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Most parameter identification procedures find the parameter values that best fit some observed behavior 

according to the least squares criterion. However, the least squares criterion can be heavily influenced by 

outlying data or un-modelled effects and can thus yield poor results. Outlying data is often removed to 

avoid inaccurate outcomes. However, this process is complex and tedious. 

This research presents an adaptation of the Gauss-Newton parameter identification method that 

effectively ignores the contribution from outlying data. The adapted method was compared to the original 

Gauss-Newton method in two modeling exercises. The first exercise was a C-peptide pharmaco-kinetic 

model with noisy data that did not contain outliers. The second exercise is an insulin pharmacokinetic 

model with data that contained outliers and un-modelled behavior.  

The adapted method yielded similar results to the original methods for the C-peptide data with high 

correlations between identified parameters across approaches (R=0.90 and R=0.92). This was expected 

due to the relative lack of outliers in the C-peptide data. In contrast, the high rate of outliers and un-

modelled behavior in the insulin data caused the significant differences between the parameter values 

identified by the approaches (R=0.47 and R=0.00). While the original method consistently found the least 

squares optima, the adapted method located the parameter set that fitted the majority of data points. The 

subtle difference between these approaches can yield large difference in identified parameter values. The 

adapted approach exhibits no erroneous effects in typical data, and should be considered more applicable 

in modeling exercises with outlier data or un-modelled effects. 

Keywords: Parameter Identification, Pharmaco-kinetics, Insulin sensitivity and kinetics, Gradient 

descent, Outlier data 
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1. INTRODUCTION 

Parameter identification methods are used to manipulate the 

values of certain model parameters such that the model 

accurately captures some observed behaviour (Carson and 

Cobelli). Most parameter identification methods optimise 

model parameters by minimising the least squares objective 

(or penalty) function (Bard 1970; Davidon 1991; Docherty et 

al. 2012; Levenberg 1944; Marquardt 1963; Steihaug1983). 

This means that a particular data point that is a certain 

distance from the modelled behaviour will have four times 

the influence on the objective function than a similar data 

point that is half the distance from the modelled behaviour. 

While this approach works well in most data sets, it often 

leads to inaccurate parameter values when outlying data is 

present. In particular, outliers cause the optimal parameter set 

in terms of the least squares criteria to diverge significantly 

from the optimal parameter set defined by the ‘inlying’ data 

points. In such cases, the typical approach is to perform the 

inverse problem over a number of observations, determine 

the variance of the residuals, and then declare any points that 

fall outside three standard deviations from the simulated 

behaviour to be outliers and omit them from a second inverse 

problem. This process is tedious, and can lead to ambiguous 

outcomes or diminished operator independence. 

We have previously presented an adaptation of the Gauss-

Newton gradient-descent parameter identification method 

that reduces the contribution of outliers to the inverse 

problem (Gray et al. 2013). The method was presented using 

in silico derived data with induced outliers. In this current 

analysis we test the approach in model-based analyses of C-

peptide kinetics and insulin kinetics. While the C-peptide 

data is known to be relatively free from outliers, the insulin 

data is known to contain both random outliers and un-

modelled behaviour. Both data sets contain approximately 

5% normally distributed noise. 

2. METHODS 

2.1 Clinical Protocol 

The data used in this analysis was gathered during a dietary 

intervention study that measured the effect of dietary fibre in 

females that were deemed at risk of developing type 2 

diabetes. The outcomes of the trial were presented by 

TeMorenga et al. (TeMorenga et al. 2010). Eighty-three 

individuals underwent the DISST at week 0, week 12 and 
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week 24 of the intervention. Some participants were lost to 

follow-up and a total of 218 DISST tests were undertaken. 

Participants fasted from 10pm the night before the test and 

attended the clinic in the morning. Participants sat in a 

relaxed position for the duration of the test and had a cannula 

placed in their antecubital-fossa. This was used to both 

administer glucose and insulin boluses, and draw blood 

samples. A 10 g glucose bolus (50% dextrose) was 

administered at t = 6 minutes and an insulin bolus (actrapid) 

was administered at t = 16 minutes. Blood samples were 

taken at t = 0, 5, 10, 15, 20, 25, 30, 35, 40, and 50 minutes. 

The glucose levels were measured at the bedside (Enzymatic 

glucose hexokinase assay, Abbot Labs, Illinois USA) and the 

samples were then spun and frozen for batch assays of insulin 

and C-peptide (ELISA Immunoassay, Roche, Germany). 

2.2  DISST model 

The DISST model defines the behaviour of glucose, insulin 

and C-peptide kinetics (Lotz et al. 2010). However, only the 

insulin and C-peptide models are required for this analysis. 

The models are defined: 
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where: UN is the endogenous insulin production which 

comprises of the basal rate (UB) the first phase secretion (U1) 

and the second phase secretion (U2) (pmol∙L
-1

∙min
-1

); C is the 

plasma C-peptide concentration (pmol∙L
-1

); Y is the 

interstitial C-peptide concentration (pmol∙L
-1

); I is the plasma 

insulin concentration (mU∙L
-1

); Q is the interstitial insulin 

concentration (mU∙L
-1

); VP is the plasma insulin distribution 

volume (L); VQ is the Interstitial insulin distribution volume 

(L); k1-3 are the C-peptide kinetic parameters (min
-1

); nI is the 

plasma-interstitial diffusion rate (L∙min
-1

); nT is the plasma 

insulin clearance rate (min
-1

); nC is the interstitial insulin 

degradation rate (min
-1

); ξ is the pmol→mU conversion 

factor (1/6); and xL is the fractional hepatic clearance. 

2.3 Parameter identification methods 

This analysis compares the outcomes of the adapted Gauss-

Newton method with the original approach. The original 

application of the Gauss-Newton parameter identification 

method iterates toward the optimal parameter set (xopt) using 

the iterative process: 
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and J is the Jacobian, ψ is the residual vector, X is the 

measured property, j is the sample index (j = 1..m), k is the 

parameter index (h = 1..n); X(xi,tj) is the simulated value of X 

at t = tj; and XM,j is the measured value of X at t = tj. 

The adapted method is intended to ignore the contribution 

from outlying data. The combined Jacobian terms (J
T
J)

-1
J

T
) 

result in a matrix that defines the optimal direction for the 

reduction of residuals at each data point for in each 

parameter. This is multiplied by the residual matrix to 

determine the relative weighting that should be given to each 

data point. The adapted method works by modulating the 

effect of the residual matrix according to the degree of 

residuals. Hence, the adapted method reduces the effect of 

outliers on ψ in (5), but not the contribution of ψ on J (5a). 

This is done by substituting ψ with ψ̂ : 
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|~|ψ is the median of the absolute values of the residuals and 

β is a scaling factor that determines the width of the peak as a 

function of |~|ψ .  

In this analysis, β = 2. This value provides maximal objective 

function contributions at ψ = ±2 standard deviations of the 

residual distribution as shown in Fig. 1. In contrast, the 

typical Gauss-Newton optimises the least-squares residuals. 

This effectively means that the objective contribution 

increases at ψ
2
as ψ increases.    
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Fig. 1. Objective contributions from (5) and (6). 

Initially, both Gauss Newton approaches were used to 

determine the contributions to UN. The identified parameter 

set was x=[U1, U2]
T
. The remaining parameters from (1) and 

(2) were determined a-priori via the methods of Van Cauter 

et al. (Lotz et al. 2010; Van Cauter et al. 1992). This 

generated two UN profiles and two sets of residuals for each 

DISST trial. The UN profiles were then used in the 

identification of the insulinaemic pharmaco-kinetic 

parameters x=[nT, xL]
T
. The remaining parameters in (3) and 

(4) were determined a-priori via the methods of Lotz et al. 

(Lotz et al. 2010).  

2.4 Evaluation 

The two approaches were assessed via the nature of model 

residuals they produce. However, the adapted approach 

minimises || ψ̂ ||2 and the typical approach minimises ||ψ ||2. 

Hence, a direct numerical comparison cannot be made.  To 

highlight the differences in approach behaviour, summary 

statistics of the absolute ψ values and the residuals as a 

function of time (ψ(t)) will be presented.  

3. RESULTS 

Both approaches converged to the expected behaviour in each 

case tested. No parameter sets diverged, and there were no 

evident cases wherein the approaches led to an incorrect local 

minima. The endogenous insulin parameter values were 

relatively well correlated across identification methods 

(R=0.90 for U1 and R=0.97 for U2, respectively). However, 

the insulin pharmaco-kinetic parameters were not so well 

correlated (R=0.47 for nT and R=0.00 for xL). The correlation 

for xL improved to R=0.44 when the Spearman correlation 

was used, thus implying some outlying data obscured the 

overall trends.   

The median bias of U1 between the typical and adapted 

method was -6.1% (IQR -31.2% to 1.4%). For U2, the bias 

was 3.73% (IQR -1.73% to 10.5%). The bias in nT was -

23.8% (IQR -40% to -2.3%) and the bias in xL was 16.1% 

(IQR -7.8% to 52.6%).  

Summary statistics of the residual data are presented in Table 

1. Note that the C-peptide model residuals were lower below 

the median residual (ψ50) for the adapted approach. In 

contrast, the adapted approach yielded higher C-peptide 

residuals above the median value. The adapted approach 

yielded lower insulin residuals for all metrics shown, but 

exhibited higher residuals at the extreme upper limit (not 

shown).  

Table 1.  Summary statistics of model residuals 

Model Approach 
Residuals (percentiles) 

[ψ25, ψ50, ψ75, ψ95, ψ99] 

C-peptide Eqn. 6 [9.39, 39.00, 98.20, 273.91, 604.23] 

[pmol.L-1] Eqn. 5 [12.16, 38.97, 80.38, 184.89, 294.97] 

Insulin Eqn. 6 [1.11, 3.48, 11.23, 107.48, 345.09]  

[mU.L-1] Eqn. 5 [4.21, 12.60, 30.91, 139.93, 419.22] 

Fig. 3 shows the distribution of the residuals about the 

measured points. Note that the C-peptide residuals were 

relatively well centred about zero with a seemingly normal 

distribution. In contrast, the insulin residuals were sporadic, 

non-normal and show definite point dependence. Fig. 4 

shows the least squares and the adapted objective surfaces for 

the responses shown in Fig. 2.  

 

Fig. 2. Plasma C-peptide and insulin simulations for a typical 

patient response to the DISST test with conspicuous outliers 

in the insulin data. 
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Fig. 3. Residual plots for C-peptide and insulin. The bottom plots are cropped to show the general behaviour. The thick 

errorbars show the interquartile range, thin errorbars show the 5
th

 to 95
th

 percentile range and the dots show the outlying points. 

4. DISCUSSION 

The proposed adaptation to the Gauss-Newton parameter 

identification method yielded different results to the typical 

approach. The adaptation allows the identified parameter set 

to diverge away from the mathematical optima defined by the 

least squares objective criterion and locate a minima that is 

most representative of the least-squares optima for the 

majority of data points. In cases wherein there was no 

outlying data, this makes virtually no difference (Fig. 2-top). 

However, when there are outlying data points, the outcomes 

defined by the original and the adapted approaches become 

distinct (Fig. 2-bottom, Fig. 4). 

In noisy data that does not contain outliers, the adapted 

method provides no benefit, but also does not introduce any 

deleterious outcomes. When the data contains known outliers, 

the adaptation provides significant benefit. For example, in 

this study, the insulin data contained both outliers and un-

modelled behaviour and the adaptation considerably changed 

the identified parameter values. In contrast, the C-peptide 

data, while noisy, did not contain significant un-modelled 

behaviour or outliers. Thus, the proposed method did not 

introduce much variation. These outcomes were observed in 

the correlations and relative bias seen in the parameters of the 

C-peptide model and the insulin model. 

Fig. 3 shows that the original least-squares approach located 

the t = 20 minutes insulin data more accurately than the 

adapted approach. However, this data point is affected by 

incomplete mixing of insulin at the depot site, and is thus, an 

unmodelled phenomenon. Hence, the behaviour appeared as a 

consistent outlier in the measured data and the ideal 

parameter values that describe the overall patient behaviour 

would be ideally located without influence from this data. By 

ignoring this data point, the adapted method allowed greater 

adherence to the remaining insulin data. This can be seen in 

the comparatively unbiased insulin residuals for the t = 5, 10, 

15, 25, 30, 35, 40, and 50 minutes data. The other point to 

note in Fig. 3 is the increased magnitude of outliers for the 

adapted method. This indicates that the adapted method 

effectively recognised and ignored these points in favour of 

capturing the behaviour defined by the remaining majority of 

data points.  
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Fig. 4. Objective surfaces generated by the data shown in Fig. 2 with the residual vectors (ψ and ψ̂ ) of (5) and (6) for the 

typical least squares approach (left) and the adapted approach (right) for the C-peptide model (top) and the insulin model 

(bottom). The green lines show the parameter combinations that would achieve zero error for a particular data point. Note the 

different location of the parameter optimas (+) for the two approaches, and that the parameter values determined by the 

adapted method do not appear to be located on a minima of the objective surface. 

The C-peptide residuals indicate very little systemic 

difference between the two approaches. This is because there 

is a relative lack of outliers in the C-peptide data compared to 

the insulin data. However, there were a few outliers and, 

similarly to the insulin case, the adapted method ignored 

these points in favour of capturing the behaviour defined by 

the other data points. Thus, the outlier residuals appeared 

further from the zero residual line for the adapted method. 

Table 1 shows that the adapted method yielded lower C-

peptide residuals below the median residual and higher 

residuals above the median. This further indicates that the 

method gave more influence to data points close to the 

simulated profile, and limited the effect of those that were 

distant from the simulation. 

The adapted method works by modulating the relative 

contribution of the residuals to the iteration direction and 

magnitude during convergence. It does not modulate the 

Jacobian which determines the direction that convergence 

should step in with respect to each residual. Hence, the 

objective surfaces shown in Fig. 4 right are not the surfaces 

used to determine the ideal direction of descent. The  least-

squares surfaces on the left are used by the adapted method in 

determining the direction of descent (the (J
T
J)

-1
J

T
 term). 

Thus, it is not necessarily a negative or altogether unexpected 

outcome that the located optima from the adapted method 

does not occur at a minima on the objective surface. The 

insulinaemic parameter optima located by the adapted 

approach is located close to the intersections of the zero error 
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lines of 4 data points and takes influence from 3 others (Fig. 

4 bottom-right). This is consistent with Fig. 2 that shows the 

simulation fitting closely to seven of the nine data points. The 

simulated model responses shown in Fig. 2 validate the 

overall approach and show that the behaviour determined by 

the adapted approach was closer to the majority of data points 

than the typical least squares optimisation. 

Setting the contribution of the outliers as a function of the 

median residual allows the method to progressively reduce 

the influence of outliers as the method converges to a 

solution. In doing so, the importance of the initial parameter 

estimate is reduced. If this were not the case, and initial 

conditions were chosen such that only a small portion of the 

data were fitted effectively by the simulation, it would not be 

possible for the adapted method to converge toward the 

majority of the data. However, modulating the influence of 

the outliers by the median residual ensures that the method is 

robust to the choice of initial parameter estimates. In 

particular, The contribution from outliers is only limited 

when the parameter set converges close to the optima as 

defined by the majority of data points. 

The adapted method can be modulated by changing the value 

of β in (6a). β has the role within the approach of altering 

how much of the measured data is captured within the 

objective contribution defined by (6a). Hence, a greater β 

value would allow a greater influence from outlying data. 

Conversely, a smaller value would allow a lesser influence 

from outlier data. Setting β = infinity yields the same 

behaviour as the original least squares approach. Fig. 1 

assumes that the residuals are normally distributed about the 

model simulation, which is not the case when outliers are 

present. However, as the adapted method is intended to 

ignore outliers, this apparent contradiction of the assumptions 

that drive the method actually yields the intended outcome.   

The method could be relatively simply applied to parameter 

identification methodologies as the additional term in (6) is 

not difficult to evaluate. Furthermore, it is often known a-

priori whether data is likely to contain outliers. In particular, 

prior to performing the inverse problem, the raw data is often 

plotted for a few cases. It is often then apparent whether the 

data contains outliers. Hence, whether there is a need for the 

removal of outlying data via the adapted method could be 

known prior to a full run of the inverse problem and an 

analysis of the residuals yielded.  

The proposed method eliminates the need for manual 

removal of outlier data. Removal of outlier data is typically a 

tedious task that is most often undertaken by manual location 

of data points that fall more than three standard deviations of 

residual data from the simulated model and removing the 

points for a second run of inverse problem. However this 

process is very costly in terms of operator time. It also runs 

the risk of reducing operator independence as discretion may 

be exercised when selecting or applying the rules regarding 

outlier omission.   

In this analysis we have tested the adapted method for both 

noisy data, that includes outliers and un-modelled effects and 

data that was only noisy. Thus, the potential benefit of the 

method and the limit of the potential benefit could be 

determined. It was shown that the adapted method captures 

the observed behaviour better than the original method in 

data that contains un-modelled effects or outlying data, and 

provides no hindrance when data is simply noisy. 

5. CONCLUSIONS 

We have presented a method for the identification of model 

parameters that automatically modulates the objective surface 

such that outlier data is ignored. The method enables a 

relatively simple amendment to a well-known and understood 

parameter identification approach that is operator 

independent and can be tailored to various and distinct 

modelling situations. 
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