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Abstract: The paper aims to propose an algorithm for PET(positron emission tomography)
image reconstruction. Different from the algorithms designed to satisfy a single performance
index in most cases, our algorithm inherently involves for two objects. Due to that the
information upon noises is utilized fully, our algorithm provides a better reconstructed results
than the one for the a single index when one obtains only some information on noises but does
not know whether the statistics matches the noise level well in advance. The conclusion is also
supported by the numerical experiments.
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1. INTRODUCTION

PET is a popular and functional molecular imaging tech-
nology in that it is a safe and non-invasive way. It makes
use of compounds labeled with positron-emitting radioiso-
topes as molecular probes to image and measure bio-
chemical processes of mammalian biology in vivo Toga
and Mazziotta [2002]. Once the radiopharmaceutical is
injected or inhaled, it is transported and taken up by the
tissue of interest. When the positron emitted by the ra-
diopharmaceutical meets a free electron in the tissue, their
annihilation will produce two gamma ray photons traveling
in opposite direction along a straight line path. If these
two photons are detected within the coincidence timing
window, an event is recorded along the line of response.
The data summing up all of coincidence events is usually
referred as a projection or sinograms, which reflects the
radioisotope distribution in a way. It shows the metabolism
of the tissue further and can be applied in a diagnose of the
object with normal shape but abnormal functional. PET
thus plays an important role in early detection and ther-
apy of cancer. However, there are actually many pseudo-
coincidences such as scattered coincidences, the random
coincidences and some else. The goal of the PET image
reconstruction is to reappear or estimate the radioisotope
distribution in the tissue with the aid of sinogram.

There has been developed two different algorithms in past
20 years. One is so-called analytic reconstruction based
on Center Section Theorem and Radon transformation.
They establish the link between the sinogram and the
radioisotope distribution. The analytic reconstruction of-
ten generates a poor image although it is fast and easy
to use Barrett and Swindell [1996], Ollinger and Fessler
[1997], which stems from that the sinogram covers lots
of pseudo-coincidences besides true ones. It forces anoth-
er algorithm, the iterative reconstruction. It starts out
with the statistical iterative reconstruction such as ML-
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EM method, least square method, weighted least square
method, successive over-relaxation method, etc. Shepp and
Vardi [1982], Fessler [1994], Fessler [2000], Panin et al.
[2006]. The statistical iteration algorithm improves the
variance of the image because it takes the statistics and
statistical model of the data in sinogram into account. Ob-
viously, the statistical iteration depends on the statistical
model heavily. Please refer to Leahy and Qi [2000] for an
relative comprehensive review on the statistical iteration
algorithm before 2002. Different from the statistical itera-
tion, iterative algorithm in the state-space framework be-
gins with modeling the photon arrival process in the PET
system as a noisy measurement, where the state is static or
dynamic radioisotope distribution Tian et al. [2004]. The
latter is always associated with the compartment model
and some physiological parameters Gunn et al. [2002].
The State-space model makes the iterative reconstruction
based on Kalman filtering, H∞ filtering, particle filtering
possible Liu et al. [2005], Liu et al. [2012], Yu et al. [2012].
However, in order to remove the random coincidences, the
delaying coincidence timing window is applied by most
of PET systems. It corrupts the raw Poisson statistics,
which results in a difficulty obtaining the statistics of the
noises to apply Kalman filtering to reconstruct image. In
spite of no need of the statistics of the noise, H∞ filtering
reconstruction is often conservative since it only takes
advantage of the boundedness of the noises and neglects
some noise information available.

The paper will deal with the PET reconstruction in state-
space. Instead of the aforementioned filtering reconstruc-
tion, we make the most of all the information upon the
noises, not only boundedness but also statistics. Lots of
experiments can provide the proportion of the random
coincidences eliminated by delaying coincidence window.
Taken the rest of the coincidences and the eliminated
coincident as two independent Poisson processes, now the
statistics of the noise can be found roughly. To rule out
the disadvantage from imprecise statistics, we will impose
a H∞-type constraint on the optimal reconstruction per-
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formance. In a word, the paper can provide a different
algorithm. It leads to a reconstruction result which is
not only close to the Kalman reconstruction as much as
possible but also satisfies the H∞ constraint.

The organization of the paper is as follows. The PET
reconstruction problem are reformulated in the following
section. Section III presents the solution to the reconstruc-
tion problem. Numerical experiments are given in Section
III. Some conclusion remarks is made in Section IV.

Notations I is the identity matrix with the suitable
dimension. For any vectors x, y, col{x, y} means a col-
umn vector stacked by vectors x, y. For a positive def-
inite matrix M and a vector x, ||x||M = x′Mx . ||x||
denotes 2-norm of vector x. diag{m1, · · · ,mn} represents
a block diagonal matrix with the main diagonal matrices
m1, · · · ,mn.

2. PROBLEM REFORMULATION

The main object of the paper is to reconstruct the ra-
dioisotope distribution x from the measurement y, namely,
photon counting. From Tian et al. [2004], the emitting-
scanning in PET system can be characterizes as

y = Dx+ w, (1)

where y = {yi|i = 1, · · · ,M} represents the sinogram
data removed part of noise by the delay coincident window
method. yi means the total coincidences of the ith detector
bin and M is the number of the detector bins. x =
{xj |i = j, · · · , N} denotes the radioisotope distribution.
xj indicates the concentration at voxel j and N is the
number of the voxels one interests. D is M × N and
reflects the relationship between the sinogram data and
the radioisotope distribution. w is the additional noise.
Assume the radioisotope distribution is time variant, then
the measurement (1) at t instant can be rewritten as

y(t) = D(t)x(t) + w(t). (2)

To discuss the metabolism of organism quantitatively,
compartment model Gunn et al. [2002] is introduced to
describe the radioisotope distribution as follows

ẋ(t) = Ax(t) +Bu(t), (3)

where A are related to the transfer rate of the radioisotope
between compartments. B is the transfer coefficient of
the radioisotope from blood to tissue. u(t) is the injected
before PET scans.

Without loss of generality, consider the discrete-time coun-
terpart of (3)

x(t+ 1) = Ax(t) +Bu(t). (4)

For we interests the static radioisotope distribution, (4)
becomes

x(t+ 1) = x(t). (5)

There is no absolutely static, so a noise term is added to
system (5) so that

x(t+ 1) = x(t) + v(t). (6)

Assume v(t) and w(t) are mutually independent white
noises with

E[v(t)] = 0, E[v(t)2] = Q(t) (7)

E[w(t)] = 0, E[w(t)2] = R(t) (8)

Meanwhile, assume they are bounded energy signals.

Remark 1. The raw counting process in the PET system
is a Poisson process. Traditionally, it is recognized that
pre-correcting the random coincidence via the delaying
coincidence window does correct the data in mean but
leads to the increased variance Leahy and Qi [2000]. Yet
if one takes the eliminated photons arrival and the rest
ones as two mutually independent Poisson processes, then
the previous problem disappears. The data is corrected in
both mean and variance. It means that one can get the
statistics of the data and transform the Poisson data into
the Gaussian Anscombe [1948].

Remark 2. Lots of experiments can provide the good pro-
portion range of the random coincidences to the total
coincidences. Hence, one can obtain the statistics range
of the data although not guaranteeing that the statistics
of data are always accurate.

Remark 1 shows that the reconstruction results based on
only the H∞ filtering may be conservative while Remark
2 shows that the reconstruction results based on only the
Kalman filtering may lead to a poor results when Kalman
filtering reconstruction is sensitive to the noise statistics.

In order to avoid a poor reconstruction result caused by a
pure single filtering, the following constrained problem is
proposed.

min
x̂(t|t)

||x̂(t|t)− x̂1(t|t)||, (9)

s.t.J(t+ 1) ≥ 0, (10)

where x̂1(t|t) and x̂2(t|t) are the Kalman filter and the
center H∞ filter for (6) and (2), respectively.

J(t) (11)

=
t−1∑
i=0

[
y(i)−D(i)x̂2(i)
x̂(i|i)− x̂2(i)

]′
R̄(i)−1

[
y(i)−D(i)x̂2(i)
x̂(i|i)− x̂2(i)

]
is a variant of the typical H∞ performance

||x(t)− x̂2(t)||2

||x(0)− x̂(0)||2 + ||v(t)||2 + ||w(t)||2
≤ γ2 (12)

along with the attenuation level γ and in finite horizon
[0, t], J(0) = 0, and R̄(i) will be specified in the next
section.

So far, the radioisotope distribution reconstruction from
the PET system is converted into an estimation problem
over (6) and (2).

3. RECONSTRUCTION RESULTS

After an analysis over the noises, the PET reconstruction
problem is restated as a constrained optimal filtering
problem in the last section. What follows is to derive the
solution to the problem.
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Since the problem (9)-(10) involves those related to
Kalman filtering and H∞ filtering, we will start with
providing these two filtering in form of lemmas in the
following.

Lemma 1. Consider (6) and (2). The Kalman filter x̂1(t|t)
is given as

x̂1(t|t) = x̂1(t) +K1(t)e1(t) (13)

where

e1(t) = y(t)−D(t)x̂1(t) (14)

x̂1(t+ 1) = x̂1(t) +K1(t)e1(t), x̂1(0) = 0 (15)

K1(t) = P1(t)D(t)′M1(t)
−1 (16)

M1(t) = D(t)P1(t)D(t)′ +R(t) (17)

P1(t+ 1) = P1(t)−K1(t)M1(t)K1(t)
′

+Q(t), P1(0) = 0. (18)

Proof From Theorem 3.3.1 Hassibi et al. [1999], the proof
is straightforward and is omitted.

Lemma 2. For a prescribed γ > 0, consider (6), (2) and
(12). The H∞ filtering problem is solvable if and only if
Riccati equation

P2(t+ 1) = P2(t)− P2(t)[D(t)′ I]R̄(t)−1

[D(t)′ I]′P2(t) + I, P2(0) = 0 (19)

with

R̄(t) =

[
M2(t) D(t)′P2(t)

P2(t)D(t) P2(t)− γ2I

]
(20)

K2(t) = P2(t)D(t)′M2(t)
−1 (21)

M2(t) =D(t)P2(t)D(t)′ + I (22)

has a positive semi-definite solution such that R̄(t) and
diag{I,−I} have the same inertia. Moreover, the H∞
center filter x̂2(t|t) can be given as

x̂2(t|t) = x̂2(t) +K2(t)e2(t) (23)

where

e2(t) = y(t)−D(t)x̂2(t) (24)

x̂2(t+ 1) = x̂2(t) +K2(t)e2(t), x̂2(0) = 0. (25)

Proof From Lemma 4.3.3 Hassibi et al. [1999], the proof
is straightforward and is omitted.

Now we at a position provide the solution to the problem
(9) subject to (10).

Theorem 1. For a prescribed γ > 0, consider (6),(2) and
(9)-(10). Then the optimal x̂(t|t) can be given as

x̂(t|t) =
{
x̂1(t|t), if x̂1(t|t) satisfies (10);
θx̂1(t|t) + (1− θ)x̂2(t|t), otherwise. (26)

where θ ∈ (0, 1) and is given as

θ =
a(t)

1/2

||x̂1(t)− x̂2(t)||b(t)
(27)

with

a(t) = J(t) + e2(t)
′M−1

2 (t)e2(t) (28)

b(t) = [γ2I − (P−1
2 (t) +D(t)′D(t))−1]−1. (29)

Proof It is not hard that (9)-(10) is convex. According to
Kuhn-Tucker condition, the solution x̂(t|t) should satisfy
the following equation system

x̂(t|t)− x̂1(t|t) + λ(x̂(t|t)− x̂2(t|t)) = 0,(30)

λ ≥ 0,(31)

λ[a(t)− (x̂(t|t)− x̂2(t|t))′b(t)(x̂(t|t)− x̂2(t|t))] = 0,(32)

where λ is the relaxation factor. One can solve them in
three cases.
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Fig. 1. the link between the unconstrained solution x̂1(t|t)
and the feasible region B(O, a(t)1/2)

Case I. {
λ = 0
J(t+ 1) ̸= 0

(33)

which implies that x̂1(t|t) is just located inside feasible
region as K1 in Fig.1. Hence, the constrained problem is
converted into a optimal one without constraint and it is
straightforward that x̂(t|t) = x̂1(t|t).
Case II. {

λ = 0
J(t+ 1) = 0

(34)

which implies that x̂1(t|t) is just located in the boundary
of the feasible region as K2 in Fig 1. Hence, there still
holds x̂(t|t) = x̂1(t|t).
Case III. {

λ > 0
J(t+ 1) = 0

(35)

which means x̂1(t|t) is outside the feasible region as K3

in Fig.1. Hence, the optimal solution should be located
in the boundary of the feasible region. It is not easy to
solve λ directly, so we handle the problem from geometrical
view. Let ||z||b(t) = (z′b(t)z)1/2, which virtually define
a norm by virtue of the inertia condition in Lemma 2.
Now the feasible region is in fact a closed ball with center
x̂2(t|t) and radius a(t)1/2, see Fig.1. Hence, the potential
optimal solution x̂(t|t) should be the point C where the
ball B(O, a(t)1/2) and the line K3O cross, i.e. θx̂1(t|t) +
(1 − θ)x̂2(t|t). For verify that point C is the optimal
solution, one still needs to prove λ > 0. From (32), there
holds
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λ = − [x̂(t|t)− x̂2(t|t)]′[x̂(t|t)− x̂1(t|t)]
||[x̂(t|t)− x̂2(t|t)]||2

. (36)

Denote α as the angle between the vector x̂(t|t) − x̂2(t|t)
and vector x̂(t|t) − x̂1(t|t), it is clear that α = π. Now
one has λ = ||x̂(t|t)− x̂1(t|t)||/||x̂(t|t)− x̂2(t|t)|| > 0 from
cos(α) = −1. The proof is completed.

It is shown by Theorem 1 that the Kalman filter is the
optimal one among all ofH∞ filters when the Kalman filter
is located inside the H∞ constrained region; Otherwise,
the optimal one is the H∞ filter located in the boundary
of the H∞ constrained region and nearest to the Kalman
filter.

Remark 3. Although Theorem 1 is proposed for the static
image reconstruction, it is suitable for the dynamic image
reconstruction. It is should be stressed that the idea
achieving a performance subject to another performance
can lead to a practical results.

4. NUMERICAL EXPERIMENTS

The reconstruction method in the paper is validated with
the computer-synthesized Zubal-thorax-phantom.

The true Zubal-thorax-phantom and its sinogram are
shown in Fig. 2 and Fig. 3, respectively.
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Fig. 2. the ture Zubal-thorax-phantom
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Fig. 3. Sinogram

For comparing the reconstruction performance in the pa-
per, the Kalman filtering (KF) reconstruction, H∞ fil-
tering (HF) reconstruction and the constrained filtering
(CF) reconstruction algorithm proposed in the paper are
applied to two different noise parameters. Parameters I
match the noises well and can guarantee that the Klaman
reconstruction recovers the Zubal-thorax-phantom better

than parameters II unmatched with the noise level. The
reconstruction results of 3 algorithms for parameters I are
displayed in Fig. 4, Fig. 5 and Fig. 6, respectively. The
reconstruction results of 3 algorithms for parameter II are
shown in Fig. 7, Fig. 5, and Fig. 8, respectively. Different
from the performance of the pure single filtering recon-
struction algorithm, KF or HF algorithm, it is clear that
CF algorithm can leads to a nice image reconstructions
whether the statistics matches the noises level or not. Or
rather, the CF algorithm is more suitable than the KF
and HF algorithms since one does not know whether the
statistics matches the noise level in advance.
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Fig. 4. Reconstructed image: KF at matched noise level
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Fig. 5. Reconstructed image: HF at matched noise level
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Fig. 6. Reconstructed image: CF at matched noise level

We can also compare the reconstruction results via

the error bias = 1
N

∑N
i=1(xi − x̂i) and variance =

[ 1
N−1

∑N
i=1(xi − x̂i)

2]1/2, see Table 1 as follows. Table 1
shows that the CF algorithm may not present the best
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one of the 3 reconstruction results, yet it is the best one
when one does not know whether the statistics matches
the noise level or not in advance.

5. CONCLUSION

The paper provides a new algorithm of image reconstruc-
tion for PET systems. Different from the Kalman or H∞
algorithm, the algorithm in the paper can guarantee the
quality of reconstructed image whether the statistics of
noises is accurate enough or not. If the statistics is relative-
ly accurate, the reconstruction result is provided based on
the Kalman filtering; otherwise, the reconstruction result
is given based on the H∞ filter nearest to the Kalman
filter.
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