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Abstract: This paper concerns the reconfiguration control of actively articulated mobile robots
navigating through irregular terrains. Active mechanisms are able to accommodate for different
operation conditions. The capability to influence mobility depends on the mechanism kinematic
structure and the actuators velocity limitations. The robot mobility is evaluated considering
ground clearance, orientation and stability. Control strategies are proposed considering the
actuators bandwidth to compensate abrupt variations of the navigation trajectory and the
driven terrain. The proposed solution consists on anticipating the command action by employing
a predictive functional control method to adjust the robot for critical conditions faced during
operation. Numerical simulations using field data, recorded while navigating on a natural terrain,
are performed to verify the proposed strategies controlling a robot with two actuated DoF.

Keywords: Mobile Robots; Field Robotics; Motion Control Systems; Predictive Control;
Multiple-Criterion Optimization.

1. INTRODUCTION

Actively Articulated Mobile Robots (AAMRs) provide su-
perior mobility and performance while navigating through
irregular and rough terrains when compared to fixed-
design ones. Actuators connected to the mechanism are
able to adjust the vehicle’s configuration, changing its
center of mass (CMR) position according to the operation
conditions. By that, it is possible to adjust the robot
ground clearance, orientation, and stability in order to
decrease the risk of tip over.

Distinct examples of such robots illustrated in Fig. 1 are
the Autonomous Prime Mover (APM) [Singh et al., 2009]
and the Environmental Hybrid Robot (EHR) [Freitas
et al., 2010].

Fig. 1. Examples of Actively Articulated Mobile Robots.

Even though these robots are designed to drive at low
speeds, their actuators have velocity limitations that may
prevent them from rapidly adapting to sharp terrain
changes, therefore potentially limiting their effectiveness
in improving the vehicle mobility. The EHR joint leg, for
example, takes approximately 13s to travel its full course.
A high acceleration caused, e.g., by one wheel falling in
a depression on the ground may tip over the vehicle,
unless the event can be predicted and the articulations

actuated before it happens. More generally, all robots with
articulated elements have to deal with actuator bandwidth
in compensating for terrain irregularities.

Different to the common approach of decreasing the robot
speed and reduce dynamic effects, we propose a new
strategy for reconfiguration of AAMRs, dealing directly
with the system actuation constraints by employing a
Model Predictive Control (MPC).

The research focuses on the robot reconfiguration control,
computed based on a given navigation trajectory. For
simplicity, the localization and navigation problems are
not directly considered in this paper.

In this work we apply the MPC strategy to reconfigure an
AAMR with two actuated DoF through a Predictive Func-
tional Control (PFC). The strategy feasibility is illustrated
via numerical simulations using navigation and terrain
models obtained from field experiments, demonstrating
the control effectiveness in reducing the robot maximum
inclinations and the risk of tipping over.

2. ACTIVELY ARTICULATED MOBILE ROBOT

The configuration of a generic rigid body frame Ej is
defined with respect to (wrt) a reference coordinate system
Ei by the pose xij = (pij , R

i
j), where pij ∈ R3 is the

position and Rij ∈ SO(3) is the rotation matrix. The
orientation can be parameterized by roll, pitch and yaw
angles ϕ = [φj , θj , ψj ]

T .

The system composed by an AAMR moving on a terrain
is represented by three coordinate frames: the robot ER,
the terrain Eϑ and an inertial reference EI . The pose
xIR defines the robot configuration wrt the inertial frame,
which can be calculated combining xIϑ and xϑR:

pIR = pIϑ +RIϑ p
ϑ
R, RIR = RIϑ R

ϑ
R (1)
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We assume that the planar navigation trajectory, given by
position [pIϑx(t), pIϑy(t)]T and topographic (wrt the local
terrain) yaw angle ψϑ(t), is known a priori ∀t.
The local terrain can be simplified by a single plane defined
according to the contact points pci, i = 1, ...,m with the
robot wheels. Since the terrain variations affect the robot
vertical displacement and orientation, it is possible to
parametrize the covered profile using the height hϑ = pIϑz,
and angles φϑ, θϑ, such that ϑ : [hϑ, φϑ, θϑ]T . The driven
terrain ϑ(l) is parameterized wrt the vehicle traveled

distance l(t) =
∫ t

0
‖ṗIϑ(t)‖dt.

The considered articulated mechanism is capable of ad-
justing the CMR position in the lateral plane of the robot.
For that, the robot counts with two 1-DoF actuated legs
installed in the body. The robot is represented by a rect-
angular prism with width L and prismatic joint legs with
length di. The robot frame ER coincides with CMR, as
presented in Fig. 2.

Fig. 2. Model of an actively articulated mobile robot.

The wheel-terrain contact points pRci are considered to be
located at the legs terminations in terms of the active
joints d = [d1, d2]T :

pRc1 =

 0
L

2
−d1

 , pRc2 =

 0

−L
2

−d2

 (2)

The terrain plane is given by the unit normal vector nRϑ
and any contact point pRci, such as:

(nRϑ )T pRci − hR = 0 (3)

where hR ∈ R is the distance between terrain and ER.

Considering the robot with m = 2 contact points, the
terrain normal vector nRϑ is given by:

nRϑ =

[
0

− sin(δ)
− cos(δ)

]
, δ = arctan

(
∆d

L

)
(4)

and ∆d = d2 − d1.

The pose xRϑ corresponds to position

pRϑ = hR nRϑ (5)

and orientation RRϑ = Rx(−δ) ∈ SO(3).

By deriving and combining poses xIϑ and xRϑ , it is possible
to calculate the robot linear vIR and angular ωIR velocities
wrt the inertial frame EI . The angular velocity can be
obtained deriving roll, pitch and yaw angles such that
ω = JR ϕ̇, where JR ∈ R3×3 is the representation jacobian
[Goldstein, 1980].

The resulting forces and torques acting on CMR are
estimated using Newton-Euler equations [Murray et al.,
1993], such as:[

fIr
ηIr

]
=

[
M I 0

0 RIR I R
R
I

][
v̇IR
ω̇IR

]
+

[
ωik ×M vIR

ωik ×R
I
R I R

R
I ωIR

]
(6)

where M is the mass, I ∈ R3×3 is the robot inertia
moment, and identity I ∈ R3×3. The dynamic is obtained
in terms of the navigation trajectory and driven terrain.

3. MOBILITY ANALYSIS

The capability to move throughout the environment de-
termines the system mobility, which can be evaluated
considering the robot ground clearance, orientation and
stability.

It is important to keep a reference distance from the
ground, specially when moving on irregular terrains, in
order to avoid collisions with obstacles.

One requirement while transporting people and cargo
is to keep the robot body parallel to horizontal. The
robot configuration presented in Fig. 3(b) distributes the
supporting forces uniformly among the legs, improving
wheel traction efficiency. The system is stable, however
it is easier to tip over the robot around pc2 than pc1.

The most stable configuration is achieved when the robot
is inclined in the opposite direction of the terrain, as
presented in Fig. 3(c). In this configuration, tip over risk
is the same around pc1 and pc2. Still, the supporting forces
distribution is non uniform, decreasing traction efficiency.

(a) (b) (c)

Fig. 3. Orientation and tip over angles for different robot configu-
rations: (a) φR > 0 and γ1 >> γ2, (b) φR = 0 and γ1 > γ2,
(c) φR < 0 and γ1 = γ2.

3.1 Ground Clearance

The minimum distance from the robot frame ER to the
plane representing the terrain corresponds to the vehicle
ground clearance hR, defined by the active joints d:

hR =
L

2

σd√
∆2
d + L2

= fh(d) (7)

with σd = d1 + d2.
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3.2 Orientation

The robot orientation can be expressed by the rotation
matrix RIR, or parameterized through roll, pitch and yaw
angles ϕR = [φR, θR, ψR]T .

The orientation RIR is composed by two rotations: first RIϑ
from terrain wrt inercial given by ϕϑ, and second RϑR from
the robot wtr the terrain defined by δ (4) according to the
active joints d:

RIR = Rz(ψϑ)Ry(θϑ)Rx(φϑ) Rx(δ) = fo(d,ϕϑ) (8)

3.3 Stability via Force-Angle Measures

The stability metric proposed in [Papadopoulos and Rey,
1996] takes into account the angles γi necessary to rotate
the robot until tip over, illustrated in Fig. 3. The angles
depend on the system of forces f∗i acting on CMR, wrt the
tip over axes ati, given by:

f∗i = (I − atiaTti) fRr +
p̌Rci × ni∣∣∣∣pRci∣∣∣∣ , ni = (atia

T
ti) η

R
r (9)

where the tip over axes at1 = {xR} and at2 = {−xR},
p̌ = p

||p|| is the normalized vector, and fr, ηr correspond to

the resulting forces and torques (6).

Considering the articulated robot with m = 2, the tip
over angles between f∗i and pci are calculated using the
geometric relationship:

γi = σi cos−1
(
f̌∗i . p̌ci

)
, i = 1, 2 (10)

with

σi =

{
+1, (f̌∗i × p̌ci)T ati > 0
−1, (f̌∗i × p̌ci)T ati ≤ 0

According to the criterion, the stability is estimated by
the minimum tip over angle:

β = min(γi), i = 1, ...,m (11)

The system is unstable when β ≤ 0. The most stable
configuration is the one where all γi have the same value.
Thus, considering a robot with even number m of wheels,
it is convenient to represent the system stability by the
difference ∆γ between opposite tip over angles, such as:

∆γ = γi − γi+m/2 = fe(d,ϕϑ, fr, ηr) (12)

where ∆γ ∈ Rm/2.

4. TERRAIN MODELING

Irregular and rough terrains are, in general, complex
nonlinear surfaces not easily modeled [Sreenivasan and
Wilcox, 1994]. One solution is to represent the covered
terrain as a mesh [Burgard and Hebert, 2008]. This is
a compact representation, specially when applying mesh
simplification algorithms to reduce the terrain model to a
small number of vertices.

The robot mobility metrics presented take into account the
contact points with the wheels, and the rest of the terrain
profile is disregarded. Thus, it is possible to represent the
terrain as a patch of planes defined by the contact points,

corresponding to the minimum resolution employed by the
mesh representation.

Most of the work done on mobility prediction assumes
knowledge about the positions of the contact points. These
positions can be estimated based on the vehicle’s geome-
try and the navigation trajectory. Despite the associated
uncertainties, the terrain profile detection is feasible using
some adequate sensor suite.

Given the robot traveled distance l, it is possible to
compute a plane ϑ(l) in terms of pIci(l), representing the
terrain local characteristics. The local plane is defined wrt
EI by the unit normal vector nIϑ and any contact point
pIci, such as:

(nIϑ)T pIci − dϑ = 0 (13)

where dϑ ∈ R is the distance between Eϑ and EI .

The terrain frame Eϑ is given by the projection of ER onto
plane ϑ, defined by the position pIϑ such that:

pIϑ = pIR − hR (nRϑ )I (14)

where the robot position pIR is obtained from the contact
points pIc and active joints length d.

The terrain height hϑ is calculated with:

hϑ = [0, 0, 1] pIϑ (15)

and the orientation is given by the angles φϑ and θϑ,
obtained from the normal vector nIϑ:

φϑ = arctan

(
−nIϑy
nI
ϑz

)
, θϑ = arctan

(
nIϑx√

(nI
ϑy

)2 + (nI
ϑz

)2

)
(16)

Now considering that the vehicle is traveling along a given
path through the terrain, it is possible to parameterize the
covered planes wrt the vehicle traveled distance l as:

ϑ(l) : [hϑ, φϑ, θϑ]T = fϑ(l) (17)

4.1 Field Experiment

This section describes the terrain field experiments accom-
plished with one agricultural platform (Fig. 4) from the
Autonomous Prime Movers (APM) family, designed at the
Robotics Institute - Carnegie Mellon University as part of
the CASC project [Singh et al., 2009].

The base vehicle is the APM “Laurel”, employing a high–
accuracy Applanix POS 220 LV INS/GPS with 6 DoF
localization system and a Sick LMS 291 laser scanner
installed in a push–broom configuration (θL = 20◦) to
measure the terrain profile at approximately 4m ahead of
the robot.

Here we consider a field experiment accomplished with
Laurel at Soergel orchard (PA-EUA) on 24/08/2011. Dur-
ing the test, the APM collected data from the embedded
sensors while crossing an irregular terrain partially cov-
ered by grass. The obtained model is presented in Fig. 5,
highlighting the contact points and also the sequence of
planes representing the driven terrain. More details about
laser data registration is presented in [Freitas et al., 2012].
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Fig. 4. Autonomous Prime Mover Laurel employing a localization
system and a laser scanner for terrain modeling. The image
illustrates the coordinate frames from laser EL, robot ER,
terrain Eϑ e inertial reference EI .

Fig. 5. Natural terrain model given by a sequence of planes ϑ(l)
based on the contact points pIci(l) with the robot wheels moving
at Soergel orchard.

Figure 6 illustrates the terrain parametrization ϑ(l) com-
puted with experimental data obtained by Laurel during
the operation at Soergel orchard.

Fig. 6. Terrain parametrization ϑ(l) = [hϑ, φϑ, θϑ]T obtained
during field operation.

5. RECONFIGURATION BASED ON PREDICTIVE
FUNCTIONAL CONTROL

The Predictive Functional Control (PFC) was proposed
in [Richalet, 1993b] to deal with fast processes, including
trajectory tracking of 2 DoF turret [Richalet, 1993a] and
4 DoF parallel manipulator [Vivas and Poignet, 2005].
Another application is the steering control of an agricul-
tural tractor in presence of sliding, reducing overshoots
at beginning of curves induced by actuation delays and
vehicle large inertia [Lenain et al., 2005].

Similar to the MPC approach, the PFC can be divided
into three stages [Camacho and Bordons, 2004]: first it
predicts the process outputs at future instants based on
the given model; second it optimizes a cost function to

obtain the control sequence; then the first term of the
control sequence is applied to command the joints.

The PFC main characteristic is to evaluate costs consid-
ering the predicted errors only regarding specific points of
the future horizon; these coincident points are chosen here
according to the harsh mobility conditions faced during
operation.

The system is represented by a discrete state-space model.
Considering the AAMR with d active joints and the
kinematic control action defined as u = ḋ, the resulting
model is given by:

d(k + 1) = d(k) + ∆t u(k) (18)

y(k) = f (d(k),ϕϑ(k), fr(k), ηr(k)) (19)

where d ∈ Rna is the state, ∆t ∈ R is a temporal
increment, u ∈ Rna is the command action sent to the
actuators, and y ∈ Rna is the measured system output,
corresponding to the mobility metrics - ground clearance,
orientation, stability - to be controlled.

In general, predictive strategies anticipate the control
command such that the system predicted output tracks
a reference trajectory r defined for a future time horizon
th. PFC places the desired closed-loop dynamic into the
reference trajectory, equivalent to a first order lag filter
approach. The closed-loop set points are defined by w:
w(k + i) = r(k + i)− αi(r(k)− ŷ(k)), 0 ≤ i ≤ th (20)

where 0 < α < 1 sets the system closed-loop pole; given
the sample period T and the system closed-loop time

constant τ , we have α = e−
T
τ .

The coincident points are defined as w(k + ni), where
ni ∈ Ni and Ni = {n1, n2, ..., nh}. The number of points
nh is limited by the sampling time: a small nh may not
represent the system dynamic behavior; on the other hand,
a large nh requires more processing power to optimize the
cost function.

For articulated mobile robots navigating through irregular
and rough terrains, the coincident points can be selected
considering peaks in the reference trajectory. The choice
uses ∆w, such that:
Ni = {ni ∈ [0, th] | ∆w(k+ni) ∆w(k+ni−1) ≤ 0} (21)

The control law is computed using a deadbeat strategy to
enforce equality of the system output prediction ŷ and the
reference trajectory w at the coincident points:

ŷ(k + ni) = w(k + ni), ni = n1, n2, ..., nh (22)

The control performance is evaluated through a cost J
defined as the quadratic sum of the errors between the
predicted system output ŷ and the reference trajectory w,
wrt the coincident points, by the objective function:

J =

nh∑
ni=n1

(ŷ(k + ni)− w(k + ni))
2

+ λ (u(k))
2

(23)

and the term multiplied by λ associates costs to the
control action, working as a smoothing control term in
the objective function.

Considering the first order system (18-19), it is possible
to compute the control signal by the weighting factors µ,
defined wrt each contact point, such that:

u(k + ni) = µ(ni), ni = 0, n1, n2, ..., nh (24)
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It is important to notice that the command signal stays
constant between the coincident points, such that u ∈
Rna×nh .

Applying the control signal (24), the system predicted
output ŷ is calculated wrt the coincident points Ni =
{n1, n2, ..., nh}:

d̂(k + ni+1) = d(k + ni−1) + ∆t(ni+1 − ni)u(k + ni)

ŷ(k + ni) = f
(
d̂(k + ni),ϕϑ(k + ni), fr(k + ni), ηr(k + ni)

)
The future control sequence is obtained by an optimizer
that, given the system constraints, returns optimal weight-
ing factors to minimize cost J .

The applied command signal corresponds to the first term
of the control sequence u(k) = µ(0), while the rest of the
sequence is used as an initial guess to optimize cost J
during the next algorithm iteration.

The PFC tuning parameters are the desired closed-loop
time constant defined by α, the prediction time horizon
th, and the choice of coincident points Ni. The PFC
implementation is summarized by algorithm (1).

Algorithm 1 PFC Algorithm
1: initialize parameters: th, α, u(0) = 0
2: for k = 0→ t do
3: for i = 0→ th do

4: calculate d̂(k + i) with u(k + i− 1)

5: calculate ŷ(k + i) with d̂(k + i)
6: calculate w(k + i) with ŷ(k + i) using (20)
7: obtain the coincident points with w(k + i) using (21)
8: end for
9: procedure optimizeCostJ(µ(k))

10: adjust µ(k+1) to minimize J , given the constraint |ḋ|max

11: end procedure
12: define the actuator command u(k) as µ(0)
13: end for

The AAMR with 2 actuated DoF presented in Fig. 2 is
capable of controlling two mobility criteria. One degree of
articulation is constrained to maintain the reference dis-
tance between robot and terrain; otherwise, the achieved
configurations may be inconsistent. The other articulation
can be applied to adjust orientation or stability.

5.1 Ground Clearance and Orientation Control

The system model (19) considers the output:

y =

[
hR
φR

]
= f(d,ϕϑ)

The control objective is to keep the reference ground
clearance h∗R and track the orientation desired closed-loop
dynamic wφ (20) defined with φ∗R = 0 as reference r. The
objective function is given by:

J =

nh∑
ni=n1

[(
ĥR(k + ni)− h∗R

)2
+
(
φ̂R(k + ni)− wφ(k + ni)

)2]
(25)

5.2 Ground Clearance and Stability Control

The system model (19) considers the output:

y =

[
hR
∆γ

]
= f(d,ϕϑ, fr, ηr)

The control objective is to keep the reference ground
clearance h∗R and track the stability desired closed-loop
dynamic w∆γ (20) defined with ∆∗γ = 0 as reference r.
The objective function is given by:

J =

nh∑
ni=n1

[(
ĥR(k + ni)− h∗R

)2
+

(
∆̂γ(k + ni)− w∆γ(k + ni)

β(k + ni)

)2
]

(26)

The division by term β increases the cost associated to
configurations with small tip over angles. Rollover happens
when β = 0, resulting in infinite cost.

6. SIMULATION RESULTS

To assess the feasibility of the proposed reconfiguration
control strategies, simulations with the AAMR are accom-
plished. Experimental data collected by the APM during
the field operation previously described is employed to
model the driven terrain profile presented in Fig. 6 and
the planar navigation trajectory illustrated in Fig. 7.

Fig. 7. Planar navigation trajectory defined by position
[pIϑx(t), pIϑy(t)]T and orientation ψϑ(t) executed during field
operation.

The robot parameters are: length L = 100cm, mass M =
100kg and inertia moment I = diag([8.42, 0.17, 8.42])kg.m2.

The actuators constraints are given by ḋ ≤ 10cm/s. The
reference height h∗R = 60cm defines the robot standard
configuration with d1 = d2 = 60cm. The presented results
correspond to the traveling distance of l(t) ∈ [0, 13.4]m.

All simulations were accomplished using sampling time of
T = 0.02s; the desired closed-loop dynamic w is defind by
α = 0.15. The prediction horizon is defined considering the
actuators bandwidth and reference variations. The applied
objective function (23) does not associate costs to the
control action, such that λ = 0. The coincident points
are chosen to satisfy inequality (21). The results obtained
with the PFC are compared to the high gain proportional
control strategy proposed in [Freitas et al., 2010].

Figure 8 illustrates the ground clearance and orientation
control applied to the AAMR. The PFC control signal
is defined optimizing the cost function J (25), wrt the
coincident points marked in the figure by stars.

For the prediction horizon th = 3.0 s, the associated costs
rise between the instants t = [4, 7]s due to the terrain
abrupt variation overridden at t = 7s. The maximum cost
J reaches 165 at t = 4.5s with the proportional strategy;
the value decreases to 90 at t = 5.7s using the PFC control.
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Fig. 8. (upper) Robot orientation φR achieved in standard config-
uration (std), or applying the proportional (P) or predictive
(PFC) control strategies. (bottom) Associated cost J .

The terrain maximum inclination of φϑ = 16◦ at t = 7s is
attenuated to φR = 10.1◦ with the proportional control;
the predictive strategy reduces the maximum inclination
to φR = 6.9◦ at t = 8.2s. Regarding stability, the critical
value achieved by the PFC is ∆γ = 47.8◦ at t = 9.7s.

Figure 9 illustrates the ground clearance and stability
control applied to the AAMR. The PFC control signal
is defined optimizing the cost function J (26), wrt the
coincident points marked in the figure by stars.

Fig. 9. (upper) Robot stability metric ∆γ achieved in standard con-
figuration (std), or applying the proportional (P) or predictive
(PFC) control strategies. (bottom) Associated cost J .

For the prediction horizon th = 2.0 s, the maximum cost J
reaches 5.2×103 at t = 5.5s with the proportional strategy;
the value decreases to 3.0×103 at t = 5.6s using the PFC.

The maximum diference between tip over angles ∆γ =
63.8◦(β = 6.1◦) achieved at t = 7.3s by the robot in
standard configuration is attenuated to ∆γ = 57.5◦(β =
9.5◦) with the proportional control; the predictive strategy
reduces the maximum difference to ∆γ = 36.5◦(β = 21.5◦)
at the same instant. Regarding orientation, the critical
value achieved by the PFC is |φR| = 10.6◦ at t = 9.4s.

The results are summarized in Table 1, presenting critical
mobility values achieved by the robot in standard con-
figuration, or applying the PFC control strategies. The
stability increments are calculated wrt to minimum β
reached by the robot in standard configuration.

std height & height &

config. orientation stability

|∆h|max [cm] 0.0 0.3 1.6

|φR|max [◦] 16.0 6.9 10.6

|∆γ|max [◦] 63.8 47.8 36.5

βmin [◦] 6.1 15.5 21.5

Stability Increment 154 % 252 %

Table 1. PFC simulation results.

7. CONCLUSION AND FUTURE WORK

The PFC strategy achieves significant mobility enhance-
ments when controlling the AAMR navigating through a
terrain based on actual field data. For the given scenario,
the predictive control is capable of reducing the robot
maximum inclination from φR = 16◦ to φR = 6.9◦; the
proportional control only attenuates the value to φR =
10.1◦, even using high gain and saturating the actuators.
From the stability viewpoint, the critical tip over angle of
β = 6.1◦ achieved by the robot in standard configuration
rises to β = 21.5◦; the proportional control commands the
actuators achieving β = 9.5◦: the performance difference
between both methods is about 200% wrt the standard
configuration.

The results obtained so far are based on simulations;
the next step consists on implementing and verifying the
predictive control with a real AAMR. The case study
considers a 2 actuated DoF mechanism executing a specific
trajectory in a given irregular terrain. As future work,
the proposed control strategy will be scalable to highly
articulated robots, including exploration rovers and explo-
sive ordnance disposal (EOD) robots. Other future line of
research consists on dealing with different mobility factors,
e.g., wheel traction efficiency.
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