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Abstract:
In this paper, a networked embedded control of modular robot manipulators without using joint
torque sensing is presented. The proposed solution uses an effective control and communication
mechanism based on the virtual decomposition control (VDC) approach with embedded
FPGA (Field Programmable Gate Array) implementation. A hierarchical master-slaves control
structure is used, supported by a high speed communication data bus. The master computer
handles only kinematics computation and the dynamics-based computations are all performed by
individual embedded FPGA module controllers. The virtual stability of each module is ensured,
resulting in the L2/L∞ stability of the entire robot. Experimental results achieved on a three-
module robot manipulator using harmonic drives are presented.

1. INTRODUCTION

Modular robotics has been extensively developed in the
past two decades. Simply being formed with standardized
modules, modular robot manipulators possess many ad-
vantages over conventional integrated robot manipulators
in terms of re-reconfigurability, flexibility for structural
change, and ease of replacement of faulty modules. Early
development of modular robot manipulators can be traced
back to the work by Schmitz et al. [1988], in which a
CMU modular robot manipulator using a parallel-bus-like
communication link clocked at 500 kHz was reported. Two
years later, Fukuda and Kawauchi [1990] introduced the
concept of cellular robotics. Paredis and Khosla [1993]
developed a reconfigurable modular manipulator system
(RMMS) with modular links and joints, in which kine-
matic configuration optimization was performed analyt-
ically for two DOF robots and numerically for multiple
DOF robots. In the meantime, a (kinematic) configuration
optimization procedure based on an assembly incidence
matrix representation was presented by Chen and Burdick
[1995]. Yim et al. [2000] developed a reconfigurable modu-
lar robot PolyBot targeting space applications. Hirzinger’s
group at DLR developed a light weight robot (LWR)
with advanced mechanical modularity, see Hirzinger et al.
[2001]. Shen et al. [2006] developed a SuperBot modular
robot using an automatic docking mechanism. Recently, a
modular robot manipulator using joint torque sensors was
developed by Liu et al. [2008, 2011].

1 This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada Discovery Grant 418295-
2012.

However, the advantages of using modular robot manipu-
lators do not come without a price. The naturally decen-
tralized electro-mechanical structure of modular robot ma-
nipulators prevents many centralized control approaches
(such as computed torque control) from being directly ap-
plied, leading to unsatisfied control performances, see Yim
et al. [2007].

Efforts on improving control accuracy were indeed demon-
strated in the past. To replace the robot dynamics com-
putation needed by most inverse-model-based controllers,
joint torque sensing approach was used instead, see Albu-
Schaffer et al. [2007], Liu et al. [2008, 2011]. However,
using joint torque sensing has its own drawbacks. A strain
gauge is often sensitive to ambient temperature variations
and is easily resulting in DC offset, see Hashimoto et al.
[1993]. An optical torque sensor converts joint torque to
joint deformation, see Hirose and Yoneda [1990], resulting
in artificial joint flexibility that is undesirable for preci-
sion control. Furthermore, to achieve asymptotic tracking
control, the joint torque measurements need to be directly
fed back to compensate for the robot dynamics, see Liu
et al. [2008]. While being tested very successfully in free
motion such as in Liu et al. [2011], the direct use of joint
torque measurement for robot dynamics compensation
would necessarily create algebraic loops 2 about the joint
torques for rigid-joint robots or about the (first or second
order) time derivatives of the joint torques for flexible-
joint robots, when asymptotic tracking control with rigid
constrained tasks is concerned. Having algebraic loops
makes robotic systems sensitive to unmodeled dynamics
and disturbances and even results in instability when the

2 See Section 2.10 in Zhu [2010].
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gain of an algebraic loop reaches one. To avoid the algebraic
loop issue, regulation tasks were reported in Albu-Schaffer
et al. [2007].

The virtual decomposition control (VDC) approach pro-
vides a natural and effective solution to this long-standing
thorny problem for the first time without using joint
torque sensing, attributed to its naturally decentralized
control structure, see Zhu et al. [1997], Zhu [2010], Zhu and
Vukovich [2011], Zhu et al. [2013]. The VDC approach uses
subsystem (such as links and joints of a complex robot) dy-
namics to conduct control design, while rigorously guaran-
teeing the stability and convergence of the entire complex
robot. The unique feature of VDC in stability analysis is
the definition of virtual stability. The stability of the entire
complex robot is mathematically equivalent to the virtual
stability of every subsystem. This fact allows us to convert
a large complex problem to a few easy-to-solve simple
problems with mathematical certainty, see Zhu [2010].

The contributions of this paper are summarized as follows:
1) A networked embedded control and communication
system using VDC allows dynamics-based tracking control
to be applied to modular robot manipulators without
using joint torque sensing. 2) The master (host) computer
handles only kinematics computation, while all dynamics-
based control computations are fully handled by local
embedded slave computers in a decentralized manner with
guaranteed stability of the entire robot manipulator. 3)
The implementation of module dynamics-based control on
embedded FPGA devices enables much faster sampling
rates, leading to a very high control precision.

This paper is organized as follows: the VDC based control
and communications for modular robot manipulators are
presented in Section 2 and the stability analysis is pre-
sented in Section 3. Finally, experimental results achieved
on a three-module modular robot manipulator are re-
ported in Section 4, followed by conclusion.

2. CONTROL AND COMMUNICATIONS

Assume that a complete modular robot manipulator com-
prises n modules, as illustrated in Fig. 1. Each module
comprises two rigid links connected by a single-DOF joint,
as illustrated in Fig. 2. At the end of each link lies a
standard male or female electro-mechanical connection
interface providing data and power connections to adjacent
modules, see Zhu and Lamarche [2007] for details.

2.1 Communication System

The communication protocol is designed in such a way
that the master node is able to broadcast information to
all slave nodes and is able to extract information from
any designated slave node, see Zhu and Lamarche [2007],
Lamarche and Zhu [2007]. This protocol is a modified
version of SpaceWire (IEEE 1355).

With respect to this communication protocol, two cycles
with four actions are designed within each sampling pe-
riod, see Fig. 3. The first communication cycle constitutes
Communications A and B, and the second communication
cycle constitutes Communications C and D.

Fig. 1. A n-module modular robot manipulator.

Fig. 2. Coordinate frames for the kth module.

Fig. 3. Data exchange in communications.

2.2 Coordinate Frames

Four coordinate frames are attached to each module. For
the kth module, k ∈ {1, n}, the four frames are illustrated
in Fig. 2. Frames {Ak} and {Ck} share the same origin and
are attached to Link a and Link b, respectively. The z axes
of the two frames coincide with the joint axis. Frames {Tk}
and {Bk} are attached to the two connection interfaces of
the kth module, respectively, with their x axes aligning
with the two link axes.
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2.3 Communications and Control Computations

The entire communication and control computation pro-
cess is summarized below.

Step 1: Perform Communication A: the master node
extracts qk ∈ R and q̇k ∈ R from the kth slave node for all
k ∈ {1, n}, where qk and q̇k denote the joint position and
velocity of the kth module.

Step 2: The master node computes the required joint
velocity

q̇kr = q̇kd + λ(qkd − qk) (1)

for all k ∈ {1, n}, where qkd ∈ R denotes the desired joint
position for joint k and λ > 0 is a control constant.

Then, the master node computes the linear/angular veloc-
ity vectors using

CkV = BkUT
Ck

BkV (2)
TkV = CkUT

Tk

CkV + AkUT
Tk

zτ q̇k (3)
B(k+1)V = TkUT

B(k+1)

TkV (4)

with zτ = [0, 0, 0, 0, 0, 1]T ∈ R
6, where αV ∈ R

6, α ∈
{Ak,Bk,Ck,Tk,Bk+1}, denotes the linear/angular veloc-
ity vector of frame {α}, expressed in frame {α}, as defined
by Definition 2.8 in [Zhu, 2010, page 29]; αUβ ∈ R

6×6 is
a force/moment transformation matrix defined by (2.65)
in Zhu [2010]. With B1V = 0, Eqs. (2)-(4) are used
recursively to obtain CkV ∈ R

6 for all k ∈ {1, n}.
Accordingly, the master node computes the required lin-
ear/angular velocity vectors using

CkV r =
BkUT

Ck

BkV r (5)
TkV r =

CkUT
Tk

CkV r +
AkUT

Tk
zτ q̇kr (6)

B(k+1)V r =
TkUT

B(k+1)

TkV r (7)

where variables with subscript “r” refer to the correspond-
ing required variables. With B1V r = 0, Eqs. (5)-(7) are
used recursively to obtain CkV r ∈ R

6 for all k ∈ {1, n}.
Step 3: Perform Communication B : the master node
sends q̇kr ∈ R, CkV ∈ R

6, CkVr ∈ R
6, and CkRIg ∈ R

3 to
the kth slave node for all k ∈ {1, n}, where CkRI ∈ R

3×3

is a rotation matrix that transforms a three dimensional
vector expressed in inertial frame {I} to the same vector
expressed in frame {Ck} and g = [0, 0, 9.8]T ∈ R

3 denotes
the gravitational vector.

Step 4: The kth slave node computes

AkV = CkUT
Ak

CkV + zτ q̇k (8)
AkV r =

CkUT
Ak

CkV r + zτ q̇kr (9)

after receiving q̇kr ∈ R, CkV ∈ R
6, and CkVr ∈ R

6

from the master node. Then, compute the required net
force/moment vectors of the two rigid links using

AkF ∗
r =YAk

θ̂Ak
+KAk

(
AkVr − AkV

)
(10)

CkF ∗
r =YCk

θ̂Ck
+KCk

(
CkVr − CkV

)
(11)

where KAk
∈ R

6×6 and KCk
∈ R

6×6 are two positive-
definite gain matrices characterizing velocity feedback

control; YAk
θ̂Ak

and YCk
θ̂Ck

denote the model based
feedforward compensation terms defined by

YAk
θAk

=MAk

d

dt
(AkVr) +CAk

(Akω)AkVr +GAk

(12)

YCk
θCk

=MCk

d

dt
(CkVr) +CCk

(Ckω)CkVr +GCk

(13)

based on the physical link dynamics

MAk

d

dt
(AkV ) +CAk

(Akω)AkV +GAk
=AkF ∗

(14)

MCk

d

dt
(CkV ) +CCk

(Ckω)CkV +GCk
= CkF ∗

(15)

where the detailed expressions of MAk
, MCk

, CAk
(Akω),

CCk
(Ckω), GAk

, and GCk
were defined on page 31 of Zhu

[2010].

The estimated parameter vectors θ̂Ak
∈ R

13 and θ̂Ck
∈

R
13 are to be updated. Define

sAk
=YT

Ak

(
AkVr − AkV

)
(16)

sCk
=YT

Ck

(
CkVr − CkV

)
. (17)

The P function defined by Definition 2.11 in [Zhu, 2010,

page 32] is used to update each element of θ̂Ak
∈ R

13 and

θ̂Ck
∈ R

13 as

θ̂Akγ = P (
sAkγ , ρAkγ , θAkγ

, θAkγ , t
)
, γ ∈ {1, 13}

(18)

θ̂Ckγ = P (
sCkγ , ρCkγ , θCkγ

, θCkγ , t
)
, γ ∈ {1, 13}

(19)

where θ̂Akγ denotes the γth element of θ̂Ak
∈ R

13 and θ̂Ckγ

denotes the γth element of θ̂Ck
∈ R

13; sAkγ denotes the
γth element of sAk

defined by (16) and sCkγ denotes the
γth element of sCk

defined by (17); ρAkγ > 0 and ρCkγ > 0

are update gains; θAkγ and θAkγ denote the lower and

upper bounds of θAkγ - the γth element of θAk
∈ R

13; and

θCkγ
and θCkγ denote the lower and upper bounds of θCkγ

- the γth element of θCk
∈ R

13.

The computations in this step are to be performed in a
parallel manner.

Step 5: Perform Communication C : the master node
extracts AkF ∗

r ∈ R
6 and CkF ∗

r ∈ R
6 from the kth slave

node for all k ∈ {1, n}.
Step 6: The master node computes the required
force/moment vectors using

AkF r =
AkF ∗

r +
AkUTk

TkF r (20)
BkF r =

BkUCk

CkF ∗
r +

BkUAk

AkF r (21)
T(k−1)F r =

T(k−1)UBk

BkF r (22)
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from the robot tip toward the base with TnF r = 0. This
computation is based on the physical force/moment trans-
formation equations

AkF =AkF ∗ + AkUTk

TkF (23)
BkF = BkUCk

CkF ∗ + BkUAk

AkF (24)
T(k−1)F = T(k−1)UBk

BkF (25)

where αF ∈ R
6, α ∈ {Ak,Bk,Ck,Tk,Tk−1}, denotes the

force/moment vector of frame {α}, expressed in frame {α},
as defined by Definition 2.9 in [Zhu, 2010, page 29].

Step 7: Perform Communication D : the master node
sends

τak = zTτ
AkF r ∈ R (26)

to the kth slave node for all k ∈ {1, n}.
Step 8: Given the joint dynamics of the kth slave node as

Imk q̈k + fk + dk = τk − zTτ
AkF (27)

where Imk is the joint moment of inertia, fk is the joint
friction, and dk is a constant disturbance, the joint control
torque τk is designed as

τk = τ∗k + τak (28)

with

τ∗k = Îmk q̈kr + fkr + kk(q̇kr − q̇k) + d̂k (29)

and τak from (26), where kk > 0 is a control gain, Îmk

and d̂k denoting the estimates of Imk and dk, respectively,
and fkr is the friction compensation term for friction fk
subject to

[fkr − fk][q̇kr − q̇k] ≥ sk(t) (30)

with
∞∫

0

sk(t)dt ≥ −γ0 (31)

and 0 ≤ γ0 < ∞.

The two parameter estimates Îmk and d̂k are updated by
using the P function (given by Definition 2.11 in [Zhu,
2010, page 32]) as

Îmk =P (
smk, ρmk, Imk, Imk, t

)
(32)

d̂k =P (
sdk, ρdk, dk, dk, t

)
(33)

with

smk = (q̇kr − q̇k)q̈kr (34)

sdk = (q̇kr − q̇k) (35)

where ρmk > 0 and ρdk > 0 are two update gains; Imk > 0
and Imk > 0 denote the lower and upper bounds of Imk;
and dk and dk denote the lower and upper bounds of dk.

Remark 2.1: It can be easily proven that many friction
compensation approaches satisfy condition (30). This cat-
egory includes Coulomb friction compensation, viscous
friction compensation, and even the LuGre model based
friction compensation, see Zhu [2010a].

3. STABILITY ANALYSIS

A non-negative accompanying function

νmk = νAk
+ νCk

+ νk (36)

is assigned to the kth slave node, k ∈ {1, n}, where νAk
≥ 0

and νCk
≥ 0 are assigned to the two links, respectively, and

νk ≥ 0 is assigned to the joint. The three non-negative
functions have expressions as

νAk
=

1

2

(
AkVr − AkV

)T
MAk

(
AkVr − AkV

)

+
1

2

13∑
γ=1

(
θAkγ − θ̂Akγ

)2

/ρAkγ (37)

νCk
=

1

2

(
CkVr − CkV

)T
MCk

(
CkVr − CkV

)

+
1

2

13∑
γ=1

(
θCkγ − θ̂Ckγ

)2

/ρCkγ (38)

νk =
1

2
Imk (q̇kr − q̇k)

2
+

1

2
(Imk − Îmk)

2/ρmk

+
1

2
(dk − d̂k)

2/ρdk. (39)

Doing mathematical operations using (2)-(35) and Lemma
2.9 in Zhu [2010] leads to

ν̇mk = ν̇Ak
+ ν̇Ck

+ ν̇k

≤− (
AkVr − AkV

)T
KAk

(
AkVr − AkV

)
− (

CkVr − CkV
)T

KCk

(
CkVr − CkV

)
−kk(q̇kr − q̇k)

2 − sk(t) + pBk
− pTk

(40)

where sk(t) is subject to (31) and pBk
and pTk

represent
the virtual power flows defined by

pBk
= (BkVr − BkV )T (BkFr − BkF ) (41)

pTk
= (TkVr − TkV )T (TkFr − TkF ) (42)

at the two interfaces of the kth module.

The two terms pBk
and −pTk

appearing in the right hand
side of (40) are named virtual power flows (by Definition
2.16 in Zhu [2010]) at the two interfaces of the kth module.
They behave as a positive (plus sign) and a negative
(minus sign) “stability connectors” of the kth module to
the remaining modules. Having virtual power flows is a
unique characteristic of the definition of virtual stability
in Zhu [2010]. If every module (when being combined with
its respective control equations) is virtually stable, then
Theorem 2.1 in Zhu [2010] ensures that the complete robot
(system) is stable. This is because all the virtual power
flows of the entire system cancel out with each other
as if each positive “stability connector” is connected to
its corresponding negative “stability connector.” In fact,
using (4) and (7) results in

pTk
= pB(k+1), k ∈ {1, n− 1} (43)

which implies
n∑

k=1

(pBk
− pTk

) = 0 (44)
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for given pB1 = 0 (with zero velocity) and pTn = 0 (with
zero force) of a n-module modular robot manipulator.

Thus, the non-negative function for the entire robot is
chosen as

ν =

n∑
k=1

νmk. (45)

It follows from (36), (40), and (44) that

ν̇ ≤−
n∑

k=1

(
AkVr − AkV

)T
KAk

(
AkVr − AkV

)

−
n∑

k=1

(
CkVr − CkV

)T
KCk

(
CkVr − CkV

)

−
n∑

k=1

kk(q̇kr − q̇k)
2 −

n∑
k=1

sk(t). (46)

In view of (36), (45), and (46), it follows from Lemma 2.3
and Lemma 2.4 in Zhu [2010] that

q̇kr − q̇k ∈L2 ∩ L∞, ∀k ∈ {1, n} (47)

holds, leading to

qkd − qk ∈L2 ∩ L∞, ∀k ∈ {1, n} (48)

q̇kd − q̇k ∈L2 ∩ L∞, ∀k ∈ {1, n} (49)

from (1).

The asymptotic stability in the sense of

qkd − qk → 0 (50)

q̇kd − q̇k → 0 (51)

for ∀k ∈ {1, n} follows immediately from using bounded
reference signals, leading to bounded control τk and
bounded joint acceleration q̈k, k ∈ {1, n}, in view of Tao
[1997].

4. EXPERIMENT

A three-module modular robot manipulator presented
in Zhu et al. [2013] is used to test the control algorithm.

The master node is a PowerPC 405 clocked at 300 MHz,
computing the kinematics of the robot including (1), (2)-
(7), and (20)-(22), with a sampling frequency of 1000 Hz.

A Virtex II-1000 FPGA logic device clocked at 50 MHz is
used as a slave node computing (8)-(11), (16)-(19), (28),
(29), and (32)-(35). In computing (29), (1) is used again
and updated at 50 MHz.

The desired trajectories of the three joints are designed as

q1d(t) = qd(t)

q2d(t) = 2qd(t)

q3d(t) = 3qd(t)

with

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

Position tracking result

(r
ad

)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

Time (second)

(r
ad

)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

(r
ad

)

 

 

Joint 1 desired position
Joint 1 measured position

Joint 2 desired position
Joint 2 measured position

Joint 3 desired position
Joint 3 measured position

Fig. 4. Position tracking result of a 3-module robot.
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Fig. 5. Position tracking errors.
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Fig. 6. Joint control torques.

qd(t) = 6(pf − p0) (t/tf)
5 − 15(pf − p0) (t/tf )

4

+10(pf − p0) (t/tf)
3 + p0

where p0 = 0 (rad), pf = 0.0785 (rad), and tf = 1
(second) denote the initial position, the final position, and
the trajectory duration, respectively.
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The position tracking result is illustrated in Fig. 4 with the
position tracking errors and the joint control torques being
illustrated in Figs. 5 and 6, respectively. The maximum
position tracking errors are limited by 0.0001 (rad).

The detailed description about the experiments can be
found in Zhu et al. [2013].

5. CONCLUSION

A networked embedded control approach has been de-
veloped in this paper to solve a long standing problem,
the lack of control precision, associated with modular
robot manipulators. The developed control framework uses
virtual decomposition control (VDC) approach without
needing joint torque sensing. The decentralized control
structure of VDC fits naturally with the decentralized
electro-mechanical structure of the modular robot ma-
nipulators. The master computer handles all kinematics
computations and initiates communications, while leaving
all dynamics-based control computations to individually
embedded slave controllers. The validity of the developed
control approach has been ensured by both stability proof
and experimental verification.
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