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Abstract: The framework of Lyapunov–Krasovskii functions is the most popular approach for studying 
the problem of stability analysis and synthesis for time-delay systems. In this framework, this paper 
addresses the exponential stabilization problem of a class of linear distributed parameter systems with 
time delays described by partial differential-difference equations (PDdEs). Both delay-independent and 
delay-dependent design methods are subsequently developed by constructing two integral types of 
Lyapunov–Krasovskii functions and introducing a new form of Jensen’s inequality, and presented in 
terms of a standard linear matrix inequality (LMI). Finally, the effectiveness and merit of the proposed 
design method are demonstrated by a numerical example. 
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1. INTRODUCTION 

In many cases, time delay is a source of instability and 
performance deterioration. Hence, time-delay systems have 
been studied extensively over the past decades (see e.g., 
Nilsson (1998), Gu, Kharitonov, & Chen (2003), Zhong 
(2006), Hespanha, Naghshtabrizi, & Xu (2007), and the 
references therein). The most popular approach remains the 
use of the framework of Lyapunov–Krasovskii functions, 
since this framework allows studying a large class of time-
delay systems. The main challenge is to propose new 
functional and techniques for deriving less and less 
conservative results. To reduce the conservativeness of 
Lyapunov–Krasovskii techniques, many techniques have 
been proposed over the past two decades, such as the free-
weighting matrix approach (Wu, He, She, & Liu, 2004), 
delay-decomposition approach (Gouaisbaut & Peaucelle, 
2006a, 2006b), Jensen’s inequality (Nilsson, 1998; Han, 
2005), Wirtinger’s inequality (Liu, Suplin, & Fridman, 2010; 
Seuret & Gouaisbaut, 2013a, 2013b) and combinations of 
these techniques. However, most of these results only focus 
on the class of systems modeled by ordinary differential-
difference equations (ODdEs). 

In fact, significant physical systems are spatiotemporal in 
nature so that their behavior must depend on time as well as 
spatial position, for example, thermal diffusion, fluid heat 
exchangers, chemical engineering, to name a few (Ray, 1981; 
Christofides, 2001; Deng, Li & Chen 2005; Padhi & Ali, 
2009). These spatiotemporal processes are referred to as 
distributed parameter systems (DPSs). The mathematical 

models describing this type system are typically derived from 
the dynamic conservation laws and take the form of partial 
differential equations (PDEs). Thus, the study of stability 
analysis and controller synthesis for time-delay DPSs 
described by partial differential-difference equations (PDdEs) 
is essentially more complicated and of practical importance. 
However, there are only a few works on stability analysis and 
synthesis of time-delay DPSs. For example, Wang (1964) 
utilized the dynamic programming technique to deal with the 
optimum control of DPSs with time delays modeled by a set 
of PDdEs. A variational calculus approach was used in Kim 
(1974) to study the quadratic optimization of linear time-
delay PDE systems with distributed and boundary control 
functions. The second Lyapunov method was extended to 
nonlinear time-delay DPSs represented by abstract evolution 
equation in the Banach space (Wang, 1994a), and was 
applied to stability analysis of some scalar heat/wave 
equations with constant delays and with the Dirichlet 
boundary conditions (Wang, 1994b). In Nicaise & Pignotti 
(2006), stability and instability conditions for delay wave 
equations were presented by introducing suitable energy 
functions and using some observability inequalities. Fridman 
and Orlov (2009) extended the Lyapunov–Krasovkii method 
to exponential stability analysis of linear time-delay DPSs 
described by abstract evolution equation in Hilbert space. 
However, the results (Wang, 1994a, 1994b; Nicaise & 
Pignotti, 2006; Fridman & Orlov, 2009) only focus on the 
stability analysis of time-delay DPSs. To the best of authors’ 
knowledge, few results are available on the control synthesis 
of time-delay DPSs via the Lyapunov–Krasovkii method  
with the exception of Luo et al (2009) . 
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In this paper, we will follow the Lyapunov–Krasovskii 
function approach to deal with the problem of exponential 
stabilization via distributed feedback controllers for linear 
DPSs with time delays modeled by PDdEs. To this end, a 
new form of Jensen’s inequality and two novel integral types 
of Lyapunov–Krasovskii functions are introduced. By using 
these Lyapunov–Krasovskii functions and this new form 
Jensen’s inequality, both delay-independent and delay-
dependent sufficient stabilization conditions are presented in 
terms of a standard linear matrix inequality (LMI), which can 
be directly verified via the existing LMI techniques (Boyd, 
Ghaoui. Feron, & Balakrishnan, 1994; Gahinet, Nemirovskii, 
Laub, & Chilali, 1995). Finally, the effectiveness and merit 
of the proposed design methods are illustrated by a numerical 
example. 

Notations:  , n  and m n  denote the set of all real 
numbers, n-dimensional Euclidean space and the set of all 
m n  matrices, respectively. Identity matrix, of appropriate 
dimension, will be denoted by I . For a symmetric matrix M , 

( , , )0   M  means that it is positive definite (positive 

semi-definite, negative definite, negative semi-definite, 
respectively). 2 1 2([ , ]; )n nl l    is a Hilbert space of n-

dimensional square integrable vector functions ( ) nx  , 

1 2[ , ]x l l  , 0t   with the inner product and norm: 

2

1
1 2 1 2

1/2

1 1 12

( ), ( ) ( ) ( ) ,

( ) ( ), ( ) ,

l T

l
x x dx  

   


ω

   

 
 

where 1( ) , 2 ( ) n  . The superscript ‘T’ is used for the 

transpose of a vector or a matrix. The symbol ‘ ’ is used as 
an ellipsis in matrix expressions that are induced by 
symmetry, e.g., 

[ ] [ ]T T

T

        
     


S M N X S M N M N X

Y X Y
. 

2. PROBLEM FORMULATION AND PRELIMINARIES 

We consider a class of linear time-delay DPSs in one spatial 
dimension described by the following PDdEs: 

1 2

( , ) ( , ) ( , )

( , ) ( , ), ( , ) [ , ] (0, ),
t xx

d

x t x t x t

x t x t x t l l
 

     

y y Ay

A y Bu


   (1) 

subject to the homogeneous Neumann boundary conditions: 

1 2
( , ) ( , ) 0x xx l x l
x t x t

 
 y y , [ , )t    ,                           (2) 

and the initial condition: 

0( , ) ( , )x t x ty y , 1 2( , ) [ , ] [ ,0]x t l l    ,                             (3) 

where ( , ) nx t y  is the state, ( , ) mx t u  is the distributed 

control input, 1 2[ , ]x l l   and [ , )t     are the spatial 

position and time, respectively, and   is a known time delay. 
The subscripts x  and t  stand for the partial derivatives with 

respect to x , t , respectively. 0 n n  , n nA , 
n n

d
A , and n mB  are known matrices. 0 ( , ) nx t y , 

1 2( , ) [ , ] [ ,0]x t l l      is the initial value.  

In this paper, we consider the following distributed feedback 
controller: 

( , ) ( , )x t x tu Ky                                                                    (4) 

where m nK  is the control gain matrix to be determined. 
Substitution of (4) into the equation (1)-(3), yields 

1 2

1 2

0 1 2

( , ) ( , ) ( , )

( , ), ( , ) [ , ] (0, )

( , ) ( , ) 0, [ , )

( , ) ( , ), ( , ) [ , ] [ ,0],

t xx c

d

x xx l x l

x t x t x t

x t x t l l

x t x t t

x t x t x t l l





 

 
     
     
    

y y A y

A y

y y

y y



                    (5) 

where c A A BK . 

This study will develop simple LMI-based methods to design 
a distributed feedback controller (4) for the linear time-delay 
PDE system (1)-(3) such that the closed-loop PDdE system 
(5) is exponentially stable in the sense of norm 

2
 , i.e., 

2 2

[ ,0] 02 2
( , ) sup ( , ) exp( )tt t t     y y , where   are   

two given positive constants. To do this, the following lemma 
is useful: 

Lemma 1 (Spatial Integration form of Jensen’s inequality). 
For any constant matrix 0 n n R , a scalar 0h  , and 

vector valued function ( , ) : [ ,0] nt h  y   such that the 

following integration is well defined, then 

2

1

2

1

( , ) ( , )

( , ) ( , )
.

( , ) ( , )

l t T
s sl t h

T
l

l

h x s x s dsdx

x t x t
dx

x t h x t h




     
             

 



y Ry

y R R y

y R R y

    (6) 

Notice that this lemma can be easily proved on the basis of 
Lemma 2 (Han, 2005). An inner product form of Jensen’s 
inequality has been reported in Fridman & Orlov (2009).  

3. STABILIZATION CONDITIONS 

3.1 Delay-independent Stabilization Condition 

This subsection first gives the delay-independent stabilization 
condition of the system (1)-(3). Let us consider the following 
Lyapunov–Krasovskii function: 

2 2

1 1

( ) ( , ) ( , ) ( , ) ( , )
l l tT T

l l t
V t x t x t dx x s x s dsdx


   y Py y Qy ,   (7) 

where 0 n n P  and 0 n n Q  are Lyapunov 

matrices to be determined.  

Differentiating ( )V t  in (7) along the solution to the PDdE 

system (5), we obtain 
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( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) .

l T
xxl

l T
cl
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l l

l T
dl

V t x t x t dx

x t x t dx

x t x t dx x t x t dx
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 





 

   

 





 



y P y

y PA y

y Qy y Qy

y PA y

 

   (8) 

Integrating by parts and taking into account (2), we have 

2 2

1 1

( , ) ( , ) ( , ) ( , )
l lT T

xx x xl l
x t x t dx x t x t dx   y P y y P y           (9) 

which means  

2

1

2

1

2 ( , ) ( , )

( , )[ ] ( , ) .

l T
xxl

l T
x xl

x t x t dx

x t x t dx  





y P y

y P y




                      (10) 

Since 0 n n  , we have  

[ ] 0 P .                                                                      (11) 

Using the inequality (11), we can obtain 

2

1

( , )[ ] ( , ) 0
l T

x xl
x t x t dx   y P y .                                   (12) 

Substituting (10) into (8) and considering (12), we get 

2

1

( ) ( , ) ( , )
l T

l
V t x t x t dx  y y                                                  (13) 

where ( , ) [ ( , ) ( , )]T T Tx t x t x t  y y y  and 

[ ]c d  
    

Q PA PA

Q
  . 

Henceforth, from the above analysis, the following theorem 
is obtained in terms of standard LMI: 

Theorem 1. Consider the linear time-delay PDE system (1)-

(3). If there exist matrices 0X , 0Q , and Z  such that 

the following LMI is satisfied: 

[ ]
0d

   
  

  

Q AX BZ A X

Q


  ,                               (14) 

then there exists a distributed feedback controller (4) such 
that the closed-loop PDdE system (5) is exponentially stable. 
In this case, the control gain matrix K  is given by 

1K ZX .                                                                          (15) 

Proof. Assume that the LMI (14) is fulfilled. Set 

1, ,  X = P Z KX Q XQX .                                     (16) 

Pre- and post-multiplying the matrix   by diag{ , } P P , 

respectively and considering (16), we can obtain 

     .                                                                          (17) 

Using the LMI (14) and 0 , we have 

0  .                                                                                  (18) 

On the other hand, there exists a scalar 0   such that the 

inequality (18) can be written as 

0   I .                                                                          (19) 

Substitution of (19) into (13) yields 

2 2

2 2
( ) ( , ) ( , )V t t t       y y .                                       (20) 

By using the technique reported in Mao, Koroleva, & 
Rodkina (1998), it can be concluded from the inequality (20) 
that the closed-loop PDdE system (5) is exponentially stable 
if LMI (14) is fulfilled. From (16), we have (15).    □ 

From Theorem 1, the outcome of stabilization via distributed 
feedback controller (4) for the linear time-delay PDE system 
(1)-(3) is presented in terms of standard LMI (14), which can 
be easily solved via the existing LMI optimization techniques 
(Boyd, Ghaoui, Feron, & Balakrishnan, 1994; Gahinet, 
Nemirovskii, Laub, & Chilali, 1995). Notice that the 
proposed design in this subsection is a delay-independent one, 
since LMI (14) does not depends on the time-delay scalar  . 

Remark 1. Notice that the non-positive term 
2

1

( , )[ ] ( , )
l T

x xl
x t x t dx  y P y  in (12) is directly neglected in 

the derivation process of the LMI-based stabilization 
condition, i.e., LMI (14). Obviously, this inevitably brings 
some conservativeness. Therefore, it remains a challenge to 
avoid or reduce the conservativeness resulted from this non-
positive term, which we leave for future study. 

3.2 Delay-dependent Stabilization Condition 

It is well-known that for the case of small time delays, delay-
independent conditions are more conservative than delay-
dependent ones. This subsection will give an LMI-based 
delay-dependent stabilization condition for the linear time-
delay PDE system (1)-(3). To this end, we consider the 
following Lyapunov–Krasovskii function: 

2 2

1 1

2

1

2

1

1 2

1

0

2

( ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

l lT T
x xl l

l t T

l t

l t T
s sl t

V t x t x t dx x t x t dx

x s x s dsdx

x s x s dsd dx



 
 



 

 





 

 

  

y P y y P y

y R y

y R y

        (21) 

where 10 n n P , 20 n n P , 10 n n R , and 

20 n n R  are Lyapunov matrices to be determined. 

Using Lemma 1 and considering 2 0R , we can derive 

2

1
2( , ) ( , )

l t T
s sl t

x s x s dsdx





   y R y  

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6064



 
 

     

 

2

1

2 2

2 2

( , ) ( , )
.

( , ) ( , )

T
l

l

x t x t
dx

x t x t 
    

          


R Ry y

R Ry y
    (22) 

Integrating by parts and taking into account (2), we have 

2 2

1 1
2 2( , ) ( , ) ( , ) ( , )

l lT T
x xt xx tl l

x t x t dx x t x t dx  y P y y P y .           (23) 

Considering (22) and (23), the time derivative of ( )V t  in (21) 

along the solution of the system (5) is given as 

2

1

( ) ( , ) ( , )
l T

l
V t x t x t dx                                                  (24) 

where ( , ) [ ( , ) ( , ) ( , )]T T T T
xxx t x t x t x t  y y y , 

11 1 2 2 1

2 2

1 2

2
2

[ ]

[ ] [ ]

T T
c d

d

T
c d c d

   
     
     




P A P R P A

P P A

R R

A A R A A




 

 

in which 11 1 2 1[ ]c   R R P A . 

To obtain a delay-dependent design method in term of LMI, 
we restrict ourselves to the case of 2 1P P , where 0   is 

a real known constant. In this case, let 

1
1 1

X P , 1Z KX , 1 1 1 1R X R X , and 2 1 2 1R X R X .   (25) 

Pre- and post-multiplying both sides of the matrix   with 
the matrix 1 1 1 1diag{ , , , } X X X XX , respectively, we have 

11 12 2 1

1 1

1 2

1 1
2

1 2 1

1 1

[ ]

( ) ( )

,

d

d

TT T

T T
d d

 



   
     
     

    
       
      

R A X

X A X

R R

AX BZ AX BZ

X R X

X A X A

  


 



 

X X

           (26) 

where 

11 1 2 1

12 1 1

[ ],

( ) .T

    

  

R R AX BZ

X AX BZ

  
  

 

Hence, we have the following theorem: 

Theorem 2. For a given constant 0  , consider the linear 

PDE system with time delay of the form (1)-(3). Given a 

scalar 0  , if there exist matrices 1 0X , 1 0R , 2 0R , 

and Z  such that the following LMI is feasible: 

11 12 2 1 1

1 1 1

1 2 1
2 2

1 2

( )

[ ]
0

2

T
d

d
T
d

 

  

    
         
 
      

  

 


R A X AX BZ

X A X X

R R X A

X R

 
 (27) 

then there exists a distributed feedback controller (4) such 
that the closed-loop PDdE system (5) is exponentially stable. 
In this case, the control gain matrix K  is given by 

1
1
K ZX .                                                                           (28) 

Proof. Assume that LMI (27) holds. Considering 

2 1 2 1R X R X  and using the matrix theory, we have 

1 1
2 1 2 1
  R X R X .                                                                  (29) 

Using 1 0X and 2 0R  yields 1
1 2 2 1 2( ) ( ) 0    X R R X R , 

which implies 

1
1 2 1 1 22   X R X X R .                                                          (30) 

From (29) and (30), we give 

1
2 1 22    R X R .                                                              (31) 

It is clear from (31) that the following inequality holds: 

11 12 2 1 1

1 1 1

1 2 1
2 1

2

( )

[ ]
0

T
d

d
T
d

 

  

    
         
 
     

  

 

R A X AX BZ

X A X X

R R X A

R

 
,      (32) 

if LMI (27) is fulfilled. 

By employing the Schur complement, the inequality (32) is 
equivalent to 0 X X . We can obtain the inequality 

0   because of 0X . Similar to the proof of Theorem 1, 
we can easily show from the inequality 0   that the 
closed-loop system (5) is exponentially stable. From (25), we 
can obtain (28).   □ 

Theorem 2 provides an LMI-based delay-dependent design 
method of an exponentially stabilizing distributed feedback 
controller (4) for the time-delay PDE system (1)-(3). The 
corresponding control gain matrix can be constructed as (28) 
via the feasible solution to LMI (27), which can be directly 
solved by employing the existing LMI toolbox in MATLAB 
(Gahinet, Nemirovskii, Laub, & Chilali, 1995).  

Remark 2. Luo et al (2009) has proposed delay-dependent 
exponentially stabilizing state feedback control designs for a 
class of linear parabolic PDE with constant, varying delay, 
and multi-varying-delays. If we set 0k   ( 0k   denotes the 
exponential decay rate (Luo et al, 2009)), these results can be 
easily simplified into delay-independent ones. Moreover, 
different from the exponential stability analysis in Fridman & 
Orlov (2009), this paper provides both delay-independent and 
delay-dependent conditions for exponential stabilization of 
the linear PDdE system (1)-(3). 

4. NUMERICAL EXAMPLE 

In this section, to illustrate the effectiveness and merit of the 
proposed design methods, we consider the following linear 
PDE system with time delay: 
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1, 1, 1 2

1

( , ) ( , ) 1.5 ( , ) ( , )

( , ) ( , )
t xxy x t y x t y x t y x t

y x t u x t

  

  
                          (33) 

2, 2, 1 2

2

( , ) ( , ) 0.45 ( , ) 1.3 ( , )

( , )
t xxy x t y x t y x t y x t

y x t 

  

 
                  (34) 

subject to the homogeneous Neumann boundary conditions 

1, 2,0 0
( , ) ( , ) 0x xx x

y x t y x t
 
  ,  

1, 2,1 1
( , ) ( , ) 0x xx x

y x t y x t
 
  , [ , )t                            (35) 

and the initial conditions 

1 1,0( , ) ( , )y x t y x t , 2 2,0( , ) ( , )y x t y x t ,  

( , ) [0,1] [ ,0]x t    ,                                                          (36) 

where ( , )iy x t  , {1,2}i  are the state variables, 

( , )u x t   is the distributed input. t  and x  denote the 

independent time and spatial position variables, respectively. 

1,0 ( , )y x t  and 2,0 ( , )y x t , ( , ) [0,1] [ ,0]x t     are the initial 

conditions. Let 1 2( , ) [ ( , ) ( , )]Tx t y x t y x ty , the system (33)-

(36) can be rewritten as the form (1)-(3), where  I , 

1 0l  , 2 1l   and 

1.5 1

0.45 1.3

 
   

A , 
1 0

0 1d

 
  
 

A , and 
1

0

 
  
 

B .               (37) 

Set 0.8  . Since the operator 2 2( ) ( )x d x dx y y  

( )xAy  has a positive eigenvalue in the linear time-delay 

PDE system (33)-(36) is unstable. Let 1,0 ( , ) 5cos( )y x t x  

and 2,0 ( , ) 0.2 cos( )y x t x  , ( , ) [0,1] [ 0.8,0]x t    , Fig. 1 

shows the open-loop trajectories of 1 2
( , )y t  and 2 2

( , )y t .  

0 1 2 3
0

5

10

13

 

 
          

   

 

Fig. 1 Open-loop trajectories of 1 2
( , )y t  and 2 2

( , )y t . 

4.1 Delay-independent Stabilization Condition 

Solving the LMI (14) and using the (15), the control gain 
matrix K  can be derived as  

[ 4.5764 1.5825]  K .  

Applying the distributed feedback controller (4) with above 
control gain matrix to the linear PDdE system (33)-(36), Fig. 
2 indicates the closed-loop trajectories of 1 2

( , )y t  and 

2 2
( , )y t . The trajectory of 

2
( , )u t  is also shown in Fig. 2. 

Obviously, the proposed controller can stabilize the system 
(33)-(36). 

0 1 2 3 4
0

6

12

18

 

 
           

     

   

 

Fig. 2 Closed-loop trajectories of 1 2
( , )y t  and 2 2

( , )y t  as 

well as 
2

( , )u t  via Theorem 1. 

4.2 Delay-dependent Stabilization Condition 

Let 1.8  . Solving the LMI (27) and using the (28), the 
control gain matrix K  can be derived as  

[ 2.4251 1.0781]  K . 

Applying the distributed feedback controller (4) with above 
control gain matrix to the linear PDdE system (33)-(36), 
trajectories of 1 2

( , )y t , 2 2
( , )y t , and 

2
( , )u t  are given in 

Fig. 3, respectively. It is clearly seen from Fig. 3 that the 
proposed controller can stabilize the system (33)-(36). 

0 1 2 3 4 5
0

3.2

6.4

9.6

 

 
            

   

 

 

Fig. 3 Closed-loop trajectories of 1 2
( , )y t  and 2 2

( , )y t  as 

well as 
2

( , )u t  via Theorem 2. 

On the other hand, we further give a comparison between the 
proposed design method and the exponential stabilizations 
reported in Luo et al (2009). To do this, in (37), we set  

 I , d A I , 
1.5 1

0.45 1

 
   

A ,  

[1 0]TB , 1 0l   and 2 1l  .  

The method proposed in Luo et al (2009) is infeasible for the 
case when 0.05k   and 0.5   or 0k   and 0.01   

1 2

2 2

( , )

( , )

y t

y t




 

t 

1 2

2 2

2

( , )

( , )

( , )

y t

y t

u t







t 

1 2

2 2

2

( , )

( , )

( , )

y t

y t

u t







t 
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( 0   is the parameter used in the Lyapunov function 

candidate Luo et al (2009)), whereas the maximum delay is 
derived via Theorem 2 as 0.9037   for the case when 

1  . It is obvious that Theorem 2 is less conservative than 
the results reported in Luo et al (2009). 

5. CONCLUSIONS 

This paper has investigated the problem of exponential 
stabilization via distributed feedback controller for a class of 
linear PDE systems with time delays in the framework of 
Lyapunov–Krasovskii functions. Both delay-independent and 
delay-dependent design methods are developed for the 
distributed state feedback controller by constructing two 
integral types of Lyapunov–Krasovskii functions and 
introducing a new form of Jensen’s inequality, and presented 
in terms of standard LMIs. Finally, simulation results of a 
numerical example indicate the effectiveness and merit of the 
proposed design method. 
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