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Abstract: A dynamically substructured system (DSS) consists of both physical and numerical
components. It is used for the testings of the dynamics of some systems arising from engineering
problems to overcome the drawbacks of conventional testing methods. One of the key issues
influencing the DSS testing accuracy is from the synchronization of the physical and numerical
components. This synchronization can be achieved by a controller (called DSS controller). To
facilitate the DSS controller design, this paper develops a sophisticated DSS framework with its
variations to further enhance the analysis and design of DSS. The main feature of the proposed
DSS framework is that it has a strict separation of numerical and physical substructures, which
can enable one to explicitly identify the relations of the substructures and signals within a DSS
and thus greatly facilitate sophisticated treatments of DSS problems, such as DSS establishment,
causality, as well as uncertainties and measurement noise incorporation in robust control. The
proposed framework and its variations unify many DSS problems.

1. INTRODUCTION

Dynamically substructured system (DSS) is a testing
method used in the dynamics testing community. The ap-
plications of the DSS concept can be found in areas such as
civil engineering [Nakashima et al., 1992], robotics [Stoten
et al., 2009b], automotive [Plummer, 2006] and aerospace
[Nana and Huzar, 1973]. A DSS contains both physical
components (called physical substructure) and numerical
components (called numerical substructure), which are to
be synchronized during a testing so that the DSS response
can be as close as possible to that of the original emu-
lated system. This feature of DSS makes it outperform
the conventional pure physical or pure numerical testing,
scaled size testing, and pseudo-dynamic testing [Shing
and Mahin, 1987]. DSS is also distinguishable from the
hardware-in-the-loop (HiL) method, which is used tra-
ditionally to test the performance of a controller, with
a hardware interface to an embedded numerical plant;
however, DSS is also defined within the HiL category in
some literature. For a detailed discussion about different
testing methods see Williams and Blakeborough [2001],
Stoten and Hyde [2006].

The performance of DSS testing is mainly determined
by the synchronization of the physical and numerical
substructure. The DSS synchronization problem has been
discussed from different angles [Lamarche et al., 2009,
Bursi et al., 2010, Horiuchi and Konno, 2001, Wallace
et al., 2005]. One way to achieve DSS synchronization
is to employ a controller, called DSS controller in this
paper. To facilitate the controller design for DSS, Stoten
and Hyde [2006] propose a concise and generic framework
as shown in Fig. 1, where the signals include the testing
signal d, the control signal u and the DSS outputs z1 and
z2 to be synchronized; G1 contains the components on

which the testing signal d is acted; G0 and G2 contain the
components which are attached to the actuators controlled
by u. The framework emphasizes the relations of the
signals of a DSS, and hence facilitates the DSS controller
design. This can be seen by transforming Fig. 1 into the
equivalent representation of Fig. 2, where we have G =
G0 + G1 and Gd = G1 − GKd. The DSS synchronization
error is determined by y = SGdd with the loop transfer
matrix L = GKy and the sensitivity function S = (I +
L)−1. Based on this framework, the DSS synchronization
problem can be resolved by directly applying abundant
control strategies, such as the linear control based on
the root locus design, minimal control synthesis (MCS)
[Stoten et al., 2009a], H∞ control [Tu et al., 2009, Li
et al., 2013a], neural network control [Li et al., 2011b,
2013b], model predictive control [Li et al., 2010] and anti-
windup compensation [Li et al., 2011a, 2013a] techniques.
However, although this framework is concise for the DSS
controller design, it also has some drawbacks:

(1) Each block in this framework can contain both phys-
ical and numerical components, which makes it dif-
ficult to describe the uncertainties from the physical
components;

(2) The transfer system is contained in the blocks G0 and
G1, so that the dynamics of the transfer system and
its saturation cannot be explicitly taken into account;

(3) The interface signals are not explicitly shown, so that
some potential problems associated with causality
analysis and measurement noise, etc., cannot be taken
into account easily in a DSS controller design.

All these hinder more sophisticated DSS analysis and
design. It is noticed that the physical and numerical
substructures are divided strictly in many existing DSS
establishments for specific problems; however, a generic
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Fig. 1. A generic DSS control framework proposed by
Stoten and Hyde [2006]
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Fig. 2. Equivalent representation of Fig. 1

DSS framework with strict separation of physical and
numerical substructures is absent. The main objective
of this paper is thus to further refine the framework
by Stoten and Hyde [2006] by proposing a unified DSS
framework with complete separation of the physical and
numerical substructures. This helps to gain insight into
the DSS formulation and hence significantly facilitates the
development of DSS systems and their transformations.
Since the interface signals and the dynamics of the transfer
system are explicitly signified, the causality problems in
the DSS establishment can be conveniently investigated.
All these features of the proposed framework pave the way
for the future robust analysis and control of DSS and DSS
performance validation when uncertainties in the physical
substructures and the measurement noises from the output
of the physical substructures are involved.

In this paper, we name this framework as a complete
separation framework (CSF). This CSF represents a fairly
generic class of DSS. To further enlarge the class of DSS
that can be represented by the CSF, two extra frameworks
are derived: one is called substructure and signal dual CSF,
which is derived by swapping the physical and numeri-
cal blocks, and also the constraint and synchronization
interface signals in the original CSF; the other one is
called signal dual CSF, and it is derived by swapping
the constraint and synchronization interface signals in the
original CSF. All these CSFs represent a large class of DSS,
though it is not claimed to represent all possible DSS cases.

The structure of this paper is as follows. A CSF is firstly
proposed in Section 2. Its corresponding two dual CSFs are
derived in Section 3. In Section 4, the mass-spring-damper
system is used to demonstrate the establishments of the
CSFs and their transformations. The paper is concluded
in Section 5.

2. A CSF FOR DSS

A CSF for DSS is shown as the block diagram in Fig.3
which contains 7 blocks. For a specific system, some of
the blocks may not be present, so that its DSS block
diagram can be simplified. By defining a block as a group
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Fig. 3. The block diagram of the generic DSS framework
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framework

of components, we use P to represent a physical block
only containing physical components and N to represent
a numerical block only containing numerical components.
The subindex is used to distinguish the locations of the
blocks. In Fig. 3, PA consists of the transfer functions
of actuators (or transfer systems) in a diagonal form;
{PA, Pd1, Pu1, Pu3, Pu4} constitute the physical substruc-
ture (ΣP ) and {Nd2, Nu2} constitute the numerical sub-
structure (ΣN ). Furthermore, {Pd1, Nd2} represent the
components, through which the testing signal d acts on the
system. The input and output of PA are the control signal
u and the actuation signal zA respectively. zN and zP are
called DSS outputs. We define the difference between zN
and zP , i.e. e := zN − zP as substructuring error and
define the constraint signal z̃ := z̃P = z̃N at the interface
between Pu1 and Nu2, where z̃P is the output of Pu1 and
z̃N is the input of Nu2. In Fig. 3, the sign ‘q’ denotes
the interface. Generally, the output signals of the physical
and numerical components are referred to as physical and
numerical signals respectively.

For the framework shown in Fig.3, we have the following
explanations:

1) The inteface signals (or variables) are defined as those
residing at the interface between two adjacent blocks.
They are categorized into three types:
a) The interface signal between numerical block and

physical block;
b) The interface signal between two physical blocks;
c) The interface signal between two numerical blocks.
In this paper, we assume that there is no synchroniza-
tion problem for case c), though sometimes it needs also
to be considered (e.g., the situation when two numerical
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models reside separately in two computers at different
locations.).

2) We classify all the available interface signals in cases
a) and b) into two groups according to their physical
senses: one group contains the constraint signals, de-
noted by {z̃N , z̃p}, while the other group contains DSS
output signals, denoted by {zN , zP }. For example, in
a mechanical system the interface signals can be forces
and displacements, we can choose the forces as the in-
teraction constraint to be satisfied (i.e. the output force
of one block is equivalent to the input force of the other
block), while the displacements from the two blocks
are to be minimized. We call this as DSS force control
(see e.g. the case in Neild et al. [2005]). In Gawthrop
et al. [2009], DSS force control and displacement control
are referred to as effort actuation and flow actuation
respectively. The appropriate choice of force control
and displacement control is an essential factor when
considering the DSS causality problem.

3) We assume the components in the physical and nu-
merical blocks Pd1 and Nd2 in Fig. 3 are not directly
connected, although the blocks appear to have a cas-
cade connection. The disturbance in each channel can
only go though either a physical component in Pd1 or
a numerical component in Nd2, while not being able to
go through both numerical and physical components in
series.

Now we explore this CSF. From Fig. 3, the following
relations hold:

zN = Nd2Pd1d− Pu3zA −Nu2z̃N (1)

z̃P = Pu1zA (2)

zA = PAu (3)

zP = Pu4zA (4)

If we set the constraint variables equivalent i.e. z̃N = z̃P ,
then the equations (1)-(3) lead to

zN = Nd2Pd1d− (Pu3 +Nu2Pu1)zA (5)

Hence the DSS can be expressed by

zN = Nd2Pd1d− (Pu3 +Nu2Pu1)PAu (6a)

zP = Pu4PAu (6b)

which take the same form with Fig. 1, with G0 = (Pu3 +
Nu2Pu1)PA, G1 = Nd2Pd1 and G2 = Pu4PA.

Define the DSS error as

e = zN − zP . (7)

From (4), (5) and (7), we have

zN =Pu4[Pu3 + Pu4 +Nu2Pu1]
−1

× [Nd2Pd1d+ (Pu3 +Nu2Pu1)P
−1
u4 e] (8a)

zP =Pu4[Pu3 + Pu4 +Nu2Pu1]
−1(Nd2Pd1d− e) (8b)

which reflect the influence from DSS error e on DSS
outputs zN and zP . Setting e = 0 in (8) gives

zE := Pu4[Pu3 + Pu4 +Nu2Pu1]
−1Nd2Pd1d (9)

IfNu2 is replaced by Pu2 in (9), then the system (9) exactly
represents the original system to which the DSS of Fig. 3
is emulated. Thus we call the system (9) as an emulated
system, as shown in Fig. 4. Note that the causality requires
Pu4 and Pu3+Pu4+Nu2Pu1 to be invertible and proper. In
this paper we do not investigate the solution of the causal
problem, but refer to the method developed in Gawthrop
et al. [2009] as a possible solution. The framework and the

ones introduced later in this paper provide a convenient
way to investigate this problem.

If we further define the errors between the outputs of the
DSS and the emulated system as

eN = zN − zE

= Pu4[Pu3 + Pu4 +Nu2Pu1]
−1(Pu3 +Nu2Pu1)P

−1
u4 e

eP = zE − zP = Pu4[Pu3 + Pu4 +Nu2Pu1]
−1e

then the following relation hold:

e = eN + eP = Nd2Pd1d− (Pu3 +Nu2Pu1 + Pu4)PAu

which can be alternatively derived by substituting (6a)
and (6b) into e = zN − zP .

From (6) and (9), we have the following proposition:

Proposition 1. For the DSS framework shown in Fig. 3
and its emulated system shown in Fig. 4, if the DSS error
e = 0, then zN = zP = zE .

Remark 1. This proposition explicitly justifies the DSS
control objective, that is, the regulation of the DSS error
e guarantees that the DSS outputs, zN and zP , converge
to the output of the emulated system, zE .

3. THE DUAL DSS SYSTEMS

Based on the strict separation framework as shown in Fig.
3, we introduce two dual systems: substructure & signal
dual DSS system (Sub&Sig-DSS) and signal dual DSS
system (Sig-DSS). These dual systems not only generalize
the applicability of the proposed CSF shown in Fig. 3, but
also reveal insightful information for DSS establishment.
Similarly, we can also define a substructure dual DSS (Sub-
DSS) by only swapping the physical and numerical blocks.
We do not give more details here, and just illustrate its
relation with other DSS transformations by examples in
the next section.

3.1 Substructure & signal dual

Corresponding to the original DSS shown in Fig. 3, we
consider its dual DSS by interchanging both the block
properties and interface variables. Specifically, the physical
blocks are changed to numerical blocks (i.e. {Pd1, Pu1, Pu3}
are replaced by {Nd1, Nu1, Nu3}), while the numerical
blocks are changed to physical blocks, (i.e., {Nd2, Nu2}
are replaced by {Pd2, Pu2}); the constraint signals z̃N and
z̃P are used as DSS outputs; the DSS outputs zN and zP
are used as the constraint signals. Following this rule, the
equations (1) - (4) are converted to:

zP = Pd2Nd1d−Nu3zA − Pu2z̃P (10)

z̃N = Nu1zA (11)

z̃P = PÃu (12)

zN = Nu4zA (13)

where z̃P is generated by another actuator PÃ (in many
cases, this actuator can be the same physical actuator as
the original one, but with different variable to be measured
as the examples to be shown later); alternatively, the
dynamics of PÃ can be estimated by Nu1PA.

If we eliminate zA from (10) and (13), and set the con-
straint variables equivalent in (10), i.e. z := zN = zP ,
then we have

z = Nu4(Nu3 +Nu4)
−1(Pd2Nd1d− Pu2z̃P ) (14)
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Fig. 5. The block diagram of the substructure & signal
dual generic DSS framework.
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Fig. 6. The block diagram of the dual generic emulated
system framework.

and

z̃N = Nu1(Nu3 +Nu4)
−1(Pd2Nd1d− Pu2z̃P ) (15)

Hence the dual DSS system can be represented as

z̃N = Nu1(Nu3 +Nu4)
−1(Pd2Nd1d− Pu2PÃu) (16a)

z̃P = PÃu (16b)

and the substructuring error is

ẽ := z̃N − z̃P

= Nu1(Nu3 +Nu4)
−1(Pd2Nd1d− Pu2PÃu)− PÃu

This system is illustrated in Fig. 5, where Nz :=
Nu1(Nu3 +Nu4)

−1.

Substituting ẽ = z̃N − z̃P into (15) leads to

z̃N = (I +NzPu2)
−1Nz(Pd2Nd1d+ Pu2ẽ)

z̃P = (I +NzPu2)
−1(NzPd2Nd1d− ẽ)

This system is illustrated in Fig. 6, which is a counterpart
to the Sub&Sig-DSS. When ẽ = 0, this system becomes
the emulated system of the Sub&Sig-DSS. The output of
the emulated system is

z̃E := Nu1(Nu3 +Nu4 + Pu2Nu1)
−1Pd2Nd1d (17)

3.2 Signal dual DSS

To derive the Sig-DSS, we need to first determine which
variables can be exchanged. This requires a strict separa-
tion of the variables from the numerical and physical com-
ponents. To achieve this, further partition of the signals
and the blocks are necessary.

In the DSS system Fig. 3, suppose d ∈ Rl, u, zA, zN , zP ∈
Rn, z̃N , z̃P ∈ Rm with m ≤ n, and Pd1 ∈ RHl×l

∞ ,

Nd2 ∈ RHn×l
∞ , PA ∈ RHn×n

∞ , Pu1 ∈ RHm×n
∞ , Nu2 ∈

RHn×m
∞ , Pu3, Pu4 ∈ RHn×n

∞ . Here RHn×m
∞ denotes the

space consisting of proper real rational n × m transfer
function matrices with no poles on the right half plane.
We can arrange Pu3 and Nu2 in such a form

Nu2 =

[
0

N̄u2

]
Pu3 =

[
P̄u3

0

]
(18)

with N̄u2 ∈ RHm×m
∞ and P̄u3 ∈ RH(n−m)×n

∞ . In this way,
the sum of the outputs from Pu3 and Nu2 is a stacked
vector, whose first n − m elements are physical signals
from Pu3 and last m elements are numerical signals from
Nu2. Furthermore, Pd1 and Nd2 can also be arranged in
a similar way such that the output of the disturbance
channel contains the outputs from physical components
in its first n −m entries and the outputs from numerical
components in its last m entries. Corresponding to the
above arrangement of the blocks, zN and zP can be
partitioned into two parts

zN =

[
z
(P )
N

z
(N)
N

]
zP =

[
z
(P )
P

z
(N)
P

]
(19)

so that z
(P )
N ∈ R(n−m)×1 is the difference between the

outputs of the physical components Pd1 and Pu3, and

z
(N)
N ∈ Rm×m is the difference between the outputs of
the numerical components Nd2 and Nu2. The output of
the actuators zP is accordingly partitioned into

z
(P )
P = P

(P )
u4 PAu (20)

z
(N)
P = P

(N)
u4 PAu (21)

where

P
(P )
u4 =

[
In−m 0(n−m)×m

]
Pu4 (22)

P
(N)
u4 =

[
0m×(n−m) Im

]
Pu4 (23)

Now we want to use z
(N)
N and z

(N)
P as the constraint

variable, and the DSS outputs are constructed as

ẑN =

[
z
(P )
N
z̃N

]
ẑP =

[
z
(P )
P
z̃P

]
(24)

respectively. From (3) and (2), we have the synchronization
signal z̃P

z̃P = Pu1PAu = PÃu (25)

where
PÃ := Pu1PA (26)

Thus, ẑP is determined by

ẑP :=

[
z
(P )
P
z̃P

]
=

[
P

(P )
u4
Pu1

]
PAu (27)

Suppose Nd2 is partitioned in accordance with the parti-
tion of zN , such that

Nd2 =

[
N

(P )
d2

N
(N)
d2

]
with N

(P )
d2 ∈ RH(n−m)×l

∞ and N
(N)
d2 ∈ RHm×l

∞ . Then from
the partitions of Pu3 and Nu2 in (18), (1) can be written
as

zN =

[
z
(P )
N

z
(N)
N

]
=

[
N

(P )
d2

N
(N)
d2

]
Pd1d−

[
P̄u3

0

]
zA−

[
0

N̄u2

]
z̃N (28)

Suppose the inverse of N̄u2 exists. Then pre-multiplying
(28) by [

0m×(n−m) N̄−1
u2

]
leads to

z̃N = N̄−1
u2 (N

(N)
d2 Pd1d− z

(N)
N )

Combining the above equation with

z
(P )
N = N

(P )
d2 Pd1d− P̄u3zA
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leads to[
z
(P )
N
z̃N

]
=

[
In−m 0
0 N̄−1

u2

]
Nd2Pd1d−

[
0(n−m) 0

0 N̄−1
u2

]
zN

− Pu3zA

Since the constraint variables satisfy z
(N)
N = z

(N)
P =

P
(N)
u4 PAu, the DSS output can be represented as

ẑN :=

[
z
(P )
N
z̃N

]
=

[
I 0
0 N̄−1

u2

]
Nd2Pd1d

−
(
Pu3 +

[
0(n−m)×(n−m) 0

0 N̄−1
u2

]
Pu4

)
PAu

(29)

By simplifying (29) and combining it with (27), we have
the Sig-DSS

ẑN = N̂z

(
Nd2Pd1d−

[
P̄u3

P
(N)
u4

]
PAu

)
(30a)

ẑP =

[
z
(P )
P
z̃P

]
=

[
P

(P )
u4
Pu1

]
PAu (30b)

with N̂z :=

[
I 0
0 N̄−1

u2

]
. The resulting Sig-DSS is illustrated

in Fig. 7.

When n = m, i.e. Pu3 does not exist, N̄u2 = Nu2,

N
(N)
d2 = Nd2, N̂z = N−1

u2 and P
(N)
A = PA, the Sig-DSS

framework (30) is reduced to

ẑN = z̃N = N−1
u2 (Nd2Pd1d− Pu4PAu)

ẑP = z̃P = PÃu = Pu1PAu
(31)

4. MASS SPLIT EXAMPLE

In this section, we consider a mass(m)-damper(c)-spring(k)
system as shown in Fig. 8. This example is extensively
studied in the DSS literature (e.g. Neild et al. [2005],
Gawthrop et al. [2009]). We show how to establish DSS
using the frameworks proposed in this paper.

In Fig. 8, d is the testing signal (displacement); y is the
displacement of the mass; f1 is the force acting on the mass

from the spring and the damper. The dynamics equation
for the emulated system in Fig. 8 is

mÿ = k(d− y) + c(ḋ− ẏ)

and its Laplace transform representation is

y(s) =
cs+ k

ms2 + cs+ k
d(s) (32)

Suppose the mass m is split into two parts – the top mass
is m2 and the bottom mass m1. f2 is the interaction force
between m1 and m2. The system are supposed to have two
substructures: the top substructure consisting of mass m2

and the bottom substructure consisting of m1, k and c.
We can consider each substructure either as physical or
numerical, and also consider the interface signal either as
force or displacement. Thus we can derive 4 different DSS
formulations. We adopt new notations to represent them
concisely. For example, we use ‘P − N : y’ to denote the
DSS when the top mass is physical, the bottom remaining
parts are numerical, and the DSS outputs are displacement
signals.

4.1 Case P −N : y

Suppose the numerical substructure contains the bottom
massm1, spring k and damper c; the physical substructure
contains the top mass m2. Then we have the following
relations:

m1ÿn = f1n − f2n

f1n = k(d− yn) + c(ḋ− ẏn)

m2ÿp = f2p

from which we have

yn =
cs+ k

m1s2 + cs+ k
d− 1

m1s2 + cs+ k
f2n

yp =
1

m2s2
f2p

Suppose the constraint signals are f2n = f2p and the force
f2p is generated by a force actuator such that f2p = PAfu.
Then the DSS can be represented by equations

yn = Nd2d−Nu2PAfu (33)

yp = Pu4PAfu (34)

with

Nd2 =
cs+ k

m1s2 + cs+ k
,Nu2 =

1

m1s2 + cs+ k
, Pu4 =

1

m2s2

This is the DSS framework shown in Fig. 3, with Pd1 = I,
Pu3 = 0, Pu1 = I. Using (9), we can derive the dynamics
of the emulated system as follows:

yE = Pu4(Pu4 +Nu2)
−1Nd2d =

cs+ k

(m1 +m2)s2 + cs+ k

which is consistent with (32).

4.2 Case P −N : f

Consider the case that the top mass is physical, the
remaining parts are numerical, while the constraint signals
are yp = yn and the DSS output signals are f2n and f2p.
This is the Sig-DSS of the case P − N : y. Using the
relations in (31), we have

f2n = N−1
u2 (Nd2d− yp) = N−1

u2 (Nd2d− Pu4PAfu)

f2p = PAfu

In this case, the block N−1
u2 is not proper and noncausal.
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4.3 Case N − P : f

Consider the case that the top mass is numerical, the
remaining parts are physical, while the constraint signals
are yp = yn and the DSS output signals are f2n and f2p.
This is the Sub&Sig-DSS of the case P −N : y. From the
relations in (16a) with Nz = N−1

u4 and PÃ = PAf , we have

f2n = N−1
u4 (Pd2d− Pu2PAfu)

f2p = PAfu

Moreover, from (17) we can derive f of the emulated
system as

fE = (Nu4 + Pu2)
−1Pd2d =

m2s
2(cs+ k)

ms2 + cs+ k

4.4 Case N − P : y

Consider the case that the top mass is numerical, the
remaining parts are physical, while the constraint signals
are f2p = f2n and the DSS output signals yn and yp are
swapped due to the change of blocks.

In this case, the DSS is derived by changing Nd2, Nu2 and
Pu4 to Pd2, Pu2 and Nu4 respectively and swap yn and yp
in equations (33) and (34). f2p is generated by an actuator
f2p = PAfu, so that the DSS is described by

yp = Pd2d− Pu2PAfu (35)

yn = Nu4PAfu (36)

This DSS is a Sub&Sig-DSS of the case P −N : f and it
can also be viewed as a Sub-DSS of the case P −N : y.

5. CONCLUSION

We have proposed a DSS framework with a complete
separation of physical and numerical substructures. This
framework can be transformed into other forms by using
the internal relations of the substructures and signals. This
framework and its transformed ones unify most exiting
DSS formulations. The spring-mass-damper with mass
split system is used as concrete examples to demonstrate
the DSS establishment and the transformations using
these frameworks. These frameworks help gain insights of
the DSS, and provide a convenient way to investigate many
essential problems associated with DSS, e.g. the causality
problem. Based on these frameworks, further researches
such as robust stability and DSS performance validation
can be conducted.
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