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Abstract: This paper proposes a vector field guided auto-landing control of an airship with a wind 
disturbance, whose motion is described in a vertical plane. Whereas hovering and vertical landing 
abilities are advantages of the airship, there is little research on the auto-landing mechanism. Unlike the 
previous airship control algorithms which compensate the disturbances using linear and nonlinear control 
laws such as backstepping control methods, the proposed auto-landing control algorithm is simpler than 
the backstepping controllers and covers the wind disturbances with unknown bound. To this end, the 
vector field based guidance law achieving the control objectives and adaptive-robust dynamic control law 
realizing the desired course are proposed. The stability analysis and simulation results of the proposed 
auto-landing control law are included to demonstrate the practical applicability of the proposed method. 
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1. INTRODUCTION 

Airship has become an interesting type of an unmanned aerial 
vehicle (UAV) for past few years because of a reappraisal of 
contributions of the airship. The airship has been employed to 
various applications such as indoor and outdoor advertising 
tasks, a fire detection, an inspection of big structures, a 
surveillance of a borderline, and military applications since 
the airship can hover for a long time, consume little energy, 
take-off and land vertically, and have large payload (Pavia et 
al., 2006; Solaque et al., 2008; Azinheira et al., 2008). Also, 
these advantages have derived developments of the following 
actual airship in real environment: AURORA, High-Altitude 
Airship of Lockheed Martine, Stratospheric Airship, etc. 
(Zheng et al., 2012). Particularly, the hovering ability among 
the contributions of the airship has been researched (Pavia et 
al., 2006; Azinheira et al., 2008), which can provide the 
applications such as manipulation of big objects or the 
surveillance of local area. These applications do not require 
only the hovering ability, but also, vertical landing. That is, it 
can improve the performance of the airship to land 
automatically while keeping the position over the landing 
point.  

To control the airship, there were PID control (Kahale et al., 
2013) and dynamic inversion (Moutinho et al., 2005) 
algorithms which can be implemented in a simple way. 
However, these methods could not compensate the wind 
disturbances. To control the airship with the wind 
disturbances in real environments, backstepping control 
algorithms which compensate the wind disturbances were 
proposed (Kahale et al., 2013; Azinheira et al., 2008). These 
nonlinear control algorithms improve the performances of the 
airship with the model uncertainties and the disturbances 
under the path-following task in flight phase. Also, the input 
constraint of the airship was considered (Azinheira et al., 

2008).  However, in the previous work regarding the wind 
disturbances, it was assumed that the bound of the 
disturbance is known (Kahale et al., 2013), and the 
backstepping control mechanism is still complicated (Chaw, 
2010). In addition, there is little research on the auto-landing 
control of the airship. There is a lack of sufficient generality 
for a flight phase as a landing phase is because of the ground 
effect of the airship in the vicinity of the ground (Malaek et 
al., 2004). 

Thus, this paper proposes the vector field guided auto-
landing control algorithm for the airship in the landing phase 
with the wind disturbance. To this end, it is assumed that 
longitudinal and lateral motions can be departed (Pavia et al., 
2006), the simplified model of airship is employed (Solaque 
et al., 2008), and the airship can face the goal position using 
the control algorithms proposed in the previous works 
regarding the motion of the airship in the horizontal plane 
(Zheng et al., 2012; Pavia et al., 2006; Azinheira et al., 2008).  
From these assumptions, the airship is re-described in vertical 
plane with respect to the airship position and the goal 
position. To provide the approaching course toward the goal 
position, the vector field based guidance law is introduced, 
and then, the desired direction and the velocities of the 
airship generated by the proposed guidance law are realized 
by an adaptive robust velocity control algorithm using the 
modified trajectory tracking control algorithm proposed in 
Chaw (2010), such that the wind disturbances are 
compensated while regarding the input constraints. Therefore, 
the proposed auto-landing control algorithm provides the 
following advantages to the airship: 1) the control algorithm 
is simple than the previous backstepping control mechanism; 
2) the wind disturbance with the unknown bound are 
compensated; and 3) the airship is controlled despite of the  
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Fig. 1. The projected simplified model of the airship in the 
vertical plane. 

limited inputs. This paper is organized as follows. We show 
the decoupled airship model in Section 2, and we introduce 
the novel vector field for the auto-landing method in Section 
3. In Section 4, the desired velocity generation and the 
velocity control law are proposed. To demonstrate the 
usefulness of the proposed control algorithm, simulation 
results are presented in Section 5. Finally, the conclusions of 
the study are given in Section 6. 

2. AIRSHIP MODEL 

This paper considers the two dimensional vertical movement 
of the airship, where longitudinal and vertical motions are 
included. For these projected motion, it is assumed that the 
airship can face the goal position using the already suggested 
yaw angle controls on the horizontal plane. The motion of the 
airship on the vertical plane is depicted in Fig. 1.  

In Fig. 1, ( ),c czρ  is current position of the airship in the goal 
position frame, cθ  is the moving direction, Gf  is the 
upstream force from the gas in the airship, g  is the gravity 

force, cv  is the velocity of the airship, ( ), zv vρ  are the 

velocities along each axis, and ( ), zW Wρ  is the wind 

disturbances which are bounded as W Dρ ρ≤  and z zW D≤  
where Dρ  and zD  are unknown. It is possible that the airship 
in Fig. 1 is described as the following decoupled and 
simplified model: 

cM u Wρ ρρ = +  (1 a) 
c z G zMz u f g W= + − +  (1 b) 

where M  is a mass of the airship, uρ  and zu  are control 
inputs. Also, the relationships of cθ , cv , vρ , and zv  are 
represented as 

cosc c cvρ θ=

 

(2 a) 
sinc c cz v θ=  (2 b)

 ( )atan2 ,c zv vρθ =  (2 c) 

where atan2(·) is a four-quadrant invers tangent determined in 
the intervals (-π, π].  

 

Fig. 2.The guidance law based on the vector field. 

3. VECTOR FIELD BASED GUIDANCE LAW 

This section shows the guidance law based on the vector field 
where the airship is guided toward the goal position. The 
vector field with respect to the goal position is presented in 
Fig. 2. Fig. 2 shows the desired course on the two-
dimensional vertical plane. The desired course toward the 
goal position is presented as the arrows which are the 
direction of the vector field. dv  is the desired velocity 

( dv will be designed in the following section), ( ), z
d dv vρ  are 

the projected desired velocities on each axis, which are 
acquired as 

cosd d dv vρ θ=   (3 a) 
sinz

d d dv v θ= ,  (3 b) 
and dθ  is the desired moving direction determining the 
approaching angle to the goal position, which is the direction 
of the arrows in Fig. 2. On the vertical plane, the airship is 
guided to the goal position by the desired direction designed 
as follows. 

( ) 1, tan
2

d c
d c c

c

kz
z
ρπθ ρ −  

= − −  
   (4) 

where dk  is positive constant which influences the transition 
rate of the vector field. If cρ  goes to −∞  or ∞ , then dθ  
converges to 0 or π− , respectively, and if cρ goes to 0, then 

dθ  converges to / 2π− . Also, unlike the vector field based 
motion control on the horizontal plane, in the proposed auto-
landing algorithm, the desired moving direction dθ  is 
designed using not only the ground distance, cρ , between the 
airship and the goal position, but also, the altitude of the 
airship, cz , because the desired course for the landing 
process should consider the collision with the ground. If cz  
becomes small, then the change rate of dθ  becomes small too, 
also, if cz  becomes 0, then dθ  does not change at all.  

Remark: since dk  in (4) determines the transition rate of the 
desired moving direction along the ground distance between 
the airship and the goal position. This influence of dk  is 
represented in Fig. 3. As can be seen in Fig. 3, if dk  is small 
value, desired direction determined toward the goal position,  
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 and if dk  becomes bigger value, the direction of the vector 
field is changed rapidly around the z-axis. Therefore, the 
various change rate of the desired course with respect to the 
altitude and the ground distance between airship and the goal 
position is allowed because of the proposed vector field in (4). 
Indeed, it should be shown that the airship goes to the goal 
position when it moves along the desired coursed generated 
in (4). To this feasibility of the proposed desired moving 
direction, the following lemmas show the convergence of the 
errors (Kingston and Beard, 2007). 

Lemma 1 (Ground distance convergence): The ground 
distance between the airship and the goal position converges 
to zero if the airship follows dθ . 

Proof: To show the convergence of the cρ  to zero, we define 
*
dθ  as  

*

2 2 2d d
π π πθ θ  − ≤ = − − ≤ 

  . (5) 

Then the time derivative of cρ  becomes 

*

*

cos cos
2

    sin .

c d d d d

d d

v v

v

πρ θ θ

θ

 = = + 
 

=



 (6) 

When the sign of cρ  and *
dθ  are compared using (5) and (6),  

( ) ( )
( ) ( )
( ) ( )

*

*

   sgn sgn

sgn sin sgn

sgn sgn
0.

d c

d d c

c c

c c

v

θ ρ

θ ρ

ρ ρ
ρ ρ

− =

⇒ − =

⇒ − =

⇒ ≤





 (7) 

Lyapunov function 2 / 2cVρ ρ=  is chosen, whose time 

derivative is negative definite as 0c cVρ ρ ρ= ≤  , 0cρ →  as 
t → ∞  (Khalil, 1992).  (Q.E.D.) 

Lemma 2 (Altitude convergence): The altitude of the airship 
converges to zero if the proposed landing algorithm is 
employed to the airship in the landing phase.  

Proof: When *
dθ  in Lemma 1 is used, the time derivative of 

cz  becomes 

*

*

sin sin
2

   cos .

c d d d d

d d

z v v

v

πθ θ

θ

 = = + 
 

= −


 (8)

 When the sign of cz  and *
dθ  are compared using (8), since 

( ) ( )
( ) ( )
( ) ( )

*

*

   sgn cos sgn

sgn cos sgn

sgn sgn
0,

d d c

d d c

c c

c c

v z

v z

z z
z z

θ

θ

=

⇒ − = −

⇒ = −

⇒ ≤





 (9) 

Lyapunov function 2 / 2z cV z=  is chosen, whose time 
derivative is negative definite as 0z c cV z z= ≤  , then it is 
possible to show that 0cz →  as t → ∞  (Khalil, 1992). 
 (Q.E.D.) 

Accordingly, we can show that the airship in the landing 
phase converges to goal position if the airship follows the 
proposed desired course generated by the vector field. 

4. DECOUPLED AIRSHIP CONTROL 

The desired velocity and moving direction are realized by the 
proposed decoupled velocity control algorithm which makes 
the actual longitudinal and vertical velocities converge to the 
desired velocities, dvρ  and z

dv . To this end, we design the 
desired velocity based on Chwa (2010) as follows: 

( ) ( ){ }tanh / cos tanh / sind p c p d c p dv k k z kρ θ θ= − +  (10) 
where pk  is the positive constant. The feasibility of the 
proposed desired velocity in (10) is stated in the following 
theorem.  

Theorem 1(The desired velocity generation): Consider the 
dynamic model of the airship and the desired course achieved 
from the vector field in Figs. 1 and 2. If the desired velocity 
in (10) is employed to the airship, cρ  and cz  converge to 
zero asymptotically as t → ∞ .  

Proof: We showed that the airship converges to the goal 
position while the airship follows the proposed desired course 
from the vector field. This finding derives that the desired 
velocity can be designed with respect to the desired moving 
direction.  

Subscribing the desired velocity to (2), then (2) becomes 

cos
sin

c d
d

c d

v
z
ρ θ

θ
   

=   
   



 . (11) 

If (11) becomes  

( )
( )

tanh /cos
sin tanh /

c pc d
d p

c d c p

k
v k

z z k

ρρ θ
θ

      = = −          



 ,
 (12) 

  
(a) dk =1 (b) dk =3 

  
(c) dk =8 (d) dk =18 

Fig. 3. The effect of dk  to the vector field. 
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then cρ  and cz  converge to zero as t → ∞ . To acquire the 
desired velocity, [ ]cos sind dθ θ  is multiplied to both sides 
in (12). Then (12) becomes 

[ ] [ ]
( )
( )

( ) [ ]
( )
( )

2 2

tanh /cos
cos  sin cos  sin

sin tanh /

tanh /
cos sin cos  sin

tanh /

c pd
d d d p d d

d c p

c p

d d d p d d

c p

k
v k

z k

k
v k

z k

ρθ
θ θ θ θ

θ

ρ
θ θ θ θ

    = −      
 
 + = −
  

 (13) 

From (13), we can acquire the desired velocity as in (10). 

 (Q.E.D.) 

The designed desired velocity can be realized by the velocity 
control laws which control the actual velocities in (2) to 
converge to the desired velocities in (3) and (10). To this end, 
we choose the following velocity errors. 

v d ce vρ ρ ρ= −   and z z
v d ce v z= −   (14) 

whose time derivatives are 

( )1    

v d c

d

e v

v u W
M

ρ ρ

ρ
ρ ρ

ρ= −

= − +

 


 (15) 

( )1    .

z z
v d c

z
d z G z

e v z

v u f g W
M

= −

= − + − +

  


  

From (14)-(15), the velocity control laws are determined as  

( )( ) ( )
( )( ) ( )

ˆtanh / sgn

ˆtanh / sgn .

d v v v v

z z z
z d v v v G z v

u M v k e k D e

u M v k e k f g D e

ρ ρ ρ
ρ ρ= + +

= + + − +



  (16) 

where vk  is the positive constant and D̂ρ  and ˆ
zD  are 

estimates of the known bounds of the wind disturbances, 
whose adaptive laws are as follows: 

ˆ /vD e Mρ
ρ ργ=

 

 (17)

 ˆ /z
z z vD e Mγ=

 where ργ  and zγ  are the positive constants. The stability of 
the proposed velocity control inputs in (16) and the adaptive 
laws in (17) are presented in the following theorem.  

Theorem 2 (The velocity control laws): When the designed 
control law in (16) and the adaptive laws in (17) are 
substituted to the dynamics in (1), the velocity errors of the 
airship converge to zero as t → ∞  and the estimates of the 
unknown bounds goes to the real values. 

Proof: To show the convergence of veρ  and z
ve  to zero and 

the convergence of D̂ρ  and ˆ
zD  to the real values, the 

Lyapunov function candidate is chosen as 

( ) ( )( )2 2 2 2/ 2 / /z
v v z zV e e D Dρ

ρ ργ γ= + + +   (18)
 

where ˆD D Dρ ρ ρ= −  and ˆ
z z zD D D= −  are estimation 

errors of bounds of wind disturbances. Then, the time 
derivative of V  in (18) becomes 

( ){ } ( ){ }
/ /

   = / /

     / / .

z z
v v v v z z z

z z
v d v d z G z

z z z

V e e e e D D D D

e v u W M e v u f g W M

D D D D

ρ ρ
ρ ρ ρ

ρ ρ
ρ ρ

ρ ρ ρ

γ γ

γ γ

= + + +

− + + − + − +

+ +

      

 

    

  

 (19) 
Substituting (16) into (19) gives 

( )
( )

( )( ) ( )( ){ }
{ ( )( )(

( )) }

/

     /

     / /

ˆ   tanh / sgn

       + tanh /

ˆ      sgn / /

v d

z z
v d z G z

z z z

v
d d v v v v

z z z z
v d d v v v G

z
z v G z z

V e Mv u W M

e Mv u f g W M

D D D D

e
Mv M v k e k D e W

M
e Mv M v k e k f g

D e f g W M D D D

ρ ρ
ρ ρ

ρ ρ ρ

ρ
ρ ρ ρ ρ

ρ ρ

ρ ρ ρ

γ γ

γ

= − −

+ − − + +

+ +

= − + + −

− + + −

+ − + + + +

 



    

 

 

   

( )
( )

( ) ( ){ }

/

     / /
ˆ   tanh / /

ˆ      tanh / /

     / /

ˆ   tanh tanh / /

ˆ      / /

  

z z

z z z

v v v v v

z z z z
v v v z v z v

z z z

z z
v v v v v v v

z z
v z v

D

D D D D

k e e W e M D e M

k e e W e M D e M

D D D D

k e e e e D e M D e M

D e M D e M

ρ ρ ρ

ρ ρ ρ ρ
ρ ρ

ρ ρ ρ

ρ ρ ρ ρ
ρ ρ

ρ

γ

γ γ

γ γ

+ +

= − − −

− − −

+ +

≤ − + + −

+ −



    

    

( ) ( ){ }
   / /

   tanh tanh / /

ˆˆ      / / .

z z z

z z z
v v v v v v v

z z z

D D D D

k e e e e D e M D e M

D D D D

ρ ρ ρ

ρ ρ ρ
ρ ρ

ρ ρ ρ

γ γ

γ γ

+ +

= − + + +

− −

    

 

  

 (20)

 If we employ the adaptive laws in (17) into (20), then  

( ) ( ){ }tanh tanh 0.z z
v v v v vV k e e e eρ ρ≤ − + ≤  (21) 

Thus, V  is bounded for all time and we have , z
v ve e Lρ

∞∈  and 
ˆˆ , , ,z zD D D D Lρ ρ ∞∈   from (18). Also, we have , z

v ve e Lρ
∞∈   

which implieds the uniform continuity of veρ  and z
ve . 

Combining this with 2L  property of veρ  and z
ve , we can use 

Barbalat’s lemma (Khalil, 1992) to conclude that the tracking 
errors veρ  and z

ve  and the estimation errors Dρ
  and zD  

converge to zero.  (Q.E.D.) 

Remark: As mentioned in Introduction, the proposed vector 
field guided auto-landing control law considers the input 
constraints of the airship. We have , , z

d d dv v v Lρ
∞∈  from  
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Fig. 4. The route of the airship guided by the vector field  

 
(a) The longitudinal position error 

 
(b) The vertical position error 

Fig. 5. The position errors of the airship 

Theorem 1, and 2
ˆˆ , zD D L Lρ ∞∈ ∩  from Theorem 2. If it can 

be assumed that , z
d dv v Lρ

∞∈  , the control inputs, uρ  and zu ,  
in (16) are bounded. Accordingly the control inputs realizing 
the desired course cover the input constraints of the airship. 

5 SIMULATION RESULTS 

In regards to the numerical simulation, we consider the 
airship dynamics in Fig. 1 and (1)-(4). The initial position of 
the airship is ( ) ( )( ) ( ) ( )( )0 , 0 4 ,8c cz m mρ = −  on the vertical 
plane, the initial velocities and accelerations are zero,  

respectively, the initial condition of the estimates of the 
bounds of the wind disturbance are ( )ˆ 0 0Dρ = and 

( )ˆ 0 0zD = , the mass of the airship is ( )4M kg= , the force 
of gas in the airship is 8Gf = , and the disturbances are set as 

2Wρ =  and 2hW = . Also the control gains are assigned as 
8dk = , 0.2pk = , 6vk = ,  9ργ = , and 8.5zγ = . As can be 

seen in Fig. 4, the airship moves to the goal position while it 
follows the desired direction which is the direction of the 
vector filed. The position errors of the airship presented in 

 
(a) The desired velocity, dv  

 
(b) The desired longitudinal velocity, dvρ  

 
(c) The desired vertical velocity, z

dv  

Fig. 6. The desired velocities of the airship, dv , dvρ , and z
dv . 

Fig. 4 are shown in Fig. 5. In Fig. 5, we can see that the 
longitudinal position cρ  and the altitude cz  converge to zero, 
asymptotically. The desired velocities generated using the 
desired course angle ( ),d c czθ ρ  and the desired velocity are 
presented in Fig. 6.  Velocity errors controlled by the velocity 
control laws in (16) and (17) realizing the desired velocities 
are depicted in Fig. 7. In Fig. 7, we can sure that the velocity 
errors converge to zero in spite of the wind disturbances. 
Also, to make sure that the estimation errors converge to zero 
as time goes on, the estimation errors of the bounds of the  
wind disturbances are depicted in Fig. 8. Fig. 8 shows that the 
estimation errors Dρ

  and hD  converge to zero by proposed 
the adaptive laws in (17). Fig. 9 shows the routes of the 
airships with the following initial conditions: 

( ) ( )( )0 , 0c czρ =(-2, 8), (-4,4), (-6, 0), (2, 8), (4,4), and (6, 0). 
It can be seen in Fig. 9 that the airship with the proposed the 
auto-landing algorithm converges to goal position. It can be 
noted here that when the initial altitude of the airship is low, 
the airship rises because of the wind disturbance, but this 
unexpected motion is corrected around the goal position. 

6. CONCLUSIONS 

We addressed the auto-landing algorithm of the airship using 
the decoupled dynamics based on the vector field method. To 
guide the airship to the goal position, we generated the 
desired course using the novel vector field considering the 
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(a) The longitudinal velocity error, veρ  

 

(b) The vertical velocity error, z
ve  

Fig. 7. The velocity errors, veρ  and z
ve .  

ground distance and the altitude. Then, the desired velocities 
to let the airship follow the desired course were generated. 
The convergence of the velocity errors with the wind 
disturbances to zero was guaranteed by the proposed robust 
adaptive control law. In addition, the simulation results 
showed that the airship can move along the desired course by 
approaching the goal path and the desired position. As a 
future works, it can be followed that the model of the airship 
extended to three dimensional space. And the issue for the 
auto-landing to moving platform will be pursued by 
estimating the moving landing platform. Also, the proposed 
auto-landing algorithm will be employed to not only UAVs 
with the aerostatic force but also UAVs using the 
aerodynamic force. 
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