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Abstract: The simple multi-period repetitive control system proposed by Yamada and
Takenaga is a type of servomechanism for a periodic reference input. That is, the simple
multi-period repetitive control system follows the periodic reference input with a small steady
state error, even if a periodic disturbance or uncertainty exists in the plant. In addition,
simple multi-period repetitive control systems ensure that the transfer functions from the
periodic reference input to the output and from the disturbance to the output have a finite
number of poles. Yamada et al. clarified the parameterization of all stabilizing simple multi-
period repetitive controllers. Recently, Sakanushi et al. proposed the parameterization of all
robust stabilizing simple multi-period repetitive controllers for multiple-input/multiple-output
plants with uncertainty. However, their method cannot be applied to time-delay plants. In this
paper, we propose the parameterization of all robust stabilizing simple multi-period repetitive
controllers for multiple-input/multiple-output time-delay plants.
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1. INTRODUCTION

Multi-period repetitive controllers improve the distur-
bance attenuation characteristics of the modified repet-
itive control system that follows the periodic reference
input with a small steady state error (Gotou et al., 1987;
Okuyama et al., 2002; Yamada et al., 2003). Yamada et al.
point out that the disturbance attenuation characteristic
for frequency component, which is same as that of the
periodic reference input, of multi-period repetitive control
systems are not very good and propose a design method
for multi-period repetitive controllers to attenuate wide-
frequency disturbance which is the same as the frequency
of periodic reference input based on the idea of changing
time-delay (Yamada et al., 2003).

Using the multi-period repetitive controllers in Gotou
et al. (1987); Okuyama et al. (2002); Yamada et al. (2003),
even if the plant does not include time delays, transfer
functions from the periodic reference input to the out-
put and from the disturbance to the output have infinite
numbers of poles. This makes it difficult to specify the
input–output characteristic and the disturbance attenu-
ation characteristic. However, from a practical point of
view, it is desirable that these characteristics be easy to
specify, which would require these transfer functions to
have finite numbers of poles. To overcome this problem,
Yamada and Takenaga propose simple multi-period repet-
itive control systems in which the controller works as a
multi-period repetitive controller and the transfer func-
tions from the periodic reference input to the output and
from the disturbance to the output have finite numbers
of poles (Yamada and Takenaga, 2008). In addition, they

clarify the parameterization of all stabilizing simple multi-
period repetitive controllers.

When we apply simple multi-period repetitive control de-
sign methods to real systems, the influence of uncertainties
in the plant must be considered. In some cases, uncer-
tainties in the plant make the control system unstable,
even though the controller was designed to stabilize the
nominal plant. The stability problem with uncertainty is
known as the robust stability problem (Doyle et al., 1989).
Yamada et al. propose the parameterization of all robust
stabilizing simple multi-period repetitive controllers for
plants with uncertainties (Yamada et al., 2008). How-
ever, because the method in Yamada et al. (2008) uses
the characteristics of single-input/single-output systems,
this method cannot be applied to multiple-input/multiple-
output plants. To solve this problem, Sakanushi et al.
examine the parameterization for multiple-input/multiple-
output plants (Sakanushi et al., 2012). Many real plants
have multiple-input and multiple-output, and include un-
certainties and time-delays. In addition, the parameter-
ization is useful to design stabilizing controllers (Youla
et al., 1976; Kucera, 1979; Glaria and Goodwin, 1994;
Vidyasagar, 1985). Therefore, the problem of obtaining
the parameterization of all robust stabilizing simple multi-
period repetitive controllers for multiple-input/multiple-
output time-delay plants is important.

In this paper, we propose the parameterization of all ro-
bust stabilizing simple multi-period repetitive controllers
for multiple-input/multiple-output time-delay plants such
that the controller works as a robust stabilizing multi-
period repetitive controller for time-delay plants and
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transfer functions from the periodic reference input to the
output and from the disturbance to the output have finite
numbers of poles when the uncettainty does not exist.

Notation

R the set of real numbers.
R+ R ∪ {∞}.
R(s) the set of real rational functions with s.
RH∞ the set of stable proper real rational func-

tions.
H∞ the set of stable causal functions.
D⊥ orthogonal complement of D, i.e.,[

D D⊥ ] or [ D
D⊥

]
is unitary.

AT transpose of A.
A† pseudo inverse of A.
ρ({·}) spectral radius of {·}.
σ̄({·}) largest singular value of {·}.
∥{·}∥∞ H∞ norm of {·}.
L{·} the Laplace transformation of {·}.
L−1{·} the inverse Laplace transformation of {·}.[
A B
C D

]
represents the state space description
C(sI −A)−1B +D.

2. PROBLEM FORMULATION

Consider the unity feedback control system given by{
y = G(s)e−sLu+ d
u = C(s)(r − y)

, (1)

where G(s)e−sL is the multiple-input/multiple-output
time-delay plant, L > 0 is the time-delay, G(s) ∈ Rm×p(s)
is assumed to be stabilizable and detectable. C(s) is the
multi-period repetitive controller withm-th input and p-th
output defined later, u ∈ Rp is the control input, d ∈ Rm

is the disturbance, y ∈ Rm is the output and r ∈ Rm is
the periodic reference input with period T > 0 satisfying

r(t+ T ) = r(t) (∀t ≥ 0). (2)

It is assumed thatm ≤ p and rank G(s) = m. The nominal
plant of G(s)e−sL is denoted by Gm(s)e−sLm , where
Gm(s) ∈ Rm×p(s). Both G(s) and Gm(s) are assumed to
have no zero or pole on the imaginary axis (Doyle et al.,
1989). In addition, it is assumed that the number of poles
of G(s) in the closed right half plane is equal to that of
Gm(s) (Doyle et al., 1989). The relation between the plant
G(s)e−sL and the nominal plant Gm(s)e−sLm is written as

G(s)e−sL = (e−sLmI +∆(s))Gm(s), (3)

where ∆(s) is an uncertainty. The set of ∆(s) is all
functions satisfying

σ̄ {∆(jω)} < |WT (jω)| (∀ω ∈ R+), (4)

where WT (s) is a stable rational function.

The robust stability condition for the plant with uncer-
tainty ∆(s) satisfying (4) is given by

∥T (s)WT (s)∥∞ < 1, (5)

where T (s) is given by

T (s) =
(
I +Gm(s)e−sLmC(s)

)−1
Gm(s)e−sLmC(s). (6)

According to Gotou et al. (1987); Okuyama et al. (2002);
Yamada et al. (2003), the general form of multi-period
repetitive controller C(s) which makes the output y to
follow the periodic reference input r with period T in (1)
with small steady state error, is written in the form

C(s) =C0(s) +

N∑
i=1

Ci(s)e
−sTi

(
I −

N∑
i=1

qi(s)e
−sTi

)−1

,(7)

where N is an arbitrary positive integer, Ti > 0 ∈
R (i = 1, . . . , N), C0(s) ∈ Rp×m(s), Ci(s) ∈ Rp×m(s)(i =
1, . . . , N) satisfying rank Ci(s) = m(i = 1, . . . , N),
qi(s) ∈ Rm×m(s)(i = 1, . . . , N) are low-pass filters

satisfying
∑N

i=1 qi(0) = I. In the following, e−sTi(I −∑N
i=1 qi(s)e

−sTi)−1 defines the internal model for the pe-
riodic signal with period T . According to Gotou et al.
(1987); Okuyama et al. (2002); Yamada et al. (2003), if
the low-pass filters qi(s)(i = 1, . . . , N) satisfy

σ̄

{
I −

N∑
i=1

qi(jωk)

}
≃ 0 (k = 0, . . . , Nmax) , (8)

where ωk(k = 0, . . . , Nmax) are frequency components of
the periodic reference input r written by

ωk =
2π

T
k (k = 0, . . . , Nmax) , (9)

and ωNmax is the maximum frequency component of the
periodic reference input r, then the output y in (1) follows
the periodic reference input r with small steady state error.

Using the multi-period repetitive controller C(s) in (7),
transfer functions from the periodic reference input r to
the output y and from the disturbance d to the output y
in (1), respectively, are written as

y =
(
I +G(s)e−sLC(s)

)−1
G(s)e−sLC(s)r

= (e−sLmI +∆(s))Gm(s)

{
C0(s) +

N∑
i=1

(Ci(s)− C0(s)

qi(s)) e
−sTi

} [
I +

(
e−sLmI +∆(s)

)
Gm(s)C0(s)

−
N∑
i=1

[{
I + (e−sLmI +∆(s))Gm(s)C0(s)

}
qi(s)

−(e−sLmI +∆(s))Gm(s)Ci(s)
]
e−sTi

]−1
r (10)

and

y =
(
I +G(s)e−sLC(s)

)−1
d

=

(
I −

N∑
i=1

qi(s)e
−sTi

)[
I +

(
e−sLmI +∆(s)

)
Gm(s)

C0(s)−
N∑
i=1

[{
I + (e−sLmI +∆(s))Gm(s)C0(s)

}
qi(s)

−(e−sLmI +∆(s))Gm(s)Ci(s)
]
e−sTi

]−1
d. (11)

Generally, transfer functions from the periodic reference
input r to the output y in (10) and from the disturbance
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d to the output y in (11) have infinite numbers of poles,
even if ∆(s) = 0. In this situation, it is difficult to specify
the input-output characteristic and the disturbance atten-
uation characteristic. From the practical point of view, it
is desirable that the input-output characteristic and the
disturbance attenuation characteristic are easily specified.
To do this, it is desirable for transfer functions from the
periodic reference input r to the output y and from the
disturbance d to the output y to have finite numbers of
poles.

From above practical requirement, we define a robust
stabilizing simple multi-period repetitive controller for
multiple-input/multiple-output time-delay plants as Def-
inition 1 and clarify the parameterization of all robust
stabilizing simple multi-period repetitive controllers for
multiple-input/multiple-output time-delay plants.

Definition 1. (robust stabilizing simple multi-period repet-
itive controller for multiple-input/multiple-output time-
delay plants.)
We call the controller C(s) a “robust stabilizing simple
multi-period repetitive controller for multiple-input/multiple-
output time-delay plants”, if following expressions hold
true:

(1) The controller C(s) works as a modified repetitive
controller. That is, the controller C(s) is described
by (7).

(2) When ∆(s) = 0, the controller C(s) makes transfer
functions from the periodic reference input r to the
output y in (1) and from the disturbance d to the
output y in (1) have finite numbers of poles.

(3) The controller C(s) satisfies the robust stability con-
dition in (5).

3. THE PARAMETERIZATION

In this section, we clarify the parameterization of all robust
stabilizing simple multi-period repetitive controllers for
multiple-input/multiple-output time-delay plants defined
in Definition 1.

In order to obtain the parameterization of all robust
stabilizing simple multi-period repetitive controllers, we
must see that controllers C(s) ensure that (5) holds.
The problem of obtaining the controller C(s), which is
not necessarily a simple multi-period repetitive controller,
satisfying (5) is equivalent to the following H∞ control
problem. In order to obtain the controller C(s) satisfying
(5), we consider the control system shown in Fig. 1. P (s)

w z

u yP(s)

C(s)

Fig. 1. Block diagram of H∞ control problem

is selected such that the transfer function from w to z in
Fig. 1 is equal to T (s)WT (s). The state space description
of P (s) is, in general,

{
ẋ(t) = Ax(t) +B1w(t) +B2u(t− Lm)
z(t) = C1x(t) +D12u(t)
y(t) = C2x(t) +D21w(t)

, (12)

where A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×p, C1 ∈ Rm×n,
C2 ∈ Rm×n, D12 ∈ Rm×p, D21 ∈ Rm×m, x(t) ∈ Rn,
w(t) ∈ Rm, z(t) ∈ Rm, u(t) ∈ Rp and y(t) ∈ Rm. P (s)
is called the generalized plant. P (s) is assumed to satisfy
following assumptions:

(1) (C2, A) is detectable, (A,B2) is stabilizable.
(2) D12 has full column rank, and D21 has full row rank.

(3) rank

[
A− jωI B2

C1 D12

]
= n+ p (∀ω ∈ R+),

rank

[
A− jωI B1

C2 D21

]
= n+m (∀ω ∈ R+).

(4) C1A
iB2 = 0 (i = 0, 1, 2, . . .).

Under these assumptions, from Abe and Kojima (2007),
following lemma holds true.

Lemma 1. There exists an H∞ controller C(s) for the
generalized plant P (s) in (12) if and only if there exists an

H∞ controller C(s) for the generalized plant P̃ (s) written
by  q̇(t) = Aq(t) +B1w(t) +B̃2u(t)

z̃(t) = C1q(t) +D12u(t)
ỹ(t) = C2q(t) +D21w(t)

, (13)

where B̃2 = e−ALmB2. When u(s) = C(s)ỹ(s) is an H∞
control input for the generalized plant P̃ (s) in (13),

u(t) =L−1 {C(s)ỹ(s)} (14)

is an H∞ control input for the generalized plant P (s) in
(12), where

ỹ(s) =L

y(t) + C2

0∫
−Lm

e−A(τ+Lm)B2u(t+ τ)dτ

 .

(15)

From Lemma 1 and Doyle et al. (1989), the following
lemma holds true.

Lemma 2. If controllers satisfying (5) exist, both

X
(
A− B̃2D

†
12C1

)
+
(
A− B̃2D

†
12C1

)T
X

+X
{
B1B

T
1 − B̃2

(
DT

12D12

)−1
B̃T

2

}
X

+
(
D⊥

12C1

)T
D⊥

12C1 = 0 (16)

and

Y
(
A−B1D

†
21C2

)T
+
(
A−B1D

†
21C2

)
Y

+Y
{
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

}
Y

+B1D
⊥
21

(
B1D

⊥
21

)T
= 0 (17)

have solutions X ≥ 0 and Y ≥ 0 such that

ρ (XY ) < 1 (18)

and both
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A− B̃2D
†
12C1 +

{
B1B

T
1 − B̃2

(
DT

12D12

)−1
B̃T

2

}
X (19)

and

A−B1D
†
21C2 + Y

{
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

}
(20)

have no eigenvalue in the closed right half plane. Using
X and Y , the parameterization of all controllers satisfying
(5) is given by

C(s) =C11(s) + C12(s)Q(s)(I − C22(s)Q(s))−1C21(s),

(21)

where

[
C11(s) C12(s)
C21(s) C22(s)

]
=

 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

 , (22)

Ac =A+B1B
T
1 X − B̃2

(
D†

12C1 + E−1
12 B̃T

2 X
)

− (I − Y X)
−1
(
B1D

†
21 + Y CT

2 E
−1
21

)
(
C2 +D21B

T
1 X

)
,

Bc1 = (I − Y X)
−1
(
B1D

†
21 + Y CT

2 E
−1
21

)
,

Bc2 = (I − Y X)
−1
(
B̃2 + Y CT

1 D12

)
E

−1/2
12 ,

Cc1 =−D†
12C1 − E−1

12 B̃T
2 X,

Cc2 =−E
−1/2
21

(
C2 +D21B

T
1 X

)
,

Dc11 = 0, Dc12 = E
−1/2
12 , Dc21 = E

−1/2
21 , Dc22 = 0,

E12 = DT
12D12, E21 = D21D

T
21

and Q(s) ∈ Hp×m
∞ is any function satisfying ∥Q(s)∥∞ < 1

(Doyle et al., 1989).

Remark 1. C(s) in (21) is written using Linear Frac-
tional Transformation(LFT). Using homogeneous trans-
formation, (21) is rewritten by

C(s)

= (Z11(s)Q(s) + Z12(s)) (Z21(s)Q(s) + Z22(s))
−1

=
(
Q(s)Z̃21(s) + Z̃22(s)

)−1 (
Q(s)Z̃11(s) + Z̃12(s)

)
,

(23)

where Zij(s)(i = 1, 2; j = 1, 2) and Z̃ij(s)(i = 1, 2; j =
1, 2) are defined by[

Z11(s) Z12(s)
Z21(s) Z22(s)

]
=

[
C12(s)− C11(s)C

−1
21 (s)C22(s) C11(s)C

−1
21 (s)

−C−1
21 (s)C22(s) C−1

21 (s)

]
(24)

and

[
Z̃11(s) Z̃12(s)

Z̃21(s) Z̃22(s)

]
=

[
C21(s)− C22(s)C

−1
12 (s)C11(s) C−1

12 (s)C11(s)
−C22(s)C

−1
12 (s) C−1

12 (s)

]
(25)

and satisfying[
Z̃22(s) Z̃12(s)

Z̃21(s) Z̃11(s)

] [
Z11(s) −Z12(s)
−Z21(s) Z22(s)

]
= I

=

[
Z11(s) −Z12(s)
−Z21(s) Z22(s)

] [
Z̃22(s) Z̃12(s)

Z̃21(s) Z̃11(s)

]
. (26)

Using Lemma 1, Lemma 2 and Remark 1, the param-
eterization of all robust stabilizing simple multi-period
repetitive controllers for multiple-input/multiple-output
time-delay plants is given by following theorem.

Theorem 1. If simple multi-period repetitive controllers
satisfying (5) exist, both (16) and (17) have solutions
X ≥ 0 and Y ≥ 0 such that (18) holds and both (19) and
(20) have no eigenvalue in the closed right half plane. Using
X and Y , the parameterization of all robust stabilizing
simple multi-period repetitive control laws satisfying (5)
is given by

u(t) =L−1 {C(s)ỹ(s)} , (27)

where

ỹ(s) =L

y(t)+C2

0∫
−Lm

e−A(τ+Lm)B2u(t+ τ)dτ

(28)

and

C(s)

= (Z11(s)Q(s) + Z12(s)) (Z21(s)Q(s) + Z22(s))
−1

=
(
Q(s)Z̃21(s) + Z̃22(s)

)−1 (
Q(s)Z̃11(s) + Z̃12(s)

)
,

(29)

where Zij(s)(i = 1, 2; j = 1, 2) and Z̃ij(s)(i = 1, 2; j =
1, 2) are defined by (24) and (25), Cij(s)(i = 1, 2; j = 1, 2)
are given by (22) and Q(s) ∈ Hp×m

∞ is any function
satisfying ∥Q(s)∥∞ < 1 and takes the form

Q(s) =

(
Qn0(s) +

N∑
i=1

Qni(s)e
−sTi

)
(
Qd0(s) +

N∑
i=1

Qdi(s)e
−sTi

)−1

, (30)

Qni(s) = G2d(s)Q̄i(s) ∈ RHp×m
∞ (i = 1, . . . , N) (31)

and

Qdi(s) = −G1d(s)G2n(s)Q̄i(s) ∈ RHm×m
∞

(i = 1, . . . , N). (32)

Here, G1n(s) ∈ RHm×m
∞ , G1d(s) ∈ RHm×m

∞ , G2n(s) ∈
RHm×p

∞ and G2d(s) ∈ RHp×p
∞ are coprime factors satisfy-

ing
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Z22(s) +Gm(s)Z12(s) = G1n(s)G
−1
1d (s) (33)

and

G−1
1n (s) (Z21(s) +Gm(s)Z11(s)) = G2n(s)G

−1
2d (s). (34)

Qn0(s) ∈ RHp×m
∞ , Qd0(s) ∈ RHm×m

∞ and Q̄i(s) ∈
RHp×m

∞ (i = 1, . . . , N) are any functions satisfying

σ̄

{
Z22(0)

(
Qd0(0) +

N∑
i=1

Qdi(0)

)

+Z21(0)

(
Qn0(0) +

N∑
i=1

Qni(0)

)}
= 0, (35)

rank
(
Qni(s)−Qn0(s)Q

−1
d0 (s)Qdi(s)

)
= m

(i = 1, . . . , N) (36)

and rank Q̄i(s) = m (i = 1, . . . , N).

Proof. First, the necessity is shown. That is, we show
that if the multi-period repetitive controller written by
(7) stabilizes the control system in (1) robustly and makes
transfer functions from the periodic reference input r
to the output y in (10) and from the disturbance d to
the output y in (11) have finite numbers of poles, when
∆(s) = 0, then C(s) and Q(s) are written by (29) and
(30), respectively. From Lemma 2, the parameterization of
all robust stabilizing controllers C(s) for G(s) is written
by (29), where Q(s) ∈ Hp×m

∞ is any function satisfying
∥Q(s)∥∞ < 1. In order to prove the necessity, we will show
that if the controller C(s) written by (29) works as a multi-
period repetitive controller, then Q(s) ∈ Hp×m

∞ in (29) is
written by (30). Substituting C(s) in (7) into (29), we have
(30), where

Qn0(s) =N0n(s)Nd(s), (37)

Qni(s) =Nin(s) (i = 1, . . . , N), (38)

Qd0(s) =D0n(s)Dd(s)N0d(s)Nd(s) (39)

and

Qdi(s) =Din(s)N0d(s)Nd(s) (i = 1, . . . , N). (40)

Here, N0n(s) ∈ RHp×m
∞ , Nin(s) ∈ RHp×m

∞ (i = 1, . . . , N),
N0d(s) ∈ RHm×m

∞ , Nd(s) ∈ RHm×m
∞ , D0n(s) ∈ RHm×m

∞ ,
Din(s) ∈ RHm×m

∞ (i = 1, . . . , N), D0d(s) ∈ RHm×m
∞ and

Dd(s) ∈ RHm×m
∞ are coprime factors satisfying

Z̃21(s)C0(s)− Z̃11(s) =D0n(s)D
−1
0d (s), (41)

(
Z̃21(s)Ci(s)− Z̃21(s)C0(s)qi(s) + Z̃11(s)qi(s)

)
D0d(s)

=Din(s)D
−1
d (s), (42)

(
Z̃12(s)−Z̃22(s)C0(s)

)
D0d(s)Dd(s) =N0n(s)N

−1
0d (s)

(43)

and

−
(
Z̃22(s)Ci(s)− Z̃22(s)C1(s)q(s) + Z̃12(s)qi(s)

)
D0d(s)

Dd(s)N0d(s) = Nin(s)N
−1
d (s) (i = 1, . . . , N). (44)

From (37) ∼ (40), all of Qn0(s), Qni(s) (i = 1, . . . , N),
Qd0(s) and Qdi(s) (i = 1, . . . , N) are included in RH∞.
Thus, we have shown that if C(s) written by (7) stabilizes
the control system in (1) robustly, Q(s) in (29) is written

by (30). Since
∑N

i=1 qi(0) = I, from (37) ∼ (40) and
(26), (35) holds true. In addition, from the assumption
of rank Ci(s) = m (i = 1, . . . , N) and from (42) and (44),

rank Din(s) = m (i = 1, . . . , N) (45)

and

rank Nin(s) = m (i = 1, . . . , N) (46)

hold true. From (45), (46), (38) and (40), (36) is satisfied.

The rest to prove the necessity is to show that when
∆(s) = 0, if C(s) in (7) makes transfer functions from
the periodic reference input r to the output y and from
the disturbance d to the output y have finite numbers of
poles, then Qni(s) and Qdi(s) are written by (31) and (32),
respectively. From (30), when ∆(s) = 0, transfer functions
from the periodic reference input r to the output y and
from the disturbance d to the output y are written by

y = Gryn(s)G
−1
ryd(s)r (47)

and

y = Gdyn(s)G
−1
dyd(s)d, (48)

respectively, where

Gryn(s) =Gm(s)

{
Z12(s)Qd0(s) + Z11(s)Qn0(s) +

N∑
i=1

(Z12(s)Qdi(s) + Z11(s)Qni(s)) e
−sTi

}
, (49)

Gryd(s)

= (Z22(s)+Gm(s)Z12(s))Qd0(s)+(Z21(s)+Gm(s)

Z11(s))Qn0(s) +
N∑
i=1

{(Z22(s) +Gm(s)Z12(s))Qdi(s)

+ (Z21(s) +Gm(s)Z11(s))Qni(s)} e−sTi , (50)

Gdyn(s) =Z22(s)Qd0(s) + Z21(s)Qn0(s) +
N∑
i=1

(Z22(s)

Qdi(s) + Z21(s)Qni(s)) e
−sTi (51)

and

Gdyd(s)

= (Z22(s)+Gm(s)Z12(s))Qd0(s)+(Z21(s)+Gm(s)

Z11(s))Qn0(s) +

N∑
i=1

{(Z22(s) +Gm(s)Z12(s))Qdi(s)

+ (Z21(s) +Gm(s)Z11(s))Qni(s)} e−sTi , (52)

From the assumption that transfer functions from the
periodic reference input r to the output y in (47) and
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from the disturbance d to the output y in (48) have finite
numbers of poles, (50) and (52),

(Z22(s) +Gm(s)Z12(s))Qdi(s)

+ (Z21(s) +Gm(s)Z11(s))Qni(s) = 0 (53)

holds. Using (33) and (34), this equation is rewritten by

Qdi(s) =−G1d(s)G2n(s)G
−1
2d (s)Qni(s). (54)

Since Qni(s) ∈ RHp×m
∞ and Qdi(s) ∈ RHm×m

∞ , Qni(s) and
Qdi(s) are written by (31) and (32), respectively, where
Q̄i(s) ∈ RHp×m

∞ (i = 1, . . . , N). From (45), (46), (38) and
(40), rank Q̄i(s) = m(i = 1, . . . , N) holds true. We have
thus proved the necessity.

Next, the sufficiency is shown. That is, it is shown that
if C(s) and Q(s) ∈ Hp×m

∞ are given by (29) and (30),
respectively, then the controller C(s) is written by the form

in (7),
∑N

i=1 qi(0) = I holds true and transfer functions
from the periodic reference input r to the output y and
from the disturbance d to the output y have finite numbers
of poles. Substituting (30) into (29), we have (7), where,
C0(s), Ci(s)(i = 1, . . . , N) and qi(s)(i = 1, . . . , N) are
written by

C0(s) = (Z11(s)Qn0(s) + Z12(s)Qd0(s))

(Z21(s)Qn0(s) + Z22(s)Qd0(s))
−1

, (55)

Ci(s) =
(
Qn0(s)Q

−1
d0 (s)Z̃21(s) + Z̃22(s)

)−1

(
Qni(s)−Qn0(s)Q

−1
d0 (s)Qdi(s)

)
(Z21(s)Qn0(s) + Z22(s)Qd0(s))

−1

(i = 1, . . . , N) (56)

and

qi(s) =− (Z21(s)Qni(s) + Z22(s)Qdi(s))

(Z21(s)Qn0(s) + Z22(s)Qd0(s))
−1

(i = 1, . . . , N). (57)

We find that if C(s) and Q(s) are given by (29) and (30),
respectively, then the controller C(s) is written by the
form in (7). From rank Q̄i(s) = m(i = 1, . . . , N) and (56),
rank Ci(s) = m(i = 1, . . . , N) holds true. Substituting

(35) into (57), we have
∑N

i=1 qi(0) = I. In addition, from
(31) and (32) and easy manipulation, we can confirm
that when ∆(s) = 0, transfer functions from the periodic
reference input r to the output y and from the disturbance
d to the output y have finite numbers of poles.

We have thus proved Theorem 1.

4. CONCLUSION

In this paper, we proposed the parameterization of all ro-
bust stabilizing simple multi-period repetitive controllers
for multiple-input/multiple-output time-delay plants such
that the controller works as a robust stabilizing multi-
period repetitive controller for time-delay plants and
transfer functions from the periodic reference input to the
output and from the disturbance to the output have finite

numbers of poles. Since the robust stabilizing simple multi-
period repetitive control system has merit such as the
stability of control system wity uncertainty is guaranteed
and the robust stabilizing simple multi-period repetitive
control system can be easily designed, the practical appli-
cation of the robust stabilizing simple repetitive control is
expected.

REFERENCES

Abe, N. and Kojima, A. (2007). Control in time-delay
and distributed parameter systems. Corona Publishing,
Tokyo.

Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis,
B.A. (1989). State-space solution to standard h2 and h∞
control problems. IEEE Trans. on Automatic Control,
AC-34, 831–847.

Glaria, J.J. and Goodwin, G.C. (1994). A parameteriza-
tion for the class of all stabilizing controllers for linear
minimum phase system. IEEE Trans. on Automatic
Control, AC-39, 433–434.

Gotou, M., Matsubayashi, S., Miyazaki, F., Kawamura,
S., and Arimoto, S. (1987). A robust system with
an iterative learning compensator and a proposal of
multiperiod learning compensator. J. Soc. Instrument
and Control Engineers, 31, 367–374.

Kucera, V. (1979). Discrete linear system, The polynomial
eqnarray approach. Wiley, USA.

Okuyama, T., Yamada, K., and Satoh, K. (2002). A design
method for repetitive control systems with a multi-
period repetitive compensator. Theoretical and Applied
Mechanics, 51, 161–167.

Sakanushi, T., Yamada, K., Murakami, I., Hu, J., and Mat-
suura, S. (2012). A design method for robust stabilizing
simple multi-period repetitive controllers for multiple-
input/multiple-output plants. ECTI Transactions on
Electrical Eng., Electronics, and Communications, 10,
25–37.

Vidyasagar, M. (1985). Control System Synthesis - A
factorization approach -. MIT Press, Cambridge.

Yamada, K., Hagiwara, T., Takenaga, H., and Kobayashi,
M. (2008). A design method of robust stabilizing
simple multi-period repetitive controllers. International
Federation of Automatic Control World Congress 2008.

Yamada, K., Satoh, K., Arakawa, T., and Okuyama, T.
(2003). A design method for repetitive control systems
with multi-period repetitive compensator. Trans. Japan
Soc. Mechanical Engineers, 69, 2691–2699.

Yamada, K. and Takenaga, H. (2008). A design method
for simple multiperiod repetitive controllers. Interna-
tional Journal of Innovative Computing, Information
and Control, 4, 3231–3245.

Youla, D.C., Jabr, H., and Bongiorno, J.J. (1976). Modern
wiener-hopf design of optimal controllers. part i. IEEE
Trans. on Automatic Control, AC-21, 3–13.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10095


