salesman, i.e., each city can be visited by any salesman. 
However, not all executing individuals have the same 
workspace in some application problems. Take the 
scheduling of a multi-machine engineering system (MES) as 
an example. The workspaces of individual machines are not 
the same but overlap partially with each other. Thus, each 
machine has to perform not only the operations 
independently in its private workspace, but also complete all 
the operations with other machine(s) together in the 
overlapped workspace. A typical MES, i.e., a dual-bridge 
waterjet cutting machine tool, is illustrated in Fig. 1. 

 

Fig. 1. Dual-bridge Waterjet Cutting Machine Tool 

It consists of two independent bridge systems. Their cutting 
areas have an overlapped section, i.e., the marked area on the 
workbench with a red box, so as to prevent the presence of 
cutting dead zone. Thus, the overlapped area allows both 
bridges to enter and the two areas out of it are their exclusive 
cutting areas. 

Due to the partially overlapped workspaces, a scheduling 
method for MTSP cannot be simply used to schedule MES. 
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On the other hand, the basic elements of such a problem, i.e., 
individuals, operations, and workspaces, are still similar to 
the salesmen, city visits and city set of TSP, respectively. The 
difference lies in that each individual (salesman) of the 
former not only has a private workspace (city set) but also 
shares a common workspace with others. To distinguish the 
different cities, we define a new multiple traveling salesman 
problem by coloring the cities, called Colored TSP (CTSP). 
CTSP frequently arises in real-life applications where some 
closely dependent relations between the salesmen and the 
cities must be obeyed when one determines a solution. It is a 
significant problem in theory and practice. We call the same 
problem as MTSP* by Li, et al. (2013) and present a genetic 
algorithm (GA) solution. However, CTSP has not been 
formulated in a mathematically rigorous way. This paper 
formally defines CTSP and improves the prior method in (Li, 
et al., 2013) by combining GA with Greedy Algorithm and 
Hill-climbing Algorithm. 

Next, CTSP is formulated in Section 2. Section 3 presents 
two improved GAs. Section 4 gives a case study with the 
comparison results. The paper is concluded in Section 5. 

2. DEFINITION AND FORMULATION OF CTSP 

2.1 CTSP Definition 

Let  , 1,2,3,...n m Z  and m n . CTSP aims to 

determine a family of tours with the minimal total cost for m 
salesmen to visit n cities exactly once given public and 
private ones, and eventually return to the home city (depot). 
Let iV ,  1, 2,...,mi m Z  be the private city set assigned 

to the i-th salesman and jU , , 1rj r Z  be the j-th shared 

city set, and iW  be the accessible city set of the i-th salesman, 

i.e., the union of sets of i-th salesman’s private cities and 
shared cities. 

The city sets meet the following constraints, given i j :  

           i jU U  ,  , ri jZ                                           (1)  

          i jW W and j iW W ,  , mi jZ                           (2) 

There are various cases of the intersections among the 
accessible city sets in CTSP. A common one is that there is 
only one common city set shared by m salesmen, as shown in 
Fig. 2.  

3V

1V 0U

2V

 

Fig. 2. Example of CTSP 

The nodes in the areas 1V , 2V  , and 3V  represent the private 

cities of salesmen 1, 2, and 3. They have the only shared city 
set 0V .  

2.2 0-1 Integer Programming Model 

CTSP is formulated over a complete digraph ( , )G V E , 

where the vertex set  0,1, 2,..., 1V n   corresponds to the 

cities and each edge in ( , )i j E ， i j , is associated with a 

weight ij representing a visit cost (distance) between two 

cities i and j . The vertex 0 represents the home city (depot). 

Let  \ 0V V . V is divided into m+1 sets, i.e., 0V , the 

public one, and iV , the private ones of the salesmen for all 

miZ . The objective of CTSP is to determine m 

Hamiltonian cycles or circuits on G with the least total cost 
such that any vertex of each private set is visited exactly once 
by the specified salesman and any vertex of the public set is 
visited by any salesman exactly once and eventually return to 
city 0. Of course, it allows each salesman to have an 
exclusive home city in their private set, like the waterjet 
cutting example shown in Fig. 1. However, this work will not 
discuss such cases.  

Binary variable =1
ijk

x , i j , ,i j V , and mkZ , if the k-th 

salesman passes through edge (i, j); and otherwise, 0ijkx  . 

iku  is the number of nodes visited on the k-th salesman’s tour 

from the depot up to node i. 

The integer programming model of CTSP is presented as 
follows. 

Minimize
1 1

1 0 0
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ij ijk
k i j
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 , ,i V j i  ,                                               (11) 

jhk ijk
h i

x x  , 0 0, , ,kj V i h V V i j h     ,              (12) 

1ik jk ijku u n x n     , , , , mi j V j i k  Z ,                 (13)
 

Equations (4) and (5) require that every salesman start from 
and return to city 0, and (6) ensures that salesman k cannot 
start from his own exclusive city to visit a private city of 
other salesmen and (7) that another salesman is forbidden to 
visit a private city of salesman k from its own private city as 
well. Equations (8) and (9) ensure that salesman ( )l k  can 

neither start from a private city of salesman k nor return to it. 
Each city except city 0 can be visited exactly once as 
described by (10) and (11). Equation (12) represents that a 
public city can be visited by any salesman while (13) 
prohibits the formation of any sub-tour among nodes in V 
\{0}. 

Like MTSP, CTSP is also NP-hard. Moreover, the restriction 
on city colours makes its solution more difficult and time-
consuming than that of MTSP. It is proven that the heuristics 
are faster and more efficient than the exact methods in the 
solution of MTSP with respect to the problem size. In many 
cases, however, the former cannot be guaranteed to obtain the 
optimal solution and are thus applicable to solve those cases 
in which good-quality solutions suffice. With this in mind, 
this paper presents GA for CTSP. 

3. GENETIC ALGORITHMS FOR CTSP 

3.1 GA and Its Limitation 

Our prior work developed a basic GA to solve CTSP (Li, et 
al., 2013). It represents a solution via dual chromosomes that 
are decimally coded, i.e., city and salesman chromosomes. 
Constraints (6)-(12) as a city assignment relation are taken 
account into the dual-chromosome coding where each city 
gene corresponds to a right salesman gene at the same 
position. Suppose that private cities of salesmen 1-3 are cities 
1-2, 3-4, and 5-6, respectively, and the shared cities are cities 
7-10.  

Li, et al., (2013) adopt the combination of Roulette Wheel 
method and Elitist strategy as the selection operation. Three 
pairs of compositions of the crossover and mutation operators 
are compared and the result shows that the performance of 
city crossover and city mutation (CCM) operator is the best. 
A city crossover operator is a modified partially matched 
crossover (PMX). Figure 3 shows a crossover process of a 
dual-chromosome with a single crossover of city 
chromosomes.  

 

 

Fig. 3. Example of CC 

In Step 1, given two parents, a section of a city individual is 
selected at random, and then its genes are swapped with those 
of another individual, thereby resulting in two new 
individuals as shown in Step 2. The mapping relationship of 
the selected sections in two city individuals is 8—3, 9—8, 
5—2, 4—7, 7—1, and 1—10. Step 3 exchanges the 
redundant genes according to the selected section, and then 
finds that private cities 5, 3, 7, 1, and 6 in the left 
chromosome and cities 2, 5, and 4 in the right one are 
assigned to the wrong salesmen. Next, Step 4 reassigns the 
private cities to the correct salesmen and obtains two 
reasonable generations. 

A city mutation (CM) process in a dual-chromosome is 
illustrated in Fig.4. 

 

 

Fig. 4. Example of city mutation (CM) 

First, the gene points of cities 8 and 7 are selected as 
swapping ones. After swapping, the city assignment relation 
is satisfied and the mutation is over.  

The fitness function takes the value of the inverse of the total 
tour cost f(x) equal to that of Eq. (3). 

1
( )=

1+ ( )
F x

f x
                                  (14) 

In (Li, et al., 2013), the case study indicates that the 
evolution of GA is slow and it is easy to trap in a local 
optimum. 

3.2 Greedy GA 

The decision made by using Greedy Algorithm at each step 
may not reach the best in the global view but the local 
optimum. However, it can obtain the satisfactory solution 
rapidly because it avoids the great effort needed to exhaust all 
possibilities to find the optimal solution. We use it to 
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optimize the individuals of the initial population generated 
randomly at the first step of GA. Initial population of high 
quality will accelerate the population evolution of GA and 
reach satisfactory solution rapidly. We name this improved 
algorithm as a greedy GA.  

With regard to CTSP, the criterion is defined as the shortest 
distance between two cities. Namely, a city will be selected 
as the next one that the corresponding salesman will visit 
once it is nearest to the current city in the visited sequence. It 
can optimize a solution by reordering its sequence. For 
example as shown in Fig. 5, the randomly generated visit 
sequence is 0→2→5→3→1→4→0. The sum of distances is 
25+50+50+45+45+25=240. It can be optimized to be 
sequence 0→3→4→5→1→2→0 by using the greedy 
algorithm. The improved distance is 22+25+27+35+25+ 
25=159. Obviously, it is a better solution. 

 

Fig. 5. Distances between cities 

The generation process of the initial population in greedy GA 
is as follows. 

Step 1: Determine if the number of individuals in the current 
initial population is equal to the set number N or not. If it is 
true, terminate the process; otherwise, go to the next step. 

Step 2: Generate a city sequence randomly and assign the 
private cities to the specified salesman and the public cities to 
all the salesmen randomly. It results in individual a.  

Step 3: Reorder the city sequence of a by the shortest 
distance criterion to minimize the visit cost and obtain 
individual a . 

Step 4: Detect if a  has already existed in the population or 
not. If so, go back to Step 2; otherwise, insert it into the 
population and go back to Step 1. 

3.3 Hill-Climbing GA 

Hill-climbing Algorithm utilizes neighbourhood search 
techniques to search, like hill-climbing, in a single direction 
that the quality of a solution is possible to be improved (Lim, 
et al., 2006). Starting from an existing node, it generates a 
new solution with a method of neighbourhood point selection 
and compares it with the value of the existing node. If the 
former is larger, replaces the latter by the former; otherwise, 
return the latter and set it as the maximum. Repeat the 
process of climbing upward (to better solution) until the 
highest point is reached. The local search power of the 

algorithm is very strong and it is a common method used for 
the local optimum search. 

GA in (Li, et al., 2013) adopts the combinatorial selection 
strategy of elite reservation and roulette in (Sun, 2013). After 
a certain period of evolution, it may be trapped into a local 
optimum. To escape from it, the best individual of each 
generation can be optimized by using Hill-Climbing 
Algorithm. Specifically, if a better individual is obtained 
through hill-climbing, it replaces the original one; and 
otherwise, the original one remains in it. Note that the hill-
climbing GA adopts Greedy Algorithm to optimize the initial 
population too. 

The neighbourhood point selection impacts greatly on the 
hill-climbing algorithm and the paper adopts two point 
swapping. Given CTSP with ( 2)m   salesmen, it should 

select 2m  genes by this selection strategy. The fitness must 
be recalculated after every time of gene swapping.  

A hill-climbing GA includes the following steps: 

Step 1: Determine if the i-th salesman performing the current 
swapping is the m-th salesman, i.e., =i m . If so, end this hill-
climbing; otherwise, go to the next step. 

Step 2: Select two city genes assigned to the i-th salesman, 
from the city chromosome of a. Swap them and obtain 
individual a , and go to the next step. 

Step 3: Determine if the value of fitness of a  is greater than 
that of a. If so, let a a ; and otherwise, give up a  and keep 
a. 

Step 4: Let 1i i  , and return to Step 1. 

The main procedure of hill-climbing GA is summarized in 
Fig. 6. 

 

Fig. 6. Flowchart of Hill-climbing GA 
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4. CASE STUDY 

A CTSP with 51n   and 4m   is shown in Fig. 7, where V0 
is the public city set (visit area) and V1-V4 are the private city 
sets (visit areas) of Salesmen 1-4, respectively. All the 
algorithms and processes are implemented in C++ on the 
platform Microsoft Visual Studio 2010. The computer used is 
Dell Inspiron620s having Windows 7 (32 bits) with CPU 
Intel Corei3 and 2GB RAM at 3.30GHz. 

 

Fig. 7 CTSP and its city distribution 

Next, the three algorithms GA, greedy GA, and Hill-climbing 
GA are applied to solve the problem and their performances 
are compared. We set the same parameters, i.e., the 
individual number of a population to be 30, crossover 
probability 0.7, and mutation probability 0.1. Each algorithm 
is run for five times and the maximum of epochs is 2000. 

4.1 Convergence Rate 

Experiments show that all the algorithms are convergent. To 
compare their convergence rates, we plot the best individual 
of each generation obtained by them as shown in Fig. 8. 

 

Fig. 8. Evolution performance of GAs with 2000 epochs 

 

Fig. 9. Evolution performance of GA with 20000 epochs 

The total path length of the best individual of the initial 
population of GA is about 1200km. With Greedy Algorithm, 
the quality of the initial population can be greatly improved. 
For example, Greedy GA and Hill-climbing GA converge 
rapidly far before their preset termination condition. However, 
it seems that the basic GA cannot complete its evolution 
within 2000 epochs. Thus, we modify the generation count of 
GA to be 20000. The convergence is extremely slow and the 
evolution ends at about the 14000th epoch and the evolution 
plot is shown in Fig. 9. Opposite to it, Greedy GA and Hill-
climbing GA can accomplish their evolution at about the 
1300th generation. This is magnitude-fold saving in 
computational time.  

In addition, Hill-climbing GA outperforms Greedy GA. 
Without a hill-climbing operation, the latter needs about 1200 
epochs to evolve to the result with total tour length of 
550(km); while the former spends about 200 epochs only to 
achieve the same or better result. 

4.2 Solution Quality 

The results obtained in the tests are listed in Table 1. 

Table 1. Results of three GAs (km) 

Times GA Greedy GA Hill-climbing GA

1 641.867 547.884 526.461 

2 672.578 550.629 522.525 

3 662.864 549.26 529.311 

4 650.236 550.637 519.256 

5 616.612 556.521 520.921 

Mean tour length 648.831 550.986 523.695 

 

In TABLE 1, with the same set of parameters, spending 2000 
epochs, Hill-climbing GA can reach the mean tour length of 
523.695(km), compared to 648.831(km) of GA and 
550.986(km) of Greedy GA. 

From Fig.9, we find that without the Hill-climbing operation, 
GA traps in the local optimum and it is hard to reach its best 
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result at about the 14000th epoch with the total tour length of 
about 560(km). With the help of the Hill-climbing operation, 
it is clear that after reaching the same result of Greedy GA, 
Hill-climbing GA can continue to obtain a better solution as 
shown in Fig. 8. 

The total tour length of the best solution with Hill-climbing 
GA is 519.256(km). The solution of visit tours is: 

Salesman 1: 0→35→39→3→49→45→6→5→7→2→1→ 

4→50→0; Salesman 2: 0→40→31→47→42→48→13→34 
→9→11→14→8→12→10→38→41→0; Salesman 3: 0→32 
→36→16→20→17→22→15→21→18→19→43→33→0; 
and Salesman 4: 0→37→44→28→24→30→26→25→27→ 
23→29→46→0. 

The visit routes are shown in Fig. 10. 

 

Fig. 10. Visit tours of four salesmen 

In summary, (1) Hill-climbing GA overcomes the deficiency 
of local search of GA to some extent by keeping its global 
search capability. It possesses better optimization ability and 
yields better results than Greedy GA; and (2). The 
convergence rate of Hill-climbing GA is the highest among 
the three considered GAs. This attributes to the introduction 
of the hill-climbing operation in GA. 

5. CONCLUSION 

In this paper, we formulate a new multiple traveling salesman 
problem, CTSP, where different salesmen have different 
private city sets and share a set of public cities. It is 
significant for modelling the applications where multiple 
individuals’ workspaces are not the same but partially 
overlap with each other. To overcome the shortcomings of 
the classic GA, we present two improved genetic algorithms 
(GA), called greedy GA and hill-climbing GA, by combining 
the classic one with the greedy algorithm and the hill-
climbing algorithm to solve CTSP. Finally, the presented 
GAs are used to solve an example CTSP and the result shows 
that the hill-climbing GA enjoys the best performance in 
terms of convergence rate and solution quality. In the future, 
we intend to research other heuristics of CTSP and explore 
the related applications. 
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