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Abstract: In this paper, an output feedback controller in the structure of model predictive
control is developed focusing on model discrimination and fault detection and isolation in
addition to a tracking performance. The development of the controller is based on a system
identification method that is used for an update of a model of an underlying system. For the
systems whose dynamics may change at an unknown time, this identification method uses only
a relatively small amount of data recently collected from the underlying system. The signal
generated by the controller is applied to the system and makes the system to produce input-
output data such that models are more distinguishable and faults are more detectable. Since the
optimization problem in the controller is nonconvex, a suboptimal solution via a semidefinite
relaxation technique is pursued.

1. INTRODUCTION

One of the most important benefits of feedback control is
that system behaviour is made less sensitive to changes
in the plant dynamics. However, in some contexts this
is also a problem: it can occur that feedback control
successfully hides small changes in the system dynamics
until the degradation is so severe that catastrophic failure
occurs. In this paper, we consider a control problem with
two competing objectives: firstly, to maintain sufficient
tracking performance for the primary system task, and
secondly, to generate sufficient information about the
system dynamics to detect when a small change has
occurred. Our design fits within the general structure of
model predictive control (MPC) [Kwon and Han, 2005].

System identification at each time step of MPC has been
studied in many ways. For example, in Tanaskovic et al.
[2013], an adaptive MPC scheme is introduced where
systems identification is performed at each time step
by a set membership identification algorithm combined
with a set of finite impulse response models. For most
system identification methods, a persistent excitation of
the system is necessary and a persistently exciting MPC
(e.g. Shouche et al. [2002], Rathouský and Havlena [2012],
and Marafioti et al. [2013]) produces a persistently exciting
input signal. Further, an accuracy of system identification
is taken into account in Larsson et al. [2013] where an
MPC-based controller is augmented by a constraint on the
Fisher information matrix.

The contribution in this paper parallels the approach in
Larsson et al. [2013] in the sense that an MPC structure is
modified for the purpose of producing an input signal max-
imizing a measure of an accuracy of system identification.
However, our primary focus is on model discrimination
and fault detection and isolation (FDI) (e.g. Cheong and

? This work was supported by the Australian Research Council.

Manchester [2014]). The underlying system may not be
in a set of models but we search for the closest model
among a finite number of selective models by developing a
controller in the structure of the modified MPC to produce
an input signal that guarantees the model discrimination.
We investigate some cases where the guaranteed model dis-
crimination leads to a feasibility issue. Then, we introduce
alternative types of MPCs that avoid this issue.

Unlike other fault detection and isolation methods sur-
veyed in Hwang et al. [2010], we address FDI problems
by shaping an input signal generated by MPC. This shap-
ing causes the optimization problem in the MPC to be
in a similar form to the optimization problems in time-
domain input signal designs (e.g. Manchester [2010] and
Manchester [2012]), which are noncovex but comprised of
inhomogeneous quadratic terms. Thus, we perform the
homogenization and the semidefinite relaxation (SDR)
techniques (e.g. Luo et al. [2007]) to obtain semidefinite
programming (SDP) problems and, then, perform a ran-
dom search procedure based on the solutions to the SDP
problems.

In Section 2, we carefully formulate an output feedback
MPC combined with a system identification method and a
state estimator. Then, in Section 3, a condition for model
discrimination is developed and is implemented into the
optimization problem in the MPC. In Section 4, optimal
solutions, if attainable, or suboptimal solutions to the
optimization problems are sought and, in Section 5, an
examle of fault detection and isolation is presented. A
conclusion follows in Section 6.

The norm ‖ · ‖2 denotes the Euclidean norm of a vector
and its corresponding induced norm of a matrix. The norm
‖ · ‖∞ is the ∞-norm of a vector. The probability of an
event and the expectation of a random variable is denoted
by P [·] and E[·], respectively. The set of symmetric positive
semidefinite matrices in Ri×i is denoted by Si+. A vector
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ej is the j-th standard basis vector and 1 is a vector
whose elements are all 1’s with an appropriate dimension.
A square matrix Ii is an identity matrix in Ri×i and the
subscript i can be omitted when there is no confusion.
Denote by 0 a zero vector or matrix with an appropriate
dimension.

2. A SYSTEM IDENTIFICATION METHOD FOR
MODEL PREDICTIVE CONTROL

Consider an uncertain single-input single-output (SISO)
system P whose input signal u and output signal y are
observed at time t = 0, 1, · · · . For models of P, we
consider discrete-time, causal, linear time-invariant, and
SISO models

Pθ : yθ(t) = Fθxθ,0 + Gθuθ(t) +Hθdθ(t), t = 0, 1, · · · (1)

that are parametrized in θ. The initial conditions of each
model at time t = 0 are represented by xθ,0 and, thus,
the operators Gθ and Hθ have zero initial conditions.
The disturbance dynamics Hθ is invertible. The signal
dθ(t), t = 0, 1, · · · , represents an unobserved disturbance
signal. We assume that, for different parameters, the
models are distinct in terms of the input and the output
signals of the models. Note that the models may have
different orders, which means that the dimensions of xθ,0’s
may be different for different parameters.

Our main interest in this paper lies on a finite number N of
selective operating modes of P, which are represented by
parameters θn, n = 1, · · · , N , and their vicinities defined
by parameter sets Θn, n = 1, · · · , N , e.g. Θn = {θ ∈
Θ|‖θ − θn‖2 ≤ ρθ}, n = 1, · · · , N , with a nonnegative
constant ρθ. Usually, the parameter sets are constructed
in a way that each set represents an operating mode of P
and it is important to recognize which operating mode the
system P is currently on, especially for fault detection and
isolation.

The dynamics of the system P is suspected to be
slowly time-varying due to aging or to have abrupt
changes due to faults. Thus, each model in (1) is
fitted to only recently collected input-output data of
P, i.e. ub(t) := [u(t− Tb) · · · u(t− 1)]

′
and yb(t) :=

[y(t− Tb) · · · y(t− 1)]
′

at time t ≥ Tb with a positive
integer Tb. A quality of a model Pθ for the fitting at time
t ≥ Tb is quantified as
VM (θ,ub(t),yb(t), t)

= min
x̃θ,0∈RTθ ,d̃θ∈RTb

‖d̃θ‖2

s.t. yb(t) = Fb,θx̃θ,0 +Gb,θub(t) +Hb,θd̃θ
‖x̃θ,0‖2 ≤ ρx

(2)

with a nonnegative constant ρx where Tθ = dimxθ,0 and
the matrices Fb,θ, Gb,θ, and Hb,θ represent the model Pθ.
For example, if (Aθ, Bθ, Cθ, Dθ) is a state-space represen-
tation of Gθ, then we have

Gb,θ =


gθ,0 0 · · · 0
gθ,1 gθ,0 · · · 0

...
...

. . .
...

gθ,Tb−1 gθ,Tb−2 · · · gθ,0


with gθ,0 = Dθ and gθ,i = CθAθ

i−1Bθ for i = 1, 2, · · · . The
matrices Fb,θ and Hb,θ are defined similarly to Gθ. Note
that the matrices Gb,θ and Hb,θ are lower triangular due to

the causality of the models and, in particular, the matrix
Hb,θ is invertible.

Since Hb,θ is invertible, a solution to the optimization

problem in (2) always exists. Denote by (x̃θ,0
∗(t), d̃θ

∗(t))
a solution to the optimization problem in (2). Then, this
solution can be interpreted as a fictitious initial state and
a fictitious disturbance signal for Pθ since if the input
signal ub(t) is applied to the model Pθ combined with
an initial condition x̃θ,0

∗(t) and a disturbance signal is

given as d̃θ
∗(t), then the output signal yb(t) is exactly

reproduced.

The constant ρx in (2) represents a bound of a set of
all possible initial conditions of Pθ at time t − Tb and
is determined based on any prior knowledge of P. Thus,
the value VM (θ,ub(t),yb(t), t) in (2) represents the model
mismatch of Pθ to the collected data (ub(t),yb(t)) at time
t. When t < Tb, the optimization problem in (2) is modified
to only take into account the data from time 0 to t − 1
unless the data from time t− Tb to −1 are available.

Then, we pursue a parameter that minimizes the model
mismatch so that an estimate of the parameter at time t
is given as

θ̂(t) = arg min
θ∈Θ

VM (θ,ub(t),yb(t), t) (3)

where Θ = ∪Nn=1Θn. Then, an estimate x̂θ̂(t)(t) of the state

of Pθ̂(t) at time t is determined by Pθ̂(t), ub(t), x̃θ̂(t),0
∗(t),

and d̃θ
∗(t). Note that if we fix x̃θ,0

∗(t) = 0 in the opti-

mization problem in (2) and solve it only for d̃θ
∗(t), then

the solution to the optimization problem in (2) is unique

and reduces to d̃θ
∗(t) = Hb,θ

−1 (yb(t)−Gb,θub(t)) and the
fictitious disturbance signal for Pθ can be generated as a
filtered signal of u and y (Ljung [1999]).

With the estimates θ̂(t) and x̂θ̂(t)(t) above, we consider

output feedback MPC. Specifically, the input signal of the
system P at time t is given as

u(t) = e1
′uf
∗(t) ∀t ∈ {0, 1, · · · } (4)

where uf
∗(t) is a solution to an optimization problem

min
uf∈RTf

‖yf − rf (t)‖22 + ρu‖∆uf‖22

s.t. yf = Ff,θ̂(t)x̂θ̂(t)(t) +Gf,θ̂(t)uf

y ≤ ei′yf ≤ y ∀i ∈ {1, · · · , Tf} (5)

u ≤ ei′uf ≤ u ∀i ∈ {1, · · · , Tf} (6)

|ei′∆uf | ≤ ∆u ∀i ∈ {1, · · · , Tf} (7)

with given constants y, y, u, u, and ∆u. The matrices
Ff,θ̂(t) and Gf,θ̂(t) are defined similarly to Fb,θ̂(t) and

Gb,θ̂(t) in (2) but possibly with different dimensions. A

positive integer Tf represents a prediction horizon and
rf ∈ RTf and ∆uf ∈ RTf are defined by

rf (t) = [r(t) · · · r(t+ Tf − 1)]
′

∆uf =


e1
′uf − u(t− 1)
(e2 − e1)′uf

...
(eTf − eTf−1)′uf

 := Ξuf − u(t− 1)e1

with a given reference signal r and a given value u(−1).
In the optimization problem above, the constraint in (5)
is treated as a soft constraint but the constraints in (6)
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and (7) are treated as hard constraints. Since there is no

data up until time t = 0, the estimates θ̂(0) and x̂θ̂(0)(0)

are determined based on any prior knowledge of P or set
to nominal values.

Depending on Tb, i.e. the amount of data used in the
identification method in (3), there is a trade-off between
sensitivity to a dynamics change and robustness to the dis-
turbance signal. However, finding an appropriate Tb is out
of the scope of the paper and we focus on implementation
of a model discrimination property in MPC.

3. MODIFICATION OF MODEL PREDICTIVE
CONTROL FOR MODEL DISCRIMINATION

In this section, identification of the operating mode of
P, which also can be called model discrimination, is
performed via applying an appropriate input signal to P.
Thus, we modify the controller in (4) to pursue both the
tracking performance and the model discrimination at the
same time, which is called dual control.

From (2), it follows that VM (θn,ub(t),yb(t), t) = ‖d̃θn∗(t)‖2
for any n ∈ {1, · · · , N}. And, we have

d̃θn2

∗(t) = Γ(θn2
, θn1

)ub(t) +Hb,θn2

−1Fb,θn1
x̃θn1

,0
∗(t)

−Hb,θn2

−1Fb,θn2
x̃θn2

,0
∗(t) +Hb,θn2

−1Hb,θn1
d̃θn1

∗(t)
for any n1, n2 ∈ {1, · · · , N} where

Γ(θn2
, θn1

) = Hb,θn2

−1
(
Gb,θn1

−Gb,θn2

)
. (8)

Then, the lemma below guarantees model discrimination.

Lemma 1. (Cheong and Manchester [2014]) Suppose that
P [VM (θn1

,ub(t),yb(t), t) < δ] ≥ β for the system P in
Section 2 with a parameter θn1

and constants δ and β. For
any given n2 ∈ {1, · · · , N} \ {n1}, if ‖Γ(ϕ,ψ)ub(t)‖2 ≥
γ(ϕ,ψ) for ether (ϕ,ψ) = (θn2

, θn1
) or (θn1

, θn2
) where

γ(ϕ,ψ) = ρx
(
‖Hb,ϕ

−1Fb,ψ‖2 + ‖Hb,ϕ
−1Fb,ϕ‖2

)
+
(
1 + ‖Hb,ϕ

−1Hb,ψ‖2
)
δ

with ρx in (2), then P [VM (θn2
,ub(t),yb(t), t) > δ] ≥ β.

Based on this lemma, we design an input signal such that
‖Γ(θn2

, θn1
)ub(t)‖2 ≥ γ̄n2,n1

(9)
for all n1, n2 ∈ {1, · · · , N} satisfying n1 < n2 where
γ̄n2,n1

= max{γ(θn2
, θn1

), γ(θn1
, θn2

)}. Then, Lemma 1
guarantees that the number of models with the cost value
of model mismatch less than δ at time t is at most 1 with
probability at least 100β%, provided that the condition
is satisfied. The choice of δ relies on any prior knowledge
of the system P and can be supported by placing lots of
selective models in Θ.

Note that, for any given unordered pair (n1, n2) or any
given two models, there is only one condition imposed
by (9). Thus, the total number of conditions in (9) is

M = N(N−1)
2 , which is the total number of the unordered

pairs of the models Pθn ’s. Then, using (8), we can rewrite
the condition in (9) as

VD(ub(t)) := min
m∈{1,··· ,M}

1

γm
2

∥∥Γmub(t)
∥∥2

2
≥ 1 (10)

where Γ(θn2
, θn1

) and γ̄n2,n1
are represented by Γm and

γm, respectively. Alternatively, we can consider a weighted

average version VD(ub(t)) := 1
M

∑M
m=1

wm
γm

2

∥∥Γmub(t)
∥∥2

2

where wm’s are the weights. The latter may be appropriate
if, based on prior knowledge, certain models are highly
likely and should be favored for discrimination.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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0.5

1

1.5

2

u(t-1)

u(
t)

Fig. 1. The feasible values (the hatched areas) of u(t) =
e1
′uf depending on u(t− 1) in the first example.

In order to guarantee the condition in (10), the input signal
u(t) is generated by the MPC-based controller in (4) with
an additional hard constraint

VD(uD,min{Tb,t+1}) ≥ 1 (11)
where uD,i = Ψiuf + ψi for i = 1, · · · , Tb with Ψ1 =
[ITb 0] ∈ RTb×Tf , ψ1 = 0 ∈ RTb ,

Ψi =

[
0 0

ITb−i+1 0

]
∈ RTb×Tf , ψi =


u(t− i+ 1)

...
u(t− 1)

0

 ∈ RTb

for i = 2, · · · ,min{Tb, t+ 1}. In other words, we have
uD,min{Tb,t+1}

=



[
e1
′uf · · · eTb−t′uf

]′
for t = 0[

u(0) · · · u(t− 1) e1
′uf · · · eTb−t′uf

]′
for 0 < t < Tb − 1[

u(t− Tb + 1) · · · u(t− 1) e1
′uf
]′

for t ≥ Tb − 1

.

However, the condition in (11) may cause the optimization
problem in the MPC to be infeasible. To see this, consider
a simple case of the MPC in (4) with the constraint in
(11), Tb = Tf = 2, u = −1, and u = 1 but without
the constraints in (5) and (7). Then, at a certain time

t ≥ 1, we have uD,min{Tb,t+1} =
[
u(t− 1) e1

′uf
]′

. If the
constraint in (11) is imposed with VD(uD,min{Tb,t+1}) =∥∥∥∥[ 0.8 0
−0.9 0.8

]
uD,min{Tb,t+1}

∥∥∥∥2

2

, then the feasible values of

e1
′uf , i.e. u(t), depending on u(t − 1) are described as

the hatched areas in Fig. 1. Notice that since u(t − 1) is
produced by the MPC at time t− 1, we have −1 ≤ u(t−
1) ≤ 1. From the figure, it is clear that if the MPC
produces a value u(t) satisfying |u(t)| < 0.2069 at time
t, the optimization problem in the MPC does not have a
feasible solution at time t+ 1.

In order to overcome this feasibility problem, we consider
a stronger condition

V̄D(uf ) := min
i∈{1,··· ,min{Tb,t+1}}

VD(uD,i) ≥ 1, (12)

which produces, in the example above, an additional

constraint

∥∥∥∥[ 0.8 0
−0.9 0.8

]
uf

∥∥∥∥2

2

≥ 1. Thus, the MPC selects

a value u(t) = e1
′uf satisfying |u(t)| ≥ 0.2069 and has
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Fig. 2. The feasible values (the hatched area) of u(t) =
e1
′uf depending on u(t− 1) in the second example.

a feasible solution at time t + 1. Nevertheless, even with
the condition in (12), the feasibility of the optimization
problem in the MPC may not be guaranteed. For example,
consider the simple case above except that u = 0, the

constraint in (12), and VD(uD,i) =

∥∥∥∥[ 0.9 0
−1.5 0.9

]
uD,i

∥∥∥∥2

2
for i = 1, 2. Then the feasible values of e1

′uf , i.e. u(t),
depending on u(t − 1) are described as the hatched area
in Fig. 2. Note that u(t) ≥ 0.5717 is imposed at time t
because VD(uD,1) ≥ 1. However, if u(t) = 0.5717 is chosen
by the MPC at time t, it is clear, from the figure, that the
MPC does not have a feasible solution at time t+ 1.

Therefore, in order to avoid a potential problem of fea-
sibility, the condition in (12) is implemented as a soft
constraint. Alternatively, we may employ another opti-
mization problem

min
uf∈RTf

J(uf )− ρJ V̄D(uf )

s.t. max{ZO(uf ), ZI(uf ), ZDI(uf )} ≤ 1
(13)

with a constant ρJ where J(uf ) = uf
′QJuf + 2qJ

′uf ,
ZO(uf ) = ‖QOuf + qO‖∞, ZI(uf ) = ‖QIuf + qI‖∞,
ZDI(uf ) = ‖QDIuf + qDI‖∞, and

V̄D(uf ) = min
i∈{1,··· ,Tb}

min
m∈{1,··· ,M}

1

γm
2

∥∥Γm (Ψiuf + ψi)
∥∥2

2

with matrices and vectors
QJ = Gf,θ̂(t)

′Gf,θ̂(t) + ρuΞ′Ξ

qJ = Gf,θ̂(t)
′(Ff,θ̂(t)x̂θ̂(t)(t)− rf (t))− ρuu(t− 1)Ξ′e1

QO =
2

y − y
Gf,θ̂(t), qO =

2

y − y
Ff,θ̂(t)x̂θ̂(t)(t)−

y + y

y − y
1

QI =
2

u− u
I, qI = −u+ u

u− u
1

QDI =
1

∆u

Ξ, qDI = −u(t− 1)

∆u

e1.

The optimization problem in (13) is a quadratic opti-
mization problem with convex quadratic constraints and
a nonconvex objective function so that the computation
becomes demanding as either of M and Tf increases. Thus,
we pursue, in the next section, semidefinite relaxation
techniques (e.g. Luo et al. [2007]) to obtain an SDP and,
then, perform a random search procedure based on a
solution to the SDP problem.

4. COMPUTATIONAL ASPECTS

For a large M or Tf , the optimization problem in (13)
may become intractable within a given time. In this case,
it may be better to compromise on the optimality and to
pursue a suboptimal solution instead.

Following the SDR in Luo et al. [2007], we can obtain,
from the optimization problem in (13), an SDP

min
U∈S

Tf+1

+

Ĵ(U)− ρJ V̂D(U)

s.t. max{ẐO(U), ẐI(U), ẐDI(U)} ≤ 1

Tr
(
eTf+1eTf+1

′U
)

= 1

(14)

with appropriate functions Ĵ , V̂D, ẐO, ẐI , and ẐDI , e.g.

Ĵ(U) = Tr

([
QJ qJ
qJ
′ 0

]
U

)
V̂D(U) = min

i∈{1,··· ,Tb}
min

m∈{1,··· ,M}

Tr

(
1

γm
2

[
Ψi
′

ψi
′

]
Γm
′Γm [Ψi ψi]U

)
ẐO(U) = max

i∈{1,··· ,Tf}
Tr

([
QO
′

qO
′

]
eiei

′ [QO qO]U

)
.

Even though the SDP in (14) is different from the opti-
mization problem in (13), an advantage is that the SDP
can efficiently be solved using freely available solvers such
as Sedumi (Sturm [1999]) and interfaces such as Yalmip
(Löfberg [2004]) and CVX (Grant and Boyd [2012]).

If an optimal solution U∗(t) to the SDP in (14) satisfies
rank(U∗(t)) = 1, then the solution can be decomposed

into U∗(t) =
[
uf
∗(t)′ 1

]′ [
uf
∗(t)′ 1

]
and, then, uf

∗(t) is
an optimal solution to the original optimization problem.
Otherwise, we employ a randomization scheme in the
following for good suboptimal solutions.

Algorithm 1. Denote an optimal solution to the SDP in

(14) by U∗(t) =

[
Φ∗Φ∗′ + φ∗φ∗′ φ∗

φ∗′ 1

]
.

Step 1 : Generate a realization ξ ∈ RTf of a standard
normal distribution.
Step 2 : Search for a constant a∗ such that, in the original
optimization problem in (13), a vector a∗Φ∗ξ + φ∗ (i) is
a feasible solution and (ii) produces a smaller objective
value than aΦ∗ξ + φ∗ with any other constant a. If such a
constant does not exist, go to Step 1.
Step 3 : Update û = a∗Φ∗ξ + φ∗ if this vector a∗Φ∗ξ +
φ∗ produces the best objective value so far through this
algorithm. If the number of the generations of ξ is less than
a certain positive number, then go to Step 1. Otherwise,
terminate the algorithm with uf

∗(t) = û.

5. AN EXAMPLE

A pitch angle y of a blade of a wind turbine is the angle
between the rotor plane and the blade chord line and, thus,
a pitch angle y = 0◦ means that the blade is aligned in
parallel with the rotor plane. The blade is rotated by a
hydraulic system and a popular model of this actuator

is a closed-loop transfer function ω2

s2+2ζωs+ω2 between the

pitch angle y and a reference angle u where ζ and ω are the
damping ratio and the natural frequency, respectively. See,
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Fig. 3. The result of the MPC without model discrim-
ination. The output signal (Top), the input signal
(Middle), and the cost values of the models (Bottom).

for example, Odgaard and Johnson [2013] for the details.
In a normal condition, the values are approximately ζ1 =
0.6 and ω1 = 11.11.

We consider a fault in the pitch angle control that is
caused by an abrupt drop of the hydraulic pressure. In
this case, the parameters change to around ζ2 = 0.45 and
ω2 = 5.73. We discretize these two models of the actuators,
i.e. the normal and the fault dynamics, to obtain Gθ1 and

Gθ2 with θ1 = [ζ1 ω1]
′

and θ2 = [ζ2 ω2]
′
, respectively.

The discretization is performed with a sampling time
Ts = 0.01s and a zero-order hold.

Based on these models, the system is driven by the MPC
with a sampling time Ts = 0.01s and a zero-order hold. In
order to complete the model structures as in (1), we use
identity operators for both Hθ1 and Hθ2 and let θ1 and θ2

represent two models (G1,H1) and (G2,H2), respectively.
The other parameters are set to Tb = Tf = 10, ρx = 50,
ρu = 0, and r(t) = 1, t = 0, 1, · · · . For simplicity, the
MPC contains only two models, i.e. Θ = {θ1, θ2}, and the
amplitude constraint in (6) with u = −2 and u = 2.

In the first MATLAB simulation, the system is operated in
a normal condition with ζ = 0.6, ω = 11.11, and an initial
condition [0.1 0]

′
up to time 0.5s and, then, is operated in

a fault condition with ζ = 0.45 and ω = 5.73. The input
signal of the system is provided by the MPC in (4) and
Fig. 3 shows the result. As desired, the output signal y of
the system converges to 1 quickly and the amplitude of the
input signal u lies between −2 and 2. However, the cost
values VM (θ1, t) and VM (θ2, t) stay close after time 0.25s
so that it is not easy to detect the occurrence of the fault
at time 0.5s.

In the second simulation, in order for fault detection and
isolation, the system is driven by the MPC associated
with the optimization problem in (13) and ρJ = γ1

2

with the same other conditions. The result is shown in
Fig. 4. Noticeably, the cost values VM (θ1, t) and VM (θ2, t)
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Fig. 4. The result of the MPC with model discrimination.
The output signal (Top), the input signal (Middle),
and the cost values of the models (Bottom).

stay apart so that it is easy to decide that the system
is in a normal and a faulty condition before time 0.5s
and after time 0.6s, respectively. We achieve this model
discrimination in the expenses of output tracking and
input power.

In the third and the forth simulations, we repeat the
above simulations except that the system is operated with
ζ = 0.54 and ω = 10 from time 0s to 0.49s and these
parameters change to and stay at ζ = 0.5 and ω = 6.3
from time 0.50s. Thus, the true parameters are not in the
model set Θ. Fig. 5 and Fig. 6 show the results of the
simulations with the MPC in (4) and the MPC associated
with the optimization problem in (13), respectively.

Even with the model mismatch, the MPC in (4) shows
a good tracking performance in Fig. 5, which indicates
a robust property against the model mismatch. And, the
MPC associated with the optimization problem in (13)
shows an ability of the fault detection and isolation in
addition to the robust tracking performance.

6. CONCLUSION

In this paper, we propose a modification of MPC for
the purpose of model discrimination and fault detection
and isolation based on a small amount of recent data.
This modification is developed for the situation where
it is not known if and when dynamics of an underlying
system changes so that old data are not reliable. Since
the amount of data for system identification is small, we
employ a modified version of the prediction error method
to accommodate the effect of an initial condition. We
analyze a potential feasibility problem of the optimization
problem in the modified MPC and we propose an alter-
native optimization problem to circumvent it. And, we
provide a simulation example that illustrates the model
discrimination performed by the modified MPC.
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Fig. 5. The result of the MPC with model mismatch
and without model discrimination. The output signal
(Top), the input signal (Middle), and the cost values
of the models (Bottom).

The true system may not belong to a set of models
but we are interested in the closest model among a
finite number of selective models. These selective models
represent operating modes of the underlying system so
that the MPC uses a model around the closest operating
mode. If the closest operating mode represents a fault
dynamics, a fault is detected and should be fixed.

The optimization problem in the modified MPC may
become intractable as either the number of models or
the length of the receding horizon increases so that we
apply SDR techniques to obtain an SDP and search for a
suboptimal solution via a randomization procedure.
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J. Rathouský and V. Havlena. MPC-based approximate
dual controller by information matrix maximization.
International Journal of Adaptive Control and Signal
Processing, 27:974-999, 2013.

M.S. Shouche, H. Genceli, and M. Nikolaou. Effect of on-
line optimization techniques on model predictive control
and identification (MPCI). Computers and Chemical
Engineering, 26(9):1241-1252, 2002.

J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones. Optimization
methods and software, 11(1-4):625-653, 1999.

M. Tanaskovic, L. Fagiano, R. Smith, P. Goulart, and
M. Morari. Adaptive model predictive control for con-
strained linear systems. European Control Conference
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