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Abstract: This paper investigates the adaptive state-feedback stabilization of stochastic
nonholonomic systems which have both uncertain parameters and time-varying coefficients.
The state-scaling and backstepping techniques are exploited in the design of controllers. The
adaptive state-feedback stabilizing controllers and switching control strategy are proposed so
that the closed-loop system can be stabilized in probability. In the end, two simulation examples
are provided to illustrate effectiveness of controllers.
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1. INTRODUCTION

Consider the following stochastic nonholonomic nonlinear
systems described by

dx0 = d0(t)u0dt+ f0(x0)dt+ gT0 (x0)dω, (1.1)

dxi = di(t)u0xi+1dt+ fi(x0, xi, θ)dt
+gTi (x0, xi, θ)dω, i = 1, · · · , n− 1,

dxn = dn(t)udt+ fn(x0, xn, θ)dt+ gTn (x0, xn, θ)dω


(1.2)

where u0 and u ∈ R are control inputs, x0 ∈ R and
(x1, · · · , xn)T ∈ Rn are system states, xi = (x1, · · · , xi)T ,
θ ∈ Rm is a constant vector of uncertain parameters,
f0(x0) : R → R and fi(x0, xi, θ) : Ri+1×Rm → R, 1 ≤ i ≤
n, are smooth functions and nonlinear drifts with f0(0) = 0
and fi(0, 0, θ) = 0, g0(x0) : R → Rr, gi(x0, xi, θ) : Ri+1 ×
Rm → Rr, 1 ≤ i ≤ n, are smooth functions with g0(0) = 0
and gi(0, 0, θ) = 0, di(t) : R+ → R, 0 ≤ i ≤ n, are
unknown uncertain time-varying control coefficients with
known sign, and ω ∈ Rr is an r-dimensional independent
standard Wiener process defined on a complete probability
space (Ω,F , P ) with Ω being a sample space, F being a
filtration, and P being a probability measure.

The stabilization of nonholonomic control systems has
achieved remarkable development during the two decades.
After the results in (Arnold, 1988), three methods are
used to stabilization of nonholonomic systems: discontin-
uous time-invariant stabilization(Astolfi, 1996; Ge, 2003),
smooth time-varying stabilization(Jiang, 1996; Tian, 2002;
Hu, 2004), hybrid stabilization(Luo, 2000). Now much
progress has been made in stability of stochastic differ-

ential equations(SDE). Especially, when backstepping de-
signs were firstly introduced, stochastic nonlinear control
had experienced a breakthrough(Krstic, 1998; Pan, 1999).
Based on the quartic Lyapunov function, asymptotical
stabilization control in the large of the open-loop system
without any nonholonomic constraint was discussed(Deng,
2001). Further research was developed by the recent work
(Wu, 2007; Tian, 2007).

It is known that stochastic disturbances are frequently
encountered in nonholonomic systems, especially, nonholo-
nomic mobile robots. There were some results which con-
sidered the problem of stabilization for stochastic non-
holonomic systems(Wu, 2012; Gao, 2012). The problem
of stabilization was discussed in (Wang, 2006) with no
drift terms and (Zhao, 2011; Zhang, 2013) in which the
first equation was ordinary differential equation. Y. Liu et
al. studied the output feedback stabilization (Liu, 2011).
Compared with the systems in (Zhang, 2013), there some
new features in this paper: one is that the first equation
contains drifts, the other is the uncertain parameters not
only exist in nonlinear drifts but in the terms before
dω. These new features will lead to difficulty to the de-
sign controllers. Although, we have discussed the similar
problem for simple three order stochastic nonholonomic
in (?), there are many estimation parameters. How to
design adaptive state-feedback stabilizing controllers for
stochastic nonholonomic systems with uncertain parame-
ters and time-varying coefficients simultaneously using less
estimation parameters.
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The purpose of this paper is to design stabilizing con-
trollers for stochastic nonholonomic systems with un-
known parameters and time-varying coefficients. The main
idea of this paper is highlighted as follows:

adaptive state-feedback stabilizing controllers are designed
for stochastic nonholonomic systems with unknown pa-
rameters and time-varying coefficients, simultaneously by
an estimation parameter.

The paper is organized as follows: Section 2 begins with the
mathematical preliminaries. In Sections 3, adaptive state-
feedback backstepping controllers are designed. In Sections
4, a switching control strategy for the original system is
discussed. Finally, two simulation examples are given to
show the effectiveness of controllers in Section 5.

2. PRELIMINARIES

The following notations will be used throughout the paper.
R+ denotes the set of all nonnegative real numbers, Rn

denotes the real n-dimensional space. For a given vector
or matrix X, XT and |X| denote its transpose and the
Euclidean norm, respectively, Tr{X} denotes its trace

when X is square, |X|F =
√
Tr{XXT }.

Consider the following stochastic nonlinear system

dx = f(t, x)dt+ g(t, x)dω, x(0) ∈ Rn. (2)

Define a differential operator L:

LV (x) =
∂V

∂x
f(t, x) +

1

2
Tr

{
gT (t, x)

∂2V

∂x2
g(t, x)

}
, (3)

where x ∈ Rn is the state, the Borel measurable functions
f : R+ × Rn → Rn and g : R+ × Rn → Rn×r are locally
Lipschitz in x, f(t, 0) = 0, g(t, 0) = 0, and ω ∈ Rr is an r-
dimensional independent standard Wiener process defined
on the complete probability space (Ω,F , P ).
The following definitions and lemmas will be used through-
out the paper.

Definition 1. (Deng, 2001). The equilibrium x = 0 of
system (2) is
• globally stable in probability if for ∀ε > 0, there exists a
class K function γ(·) such that

P{|x(t)| < γ(|x0|)} ≥ 1− ε, ∀t ≥ 0, x(0) ∈ Rn \ {0},
• globally asymptotically stable in probability if it is
globally stable in probability and

P{ lim
t→∞

|x(t)| = 0} = 1, ∀x(0) ∈ Rn.

Lemma 2. (Xie, 2009). Considering the stochastic system
(2), if there exist a C2 function V (x), class K∞ functions
α1(·) and α2(·), constants c1 > 0, c2 ≥ 0, and a nonnega-
tive function W (x) such that{

α1(|x|) ≤ V (x) ≤ α2(|x|),

LV (x) =
∂V

∂x
f +

1

2
Tr

{
gT
∂2V

∂x2
g
}
≤ −c1W (x) + c2,

then for each x(0) ∈ Rn

i). There exists an almost surely unique solution on [0,∞)
for (2),

ii). When c2 = 0, f(t, 0, θ) = 0, g(t, 0, θ) = 0 and W (x) is
continuous, then the equilibrium x = 0 is globally stable
in probability and P{ lim

t→∞
W (x(t)) = 0} = 1.

Lemma 3. (Lin, 2002). Let x and y be real variables. Then,
for any positive integers m, n and any real number ε > 0,
the following inequality holds:

|x|m|y|n ≤ m

m+ n
ε|x|m+n +

n

m+ n
ε−

m
n |y|m+n.

Lemma 4. (Lin, 2000). For any vector-valued continuous
function f(x, y), where x ∈ Rm, y ∈ Rn, there are smooth
scalar functions a(x) ≥ 1 and b(x) ≥ 1 such that

|f(x, y)| ≤ a(x)b(y).

3. ADAPTIVE STATE-FEEDBACK STABILIZATION

For system (1), the following assumptions and remark are
needed.

Assumption 5. For smooth functions f0(·), g0(·), there
exist known constant m1 and constant vector m2 ∈ Rr,
such that

f0(x0) = m1x0, g0(x0) = m2x0. (4)

Assumption 6. For smooth functions fi(·) and gi(·), i =
1, · · · , n, there exist known non-negative smooth functions
γi : Ri+1 ×Rm → R+ and ξi : Ri+1 ×Rm → R+ such that
for any x0, xi and θ:

|fi(x0, xi, θ)| ≤ (|x1|+ · · ·+ |xi|)γi(x0, xi, θ),
|gi(x0, xi, θ)| ≤ (|x1|+ · · ·+ |xi|)ξi(x0, xi, θ).

Remark 7. From Lemma 3, there exist positive smooth
functions γi(x0, xi), ci(θ), ξi(x0, xi) and ei(θ), i =
1, · · · , n, such that

|fi(x0, xi, θ)| ≤ (|x1|+ · · ·+ |xi|)γi(x0, xi)ci(θ),
|gi(x0, xi, θ)| ≤ (|x1|+ · · ·+ |xi|)ξi(x0, xi)ei(θ).

Assumption 8. Without loss of generality, the sign of di(t)
is assumed to be positive, and for i = 0 and any t ∈
R+, there exist known positive constants λ0 and µ0, for
i = 1, · · · , n and any t ∈ R+, there exist known positive
constants λi and unknown positive constant µ, such that

0 < λ0 ≤ d0(t) ≤ µ0, 0 < λi ≤ di(t) ≤ µ.

In the following two subsections, we will consider the
system (1) under the condition of x0(0) ̸= 0 and the case
of x0(0) = 0 will be discussed in the Section 4.

3.1 The first state stabilization

Let us consider the subsystem (1.1) in stochastic nonholo-
nomic nonlinear systems (1). In order to guarantee that
x0 converges to zero, one can take u0 as follows:

u0 = −η0x0, η0 =
1

λ0
{λ+ sgn(m1)m1 +

3

2
|m2m

T
2 |F }, (5)

where λ is a design parameter and sgn(·) denotes sign
function. If we employ a Lyapunov function of the form
V0(x0) =

1
4x

4
0. From (1.1), Assumption 8, (3) and (5), one

can obtain LV0 ≤ −λx40. From above analysis, we have the
following Theorem.

Theorem 9. If Assumptions 5 holds, for constant m1, λ0,
constant vector m2, and the design parameter λ > 0, the
smooth controller u0 satisfy (5), then

i). the closed-loop system composed by (1.1) and (5) has
an almost surely unique solution on [0,∞) for all x0(0),
which is bounded in probability.
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ii). the equilibrium x0 = 0 of the closed-loop system
composed by (1.1) and (5) is globally asymptotically stable
in probability.

Substituting (5) into the subsystem (1.1), it is easy to
obtain that

dx0 = −η0d0(t)x0dt+ f0(x0)dt+ gT0 (x0)dω. (6)

Proposition 10. For any initial state x0(t0) ̸= 0, the
solution of (6), that is, the solution of the closed system
composed by (1.1) and (5), will never reach the zero, which
avoids the uncontrollability of the subsystem (1.2).

Proof. From Lemma 2.3((Mao, 1997), P.93), one gets
Proposition 10 holds.

3.2 Other states stabilization

In order to design a smooth adaptive state-feedback con-
troller, the following state-input scaling transformation is
needed

zi = xi/u
n−i
0 , 1 ≤ i ≤ n. (7)

Remark 11. For the initial state x0(t0) ̸= 0, from Propo-
sition 10, one can obtain that the transformation (7) is
meaningful.

Under the new z-coordinate, the second subsystem (1.2)
can be transformed into

dzi = di(t)zi+1dt+ ϕidt+ ψT
i dω,

i = 1, · · · , n− 1,
dzn = dn(t)udt+ ϕndt+ ψT

n dω,
(8)

where

ϕi =
fi

un−i
0

+ η0(n− i)d0(t)zi − (n− i)zi
f0
x0

+
1

2
(n− i)(n− i+ 1)zi

gT0 g0
x20

+ η0(n− i)
gTi g0

un−i+1
0

,

ψi =
gi

un−i
0

− (n− i)zi
g0
x0
.

To invoke the backstepping method, the error variables εi
are given by

ε1 = z1, εi = zi − z∗i (x0, zi−1, Θ̂), i = 2, · · · , n, (9)

where z∗i (i = 2, · · · , n) are virtual smooth controllers, Θ̂
denotes the estimate of Θ and

Θ = max
{
1, µ, ci(θ), ei(θ), e

2
i (θ)

}
. (10)

Then, by Itô differentiation formula, we have
dε1 = d1(t)z2dt+ ϕ1dt+ ψT

1 dω,
dεi = di(t)zi+1dt+ Fidt+GT

i dω,
i = 2, · · · , n− 1,

dεn = dn(t)udt+ Fndt+GT
ndω,

(11)

where zi = (z1, · · · , zi)T , z = zn and

Gi = Gi(t, x0, zi, Θ̂) =
gi

un−i
0

− (n− i)zi
g0
x0

− ∂z∗i
∂x0

g0(x0)

−
i−1∑
k=1

∂z∗i
∂zk

{ gk

un−k
0

− (n− k)zk
g0
x0

}
, i = 1, · · · , n.

Fi = Fi(t, x0, zi, Θ̂)

= fi/u
n−i
0 + η0(n− i)d0(t)zi − (n− i)zif0/x0

+
1

2
(n− i)(n− i+ 1)zi

gT0 g0
x20

+ η0(n− i)
gTi g0

un−i+1
0

−∂z
∗
i

∂x0
d0(t)u0 −

∂z∗i
∂x0

f0(x0)−
1

2

∂2z∗i
∂x20

gT0 g0

−
i−1∑
k=1

∂z∗i
∂zk

{
dk(t)zk+1 +

fk

un−k
0

+ η0(n− k)d0(t)zk

−(n− k)zk
f0
x0

+
1

2
(n− k)(n− k + 1)zk

gT0 g0
x20

+η0(n− k)
gTk g0

un−k+1
0

}
−1

2

i−1∑
k=1

∂2z∗i
∂x0∂zk

{ gTk
un−k
0

− (n− k)zk
gT0
x0

}
g0

−1

2

i−1∑
j,k=1

∂2z∗i
∂zj∂zk

{
[
gTk
un−j
0

− (n− j)zj
gT0
x0

] ·

[
gk

un−k
0

− (n− k)zk
g0
x0

]
}
− ∂z∗i

∂Θ̂

˙̂
Θ,

By using the Assumption 6, (7), (8) and (9), we have the
following proposition.

Proposition 12. For smooth functions fi(·) and gi(·), i =
2, · · · , n, there exist known non-negative smooth functions
γij : Ri+1 × Rm → R+, j = 1, 2, 3, 4, 5, such that for any
x0, xi and θ:

| fi

un−i
0

| ≤ Θγi1(x0, xi)

i∑
k=1

|εk|, |
gi

un−i
0

|

≤ Θγi2(x0, xi)
i∑

k=1

|εk|,

| g
T
i

un−i
0

− (n− i)zi
gT0
x0

− ∂z∗i
∂x0

g0(x0)

−
i−1∑
k=1

∂z∗i
∂zk

{ gTk
un−k
0

− (n− k)zk
gT0
x0

}
|

≤ Θγi3(x0, xi)
i∑

k=1

|εk|,

−1

2

i∑
k=1

∂2z∗i
∂x0∂zk

{ gTk
un−k
0

− (n− k)zk
gT0
x0

}
g0|

≤ Θγi4(x0, xi)
i∑

k=1

|εk|,

| − 1

2

i∑
j,k=1

∂2z∗i
∂zj∂zk

{
[
gTk
un−j
0

− (n− j)zj
gT0
x0

] ·

[
gTk
un−k
0

− (n− k)zk
gT0
x0

]T
}
| ≤ Θγi5(x0, xi)

i∑
k=1

|εk|.
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Now we design the adaptive backstepping controller of the
system (11).

Step 1: Define the 1st Lyapunov function V1(x0, z1, Θ̃) =

V0 + 1
4ε

4
1 + 1

2 Θ̃
2, where Θ̃ = Θ − Θ̂ are the parameter

estimation errors. According to Assumption 6, (8) and
(9), there exist nonnegative smooth functions γ11(x0, z1),
c1(θ), e1(θ), γ12(x0, z1) and γ13(x0, z1), adding and sub-
tracting the term Θc1ε

4
1 + c1ε

4
1 on the right-hand side

of LV1, Supposing that z∗2(x0, z1, Θ̂) = −α1(x0, z1, Θ̂)ε1,
where α1(·) ≥ 0 is a smooth function to be chosen. Thus,
by Assumption 8, (3) and (9), we have

LV1 ≤−λx40 −Θc1ε
4
1 − c1ε

4
1 + d1(t)(z2 − z∗2)ε

3
1 + λ1ε

3
1z

∗
2

+Θ̃
{
τ1 −

˙̂
Θ
}
+

{√
1 + Θ̂2H11 +H12

}
ε41, (12)

where τ1 = H11ε
4
1, H11 = c1 + γ11 + (n − 1)γ12m1 +

3
2γ

2
13,H12 = c1 + (n − 1)

{
η0µ0 +m1 +

1
2n|m2|2

}
. Choos-

ing the virtual smooth control z∗2 = −α1(x0, z1, Θ̂)ε1,

α1(x0, z1, Θ̂) = 1
λ1

(√
1 + Θ̂2H11 +H12

)
, one gets

LV1 ≤ −λx40 −Θc1ε
4
1 − c1ε

4
1 + d1(t)ε

3
1(z2 − z∗2)

+Θ̃{τ1 −
˙̂
Θ}.

(13)

Step i, 2 ≤ i ≤ n : Suppose that the design steps
from 1 to i − 1 have been finished. The smooth virtual
control z∗j and the tuning function τj−1 for Step j −
1(j = 2, · · · , i) have been chosen as z∗j (x0, zj−1, Θ̂) =

−αj−1(x0, zj−1, Θ̂)εj−1, τj−1 = τj−2 + Hj−1,1ε
4
j−1, where

αj−1, δj−1 and Hj−1,1 are smooth functions. If we
choose the (i − 1)th Lyapunov candidate function as

Vi−1(x0, εi−1, Θ̃) = Vi−2(x0, εi−2, Θ̃) + 1
4ε

4
i−1, one gets

LVi−1 =−(λ−
i−1∑
k=2

βk)x
4
0 −Θ

i−1∑
j=1

(cj −
i−1∑

k=j+1

ckj)ε
4
j

−
i−1∑
j=1

(cj −
i−1∑

k=j+1

ckj)ε
4
j + di−1(t)ε

3
i−1(zi − z∗i )

+(Θ̃ +
i−1∑
k=2

ε3k
∂z∗k

∂Θ̂
)
{
τi−1 −

˙̂
Θ
}
, (14)

where εi = (ε1, · · · , εi)T . In the following, we will prove
that (14) also holds for i. Define the ith Lyapunov candi-

date function Vi(x0, εi, Θ̃) = Vi−1(x0, εi−1, Θ̃)+ 1
4ε

4
i . From

Assumption 8, Lemma 3, (3), (9)-(11), Proposition 2 and
adding and subtracting the term Θciε

4
i +ciε

4
i on the right-

hand side of LVi, one gets

LVi ≤−(λ−
i∑

k=2

βk)x
4
0 −Θ

i∑
j=1

(cj −
i∑

k=j+1

ckj)ε
4
j

−
i∑

j=1

(cj −
i∑

k=j+1

ckj)ε
4
j + di(t)ε

3
i (zi+1 − z∗i+1)

+λiε
3
i z

∗
i+1 + (Θ̃ +

i∑
k=2

ε3k
∂z∗k

∂Θ̂
)
{
τi −

˙̂
Θ
}
+ E, (15)

where

βi = (1/4)η0µ0 + 3/8, E = {
√
1 + Θ̂2Hi1 +Hi2}ε4i , (16)

ci1 = 1 + (1/4)(n− i) + (1/4)(i− 1) + (1/4)η0µ0(n− 2)

+(1/4)(n− 2) + (1/8)(n− 1)(n− 2) + (3/4)i

+(1/8)(i− 1)(2n− i),

Hi1 = ci +
1

4
+ γi1 + (n− i)

(
γi2|m2|+

3

4

i−1∑
k=1

(|m2|γi2)
4
3

)
+

i−1∑
k=1

3

4
γ

4
3
i1 +

i−2∑
k=1

3

4

√
1 + (A)2

4
3 +

√
1 + (B)2

+

i−1∑
k=1

3

4

√
1 + (A)2

4
3 +

i−1∑
k=1

3

4
γ

4
3
i5 +

3

4
iγ4i3

+
i−1∑
k=1

(n− k)
k∑

j=1

3

4

√
1 + (γk2|m2|A)2

4
3

+

i−1∑
k=1

k∑
j=1

3

4

√
1 + (A)2

4
3 +

i−1∑
k=1

3

4
γ

4
3
i4 +

3

2
iγ2i3, (17)

Hi2 = ci + η0µ0(n− i)(1 + (3/4)α
4/3
i−1)

+(n− i)(m1 + (3/4)(m1αi−1)
4/3)

+
1

2
(n− i)(n− i+ 1)

(
|m2|2 +

3

4
(|m2|2αi−1)

4
3

)
+
3

4
η0µ0

√
1 + (D)2

4
3 +

3

4
m

4
3
1

√
1 + (D)2

4
3

+
3

8

√
1 + (|m2|2x0

∂2z∗i
∂x20

)2

4
3

+
3

4
η0µ0

i−1∑
k=1

(n− k){
√
1 + (A)2

4
3 +

√
1 + (αk−1A)2

4
3 }

+
3

4

i−1∑
k=1

(n− k)
√
1 + (m1A)2

4
3

+
3

4

i−1∑
k=1

(n− k)
√
1 + (m1αk−1A)2

4
3

+
3

8

i−1∑
k=1

(n− k)(n− k + 1)
√

1 + (αk−1|m2|2A)2
4
3

+
3

8

i−1∑
k=1

(n− k)(n− k + 1)
√

1 + (|m2|2A)2
4
3

+

i−1∑
k=1

3

4

√
1 + (ε3kHk1C)2

4
3

+
√
1 + (ε3iHi1C)2

+

i−1∑
k=2

√
1 + (ε3kHi1C)2, (18)
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cik = (5/4) + (1/4)(n− i) + (1/4)(i− k)

+(1/4)(n− k − 1) + (1/8)(n− k − 1)(n− k)

+(1/8)(i− k)(2n− i+ 1− k) + (3/4)i

+(1/4)η0µ0(n− k − 1), k = 2, · · · , i− 2,

cik = (1/4){1 + η0µ0(n− k) + (n− k)}
+(1/8)(n− k)(n− k + 1), k = 1, · · · , i− 2,

A=
∂z∗i
∂zk

, B =
∂z∗i
∂zi−1

, C =
∂z∗i

∂Θ̂
, D =

∂z∗i
∂x0

, (19)

ci,i−1 = 9/4 + (1/4)(n− i) + (1/4)(n− i+ 1) + (3/4)i,

ci,i−1 = (1/4) + (1/4)(n− i){η0µ0 + 1 + (1/2)(n− i+ 1)}
+(1/4)(n− i+ 1){η0µ0 + 1 + (1/2)(n− i+ 2)}.

Choosing the virtual smooth control z∗i+1 as z
∗
i+1(x0, zi, Θ̂)

= −αi(x0, zi, Θ̂)εi, αi(x0, zi, Θ̂) = 1
λi

(√
1 + Θ̂2Hi1 +

Hi2

)
, one can obtain

LVi ≤−(λ−
i∑

k=2

βk)x
4
0 −Θ

i∑
j=1

(cj −
i∑

k=j+1

ckj)ε
4
j

−
i∑

j=1

(cj −
i∑

k=j+1

ckj)ε
4
j + di(t)ε

3
i (zi+1 − z∗i+1)

+(Θ̃ +
i∑

k=2

ε3k
∂z∗k

∂Θ̂
)
{
τi −

˙̂
Θ
}
. (20)

In the end, when i = n, zn+1 = z∗n+1 = u is the actual
control, choose the actual controller

u(x0, zn, Θ̂) = −αn(x0, zn, Θ̂)εn (21)

and adaptive law for Θ̂

˙̂
Θ = τn =

n∑
i=1

Hi1ε
4
i , (22)

where αn ≥ 0 are smooth functions. If we choose nth

Lyapunov function Vn(x0, ε, Θ̃) = 1
4x

4
0 + 1

4

n∑
k=1

ε4n + 1
2 Θ̃

2,

where ε = εn = (ε1, · · · , εn)T , one gets

LVn ≤ −(λ−
n∑

k=2

βk)x
4
0 −Θ

n∑
k=1

(ck −
n∑

i=k+1

cik)ε
4
k

−
n∑

k=1

(ck −
n∑

i=k+1

cik)ε
4
k.

(23)

Theorem 13. If Assumptions 5, 6 and 8 hold and choose

the control input u and updating law Θ̂ as (17) and (18),
respectively. Then
i) the closed-loop system composed by (11), (17) and (18)
has an almost surely unique solution on [0,∞) for ∀z(0)
and Θ̂(0);

ii) the equilibrium (zT , Θ̃T ) = (0, 0) of the closed-loop
system is globally stable in probability;

iii) for ∀z(0) and Θ̂(0), P{ lim
t→∞

|z(t)| = 0} = 1,

P{ lim
t→∞

Θ̂(t) exists and is finite} = 1.

Proof. By (19), one can obtain LVn in (19) becomes
the same form as (3.19) in (Deng, 2001). Using (19) and
Lemma 2, and following the same procedure as in the
proof of Theorem 3.1 in (Deng, 2001), one can easily prove
Theorem 2.

4. SWITCHING CONTROL STABILITY

In section 3, we have considered the case of x0(t0) ̸= 0.
The controllers (5) and (17) for system (1) are given. Now
we turn to the case of x0(t0) = 0. If the initial is zero,
one can choose an open loop control u0 = −u∗0 ̸= 0. With
the similar method in in Section V in (Wu, 2012), we have
there exists t∗s > 0 such that |x0(t∗s)| ̸= 0, which can drive
the state x0 away from zero in a limited time. So, when
t ∈ [t0, t

∗
s), one can choose the control law u0 = −u∗0 and

u = u∗ in order to drive the state x0 away from zero. After
that, at the time t = t∗s, we switch the control inputs u0
and u into (5) and (17) in t ∈ [t∗s,+∞), respectively. Based
on above analysis, we give the main results of this paper.

Theorem 14. Suppose that Assumptions 5, 6 and 8 hold.
If the following switching control procedure is applied to
the system (1),

i) When the initial state belongs to

{(x0(t0), x1(t0), · · · , xn(t0)) ∈ Rn+1|x0(t0) ̸= 0},
controllers u0 and u in form (5) and (17), respectively;

ii) When the initial state belongs to

{(x0(t0), x1(t0), · · · , xn(t0)) ∈ Rn+1|x0(t0) = 0},
If t ∈ [t0, t

∗
s), one can choose the control law u0 = u∗0 and

u = u∗; If t ∈ [t∗s,+∞), at the time t = t∗s, we switch
the control inputs u0 and u into (5) and (17), respectively.
Then, for any initial conditions in the state space , system
(1) will be asymptotically stabilized in probability at the
equilibrium and specifically, the states are asymptotically
regulated to zero in probability.

5. A SIMULATION EXAMPLE

Consider the following system

dx0 = (0.525 + 0.375sint)u0dt+ 0.5x0dt+ 0.5x0dω,
dx1 = (3 + 0.1sint)x2u0dt+ x1θdt+ x1θdω,
dx2 = (3 + 0.2sint)udt+ x2θ

2dω

In simulation, choose θ = 1, λi(i = 0, 1, 2), µ0 and µ to
satisfy 0.15 = λ0 ≤ d0(t) ≤ µ0 = 0.9, λ1 = 2.9 ≤ d1(t) ≤ µ
and λ2 = 2.8 ≤ d2(t) ≤ µ which satisfy Assumption
3,η0 = 3.8, c1 = 1.8, c1 = 0.8, c2 = 0.1, c2 = 0.1 and the
initial values x0(0) = 0.15, x1(0) = 0.057, x2(0) = −0.13,

Θ̂(0) = 0.18. Figure 1, 2 and 3 give the responses of the
closed-loop system consisting of (1), (5) and (17).

6. CONCLUSIONS

This paper studies the adaptive state-feedback stabiliza-
tion of stochastic nonholonomic systems with unknown
parameters. By using the backstepping approach, a recur-
sive adaptive state-feedback backstepping controllers is de-
signed for stochastic nonholonomic systems with unknown
parameters.
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