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Abstract: Bivalirudin is a direct thrombin inhibitor used in the cardiac intensive care unit
in patients who develop an allergic reaction to heparin. Since it is not a commonly used drug,
clinical experience with its dosing is sparse. In earlier work (Zhao et al. [2014]) we developed a
dynamic system model that accurately predicts the effect of bivalirudin when given dosage over
time and patient physiological characteristics. This paper develops adaptive dosage controllers
that regulate its effect to desired levels. To that end, and in the case that bivalirudin model
parameters are available, we develop a Model Reference Control law. In the case that model
parameters are unknown, an indirect Model Reference Adaptive Control scheme is applied to
estimate model parameters first and then adapt the controller. Our algorithms are validated
using actual data from a large hospital in the Boston area.
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1. INTRODUCTION

The US health care system is costly and inefficient (An-
derson et al. [2003]). Among the many reform efforts, the
meaningful use of Electronic Health Records (EHRs) is
seen as a key to improving efficiency. In the hospital,
the digitization of data from medical devices enables the
development of algorithms that can automate decision
making and facilitate treatment. This is exactly the goal of
this paper which focuses on automating dosage decisions
for a particular drug — bivalirudin — used in the cardiac
Intensive Care Unit (ICU).

Bivalirudin antagonizes the effect of thrombin in the blood
clotting cascade, thereby preventing complications from
blood clotting. It is FDA-approved for short-term antico-
agulation of patients undergoing cardiac catheterization
to prevent complications due to blood clots (Bittl et al.
[2001], Stone et al. [2006]). Bivalirudin is administered
to patients who have a contraindication to heparin. It is
infused continuously, and is eliminated via the kidney and
by plasma protease-metabolism. It affects the coagulation
parameters Partial Thromboplastin Time (PTT) and the
International Normalized Ratio (INR) in a dose-dependent
fashion. The PTT value is measured in seconds and it will
be used as the parameter one wishes to regulate.
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As a drug that is not commonly used, bivalirudin is used
more frequently in the ICU but residents adjusting the
infusion rate have little experience, resulting in overdosing
or underdosing. Adequate anticoagulation is necessary
to avoid the risk of clot formation, but overshooting
increases the risk of bleeding. Complicating matters, there
is considerable inter- and intra-individual variability in the
response to bivalirudin. Motivated by these challenges,
in earlier work (Edrich et al. [2011], Zhao et al. [2013,
2014]), we developed methods for predicting future PTT
values given past infusion rates and the patient’s renal and
liver function metrics. One method, proposes an explicit
dynamic system model which was shown to produce quite
accurate results when tested against actual patient data.

In this paper, we pursue what we view as the natural
next step. Leveraging the dynamic system model from
Zhao et al. [2013, 2014], we seek to synthesize controllers
that can regulate the infusion rate to drive PTT within
a desirable range. We develop two types of control laws.
First, and assuming that a dynamic system model that
can predict PTT given dosage is completely characterized,
we directly develop a Model Reference Control (MRC)
law. Model parameters, however, may be viewed as not
known with certainty, which is due to modeling errors and
individual variability. To that end, we develop an indirect
Model Reference Adaptive Control (MRAC) law that iden-
tifies model parameters first and then adapts the controller
in real-time. For both cases, we present analytical and
numerical evidence showing the controllers to drive PTT
to the desirable range. Our numerical validation is done
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using actual patient data from the Brigham and Women’s
Hospital — a large hospital in the Boston area.

The remainder of the paper is organized as follows. Sec. 2
presents the dynamic system model that predicts bi-
valirudin’s effect given dosage and physiological informa-
tion. Sec. 3 presents the proposed control schemes; Sec. 3.1
develops the MRC law whereas Sec. 3.2 develops the in-
direct MRAC law based on the patient model but with
unknown parameters. Finally, conclusions are in Sec. 4.

Notation: We use bold letters to denote vectors and
matrices; typically vectors are denoted by lower case letters
and matrices by upper case letters. Vectors are assumed
to be column vectors. For economy of space we write
x = (x1,--+,x,) for the column vector x € R”. In
addition, we use lower case letters to denote time domain
functions (e.g., f(t)), and upper case letters to denote
Laplace transforms (e.g., F(s)).

2. DYNAMIC SYSTEM MODEL FORMULATION

2.1 The Model

This section presents a Multiple Input Single Output
(MISO) dynamic system model that attempts to explicitly
account for the way bivalirudin affects PTT in patients.
The model was developed and validated in Zhao et al.
[2014]; it is presented here briefly to establish the notation
and to set the stage for the control schemes of Sec. 3.

The key quantity (response) we would like to predict is
the PTT at each time ¢. The dynamic model structure is
shown in Fig 1. There are 11 inputs which are denoted by
u;(t), 4 =1,...,11 and correspond to important physiolog-
ical variables used as predictors. More specifically, inputs
up(t), ..., u11(t) respectively correspond to:

1) Bival rate (mg/kg/h): the weight-based bivalirudin
injection rate.

2) GFR (mL/min): the glomerular filtration rate.

3) PTT (s): last measured PTT value.

4) INR (unit-less): last measured INR value.

5) SGOT (Units/L): the Serum Glutamic Oxaloacetic
Transaminase.

6) SGPT (Units/L): the Serum Glutamic Pyruvic
Transaminase.

(7) TBILI (mg/dL): total bilirubin.

(8) ALB (g/L): Albumin.

(9) PLT (K/mcL): Platelet count.

10) HCT (%): Hematocrit.

11) FIB (mg/dL): Fibrinogen.

More detailed description of these physiological variables
can be found in Zhao et al. [2014].

The model of Fig. 1 has a single output ~the PTT value—
which is denoted by y(t). There is also a single state
variable denoted by z(t). Overall there are 14 unknown
parameters: 13 of which correspond to the various gains
and are denoted by 3;, 9 = 1,...,13. The initial condition
of the system is the 14th unknown parameter and is
denoted by z(0) (314). The system dynamics are:

(1) = Az(t) + Bu(t), (1)
y(t) = Ca(t) + Du(t),

_637 B = [ﬁl 0 0]7 C = 627 and
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Fig. 1. The multiple inputs single output dynamic model.

(LTI) dynamic system. However, we do not know the
model parameters and we only have non-uniform sampled
inputs u(t), and clinical observation values y(t) at certain
times ¢ for each patient. It is therefore necessary to trans-
late the continuous-time system dynamics to discrete-time
dynamics before proceeding with parameter identification.

2.2 Parameter Identification

>
- yt)
/Simulated™
<ps T\ PTTValue
de)

/ Other +
“Inputs

u(t)
/Bival
_Rate Bl >

Fig. 2. In this dynamic model, the bivalirudin infusion rate
u(t) is the only controllable input. d(t) is the linear
combination of the rest of the inputs.

Given the highly non-uniform sampled data, two meth-
ods were introduced to identify model parameters in
Zhao et al. [2014]. First, and after converting to discrete-
time dynamics, we formulated the parameter identification
problem as the nonlinear optimization problem of mini-
mizing some metric of fitness to a training set of sam-
pled data. We applied a Quasi-Newton method to obtain
optimal values for the model parameters. This yielded a
population-wide model in the sense that its parameters
produced the best fit with the sampled data. Furthermore,
and to accommodate variability across patients, we used
a recursive estimation method (Extended Kalman Filter)
to estimate the parameter values that best fit a given
individual patient in real-time.

3. BIVALIRUDIN CONTROL SCHEME

We now turn to our primary goal of devising a proper
controller to keep the PTT value in the range of 50s-70s.
According to clinical experience, this range is optimal for
cardiac surgery patients. For the system defined in Eq. (1),
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Fig. 3. Model Reference Adaptive Control (MRAC) struc-
ture.

the only controllable part is the bivalirudin infusion rate.
Since the rest of the inputs are indicators of patients’ liver
and renal function, we can not control them in a short-
time period. Thus, we split our inputs into two parts: a
controllable part and a non-controllable part (cf. Fig. 2).

Ideally, we want to design a reference model which can
generate sufficient but safe PTT values driven by a ref-
erence input signal. Based on the output of the reference
model, we want to drive our system to perform similarly
to the reference model by a proper control signal. To that
end, we adopt the a continuous-time MRAC scheme (see
Fig. 3). W, (s) denotes an ideal reference transfer function
that can generate the desired reference output signal. The
controllable system is represented by G, (s, 6, »), where 0 is
a parameter vector. The objective is to design a controﬁer
C(s,0}), parameterized by 6%, to generate the proper
control signals that can drive the controllable system to
track the reference output values.

Our first controller is an MRC law that is designed
assuming that the system parameters 0; are known.

3.1 Model Reference Control (MRC)

By observing the system in Fig. 2, we can rewrite the
dynamics of a particular patient as

p(t) = —Psap(t) + Sru(t), (2)

yp(t) = Bap(t) + d(t), (3)
where we use u(t),z,(t),yp(t) to denote the input sig-
nal (bivalirudin infusion rate), the state variable, and
the output signal (PTT), respectively, and where d(t) =
leiQ Bitou;(t). Clinically, since the renal and liver func-
tions of patients do not vary much within the period
between two measurements, we assume that they are con-
stant within the sample interval. By observing the clinical
data, we find that d(t) is a step-wise signal. Therefore,
we assume that the first order derivative of d(t) (d(t)) is
0 within the sample interval. By taking the derivative on
both sides of (3), using (2) to substitute for &,(¢), and
using (3) to eliminate &, (t), we obtain:

Up(t) = —Bayp(t) + B1B2ul(t) + Bsd(t). (4)
In the frequency domain, we have
Yp(S) _ 6162[](5) + 63D(S)7 (5)

5+ B3
where the system output y,(t) (Y,(s)), the input w(?)
(U(s)), and d(t) (D(s)) can be observed. Hence, in
our setting, the system transfer function is G,(s,0,) =

Y, (s)/U(s) parameterized by (1, B2 and fs.

Next, we design a reference transfer function W,,(s). We
take W, (s) to be a first-order LTI system driven by a
reference signal r(¢):

Wials) = s = =", ()

which is equivalent to

Ym(t) = —aénym(t) +by,r(t), or
You(s) = +“; - R(s), (7)

for any bounded piecewise continuous signal r(t), where
am > 0, by, # 0 are known. We assume that a.,, b,,, and
7(t) are chosen so that y,, (t) represents the desired output
signal.

Before introducing the MRC law, we start we some defi-
nitions and a result (proven in Appendix A).

Definition 1

A state x¢ is said to be an equilibrium state of the system

x = f(t,x), x(to) = xg, where x € R*", f : T X
B(r) = R",.7 = [tg,00), B(r) = {x € R" | |x|| < r},
if f(t,xe) = 0Vt > tg. We assume that f is such that

for every xo € B(r) and every ty € [0,00), the system
possesses one and only one solution x(t;tg,Xo)-
Definition 2

A equilibrium state X, is exponentially stable if there exits
an o > 0 and for every € > 0 there exists 6(¢) > 0,
such that |x(t; to, Xo) — X || < ee=*=10) Wt > 0 whenever
Ix0 — xe|| < d(e

Theorem 1. If we choose a,, > 0, by, # 0, and r(t) = C,
(constant), the reference model equilibrium state yme(t) =
bmCy/am, is exponentially stable.

We will now design a proper controller u(t) such that all
signals in the closed-loop system are bounded and the
system output y,(t) tracks the reference model output
ym(t). The control law should be chosen so that the
closed-loop plant transfer function from the input r(t) to
the output y,(t) is equal to the reference model transfer
function. Motivated by this, we propose the control law

u(t) = —kiyp(t) + kyr(t) — k3d(b), (8)
where kT, k3, k3 are controller coefficients chosen so that
Yp(s) bm Yin(s)

R(s) T stam R(s) " ©)
Eq. (9) is satisfied, if we select
= (B man), K=2m k= (o)
12 BT
which yields
u(t) = 5 (s — am)uplt) + 5 2r(6) — 2 d(e), (1)
152 e 182 BB

provided of course that (1, B2, 83 # 0, i.e., the plant is
controllable. Such a transfer function matching guarantees
that y,(¢t) = ym(t), V¢ > to, when y,(to) = ym(to), or
|yp(t)—ym (t)| — 0 exponentially fast when y,,, (to) # yp(to)
for any bounded reference signal r(t).

We test the performance of the MRC on a (de-identified)
data set from the STAR (Surgical ICU Translational
Research) Center at Brigham and Women’s Hospital in
Boston. This data set contains the clinical records of
233 patients, and for each patient, the records consist of
non-uniform sampled inputs and outputs over time. As
mentioned before, d(t) is a step-wise signal over time.
By applying the parameter identification method outlined
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Fig. 4. The effect of the MRC law on a randomly selected patient.

in Sec. 2.2, we obtained both population-wide parameter
values and individual model parameter values.

We tested the MRC control law on a subset of patients
and the results were qualitatively the same in each case.
We report results from a randomly selected patient who
has identified model parameters and available input data.
To that end, we set the reference parameters as a,, = 100,
b, = 6000, r(t) = 1. In simulation, we set the model
time step At = 0.0069s. Choosing these values keeps the
reference PTT value to be 60s, which is in the middle of
the desirable range. We note that these parameter values
are simply an example and physicians have the freedom of
selecting alternative values depending on the stable value
and response time they wish to achieve.

The effect of the MRC law (11) on this randomly selected
patient is shown in Fig. 4. It can be seen that driven
by inputs generated by the MRC law, the system output
quickly converges to the reference output (top figure). The
tracking error (e(t) = yp(t) — ym(t)) quickly converges to
zero and remains at zero (2nd figure). We also obtain the
control signal which corresponds to the bivalirudin infusion
rate (3rd figure). The MRC control law we introduced is
robust to the uncontrollable signal d(t) (bottom figure).
Although d(t) changes over time, the control signal can
adapt and drive the system to track the reference signal
closely. We also note that, depending on the parameters of
some patients, this law may yield a negative control signal
which is infeasible in practice (corresponds to “extraction
of bivalirudin” from the patient). In such a case, we set a
lower threshold of zero for the control signal.

3.2 Indirect Model Reference Adaptive Control (MRAC)

As we mentioned earlier, there is significant patient vari-
ability in the response to bivalirudin. We have already
established, Zhao et al. [2014], that adapting model param-
eters to individual patients leads to improved performance.
This suggests that the model structure is largely accurate
but model parameters of an individual patient can deviate
from population-wide parameter values.

To better assess the effect of this variability, we test the
performance of the MRC law derived using parameter
values of a specific patient when applied to another pa-
tient with different model parameters. Fig. 5 plots the
MRC law performance for such a case. The top figure

shows that there exists a large gap between the reference
output signal and the system output signal. In addition,
the system output is out of the safe range. This situation
should be avoided because overdosing or underdosing is
very dangerous for the patients. To address this issue, we
next develop a method that first estimates the individual
model parameters, and then adopts the MRC law we intro-
duced using a certainty equivalence principle (Ioannou and
Kosmatopoulos [2006]). Such a control scheme is called
indirect Model Reference Adaptive Control (MRAC) law.

By adding and subtracting —a,y,(t) to (4), we can obtain

the State-Space Parametric Model (SSPM):

Up(t) = —amyp(t) + ((am — B3)yp(t) + B1Bau(t) + ﬁsd((t))j
12

Based on (12), the series-parallel estimation model, Toan-
nou and Sun [2012], is given by:

Up(t) = —amPp(t) + ((am — B3(t))yp(t) + Br(£)Ba(t)ult)
+ Bs(t)d(t),  (13)

where 7, () is an estimated value of y,(t), and B (1), Bo (1),
Bs(t) are estimates of the system parameters (1, (2, and
B3 at time t. Note that, in (13), y,(¢) is treated as an input
available for measurement. By using certainty equivalence,
we take the control scheme structure to be

u(t) = —ki(t)yp(t) + ka(t)r(t) — ks(t)d(t),

where

(14)

kl(t:w, Ba(t) = —0m
B1(t)Ba2(t) Bi(t)B2(t)
B Bs(t)
50 = R

In this problem, we will estimate the product of 1 (t) and
B2(t) instead of estimating them separately. The model
estimation error is e(t) = y,(t) — ¥, (¢) which implies:

é(t) =gp(t) — 7,(t)
= — ame(t) + B3(t) (yp(t) — d(t)) — Pra(t)u(t), (15)

ijere R ) o
Bs(t) = Ba(t) — fBs, Bi2(t) = Bi(t)B2(t) — B1f2. (16)
We now choose a Lyapunov-like function

V() = 5o + =30 + 50, ()
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Fig. 5. The MRC law for one patient used on another patient.

which, with ~1, 72 > 0, is non-negative for all ¢t. By taking
the derivative on both sides of (17) we obtain

Vm:wmw+%@@@m+%@wwﬂw
:—%@mf+&mwm%m—ﬂm+%@m1
+3m@m%&xw—e@u@y

Then, choosing
Ba(t) = =71 (yp(t) — d(t))e(t) and Sra(t) = ree(t)u(t)
leads to V(t) = —ame2(t) < 0. In addition, since ()2
and (3 are constants, (16) implies B5(t) = Bg(t) and
Bia(t) = 312@). It follows that we could estimate the

model parameters by:
Bs(t+ At) = B3(t) + By () At,
Bia(t + At) = Bia(t) + B1(t)At,

for small At. Then, we can adapt the controller coefficients
recursively and control the system in real-time by using (cf.

(11))
* Qm — 33 (t)
u(t) = —————+ = (t) — =2 d(t). (20)
Bra(t) Bi2(t) Bra(t)
Theorem 2. Under the control law (20), the tracking error
converges to 0 as t — oo.

(18)

(19)

Proof. By choosing such control law, V (t) = —a,e?(t) <
0, Vt > to. Since V(t) is bounded from below and non-
increasing, it converges to a constant. This implies that
—Qm ftzo e2(t)dt = V(00)—V (to) is bounded, which is turn
implies that e(t) — 0 as t — oo according to Barbalat’s
lemma, Popov and Georgescu [1973]. It also follows that

B3(t), fra(t) — 0 ast — oco. O

One key flaw of the adaptive control law (20) is that the
boundness of control signal u(t) can not be established
unless we show that ki(t), ka(t), ks(t) are all bounded.
However, such a control law may generate estimates of 312
arbitrarily close or even equal to zero, which leads to the
uncontrollability of the estimated model and unboundness
of u(t). To avoid this issue, we propose a modification to
the control law (20). One method is to modify the adaptive

8431

law for 312 (t) so that adaptation takes place in a subset
of R which does not include the zero element. We need to
use the priori knowledge of 51 > 3! > 0 and 3, > 8% >0
to do the projection:

Bs(t) = — 1 (yp(t) — d(t))e(t),

yae(tyu(t), if |Bia(t)] > 15,
B (t) _ or |612(t)| = ib éb
12 and e(t)u(t)sgn(B12(t)) > 0,
0, otherwise.

(21)
After modifying the adaptive control law, the time deriva-
tive of the Lyapunov function becomes:

—am(e®), i |Bia(t)] > A,
or |fia(t)| = BBy
V(t) _ ) and e(t)u(t)sgn(f12) > 0,
+hze(tyult), if |Bra(t)] = BPBY
and e(t)u(t)sgn(B12(t)) < 0.
(22)

Therefore, V(&) < —ame?(t) <0, Vt > to.

Using a similar argument as before, it can be shown that
by using this modified parameter estimation law (21),
the tracking error converges to zero driven by a bounded
control signal. Additionally, we have shown (cf. Thm. 1)
that the reference output response is exponentially stable,
and it follows that the system output can be driven to the
stable state exponentially fast.

We next test the indirect MRAC law using the patient
data. The parameter values of the reference model are
the same as in Sec. 3.1. We choose the population-wide
parameter values $; = 60, and B7B; = 3428.5 as initial

values of Bg(t) and Blg(t), respectively. The MRAC adapts
based on these estimates in real-time. The trajectory of the
system under the indirect MRAC is shown in Fig. 6.

Fig. 6 indicates that the system output quickly converges
to the reference output and it remains within the desired
range (top figure). The tracking error oscillates around
zero (middle figure), but it is not as smooth as in Fig. 4.
This is due to the fact that the indirect MRAC takes some
time (which depends on the parameter setting and model
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Fig. 6. The performance of the indirect MRAC law.

complexity) to estimate the system parameters first and
then adapts the controller coefficients. Similarly, we can
also obtain the bivalirudin infusion rate (bottom figure).
Notice that although d(t) changes over time, the control
signal can drive the system to track the reference output
signal well.

4. CONCLUSIONS

Based on a specific dynamic system model of bivalirudin
acting in cardiac surgical patients, we developed two meth-
ods of synthesizing a controller to regulate the bivalirudin
infusion rate and induce a PTT within a desirable range.
The first method assumes that the model parameters are
available and develops a control law that tracks a physi-
cian specified reference output signal. Our second method
considers patients for which past clinical records are sparse
and accurate model parameters are not readily available.
It develops an indirect control scheme that first estimates
the model parameters and then adapts the corresponding
controller based on these estimates. In the latter case,
choosing population-wide model parameters (hence, not
too far from the parameters of the specific patient) as
initial estimates can help avoid underdosing or overdosing.
This is an important consideration in clinical practice.

The methods we developed can be seen as key steps
towards automation of dosage decisions in a hospital
setting, which can help eliminate errors and neutralize the
inexperience of residents who are currently responsible for
these decisions.
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Appendix A. PROOF OF THEOREM 1
The solution to Eq. (7) is

t
ym(t) = O(t,t0)ym(to) + /<I>(t, T)omr(T)drT,
to
where ®(t,7) = e~*»(*=7) is the state transition function

in this problem. Since r(t) = C,, which is a constant, the
solution to (7) can be written as

—a - mer meT
Ym (5 to, ym (to)) = e~ “m(710) (ym(to)— a >+ PR
(A.1)

Equation (A.1) indicates that yu, (¢; to, Ym(to)) — bmCr/am
which is a constant, as ¢ — oo. In addition, using Defini-
tion 1, it can be easily verified that ymme = by, Cr/ay, is the
equilibrium state of our reference system. Furthermore,
|ym(t;t07ym(t0)) - yme| = |e_am(t_t0)(ym(t0) - yme)| =
Y (to) — Ymele™ @70 Wt > t,. Therefore, by Defini-
tion 2, it follows that the reference model equilibrium state
Yme 18 exponentially stable. O
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