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Abstract — This paper introduces a closed form discretization 

method of fractional-order differentiators or integrators. Unlike the 
continued fraction expansion technique, or the infinite impulse 
response of second-order IIR-type filters, the proposed technique 
generalizes the Tustin operator to derive a stable and minimum 1st 
and 2nd-order discrete-time operators (DTO) that discretize 
continuous fractional-order differintegral operators. Such DTOs 
exploits the phase properties of the DTOs over a wide range of the 
frequency spectrum, which depend only on the order of the 

continuous operators. Moreover, the closed-form DTOs enable one 
to identify the stability regions of fractional-order discrete-time 
systems. The effectiveness of this work is demonstrated via several 
numerical examples. 

Index Terms—Discretization, Differintegrator, Fractional 
Calculus, Differentiation, Integration, Laplacian Operator 

I. INTRODUCTION 

Fractional-order systems represent a generalization of the 

integer-order ones. Most systems are best described by 

fractional-order dynamics of real or even complex orders. 

These systems enjoy hereditary effects and can be analyzed 
using the generalized fractional-order calculus. The hereditary 

effect implies that such systems are of infinite dimension, 

which must be approximated by finite-order models for 

realization purposes (Podlubny, 1994,1999; Oldham and 

Spanier, 1974; Krishna, 2011; Kilbas, et al., 2006, Samko, 

1987). 

Since embedded systems require fast computing, 

especially the ones that are described by fractional-order 

dynamics, there is a need to convert these systems into 

discrete-time ones. Hence, the discretization of the continuous 

differintegral Laplacian operator would pave the way to 

implement digital signal processors for such systems. It 

follows that a dynamic, stable, and a straightforward, 

discretization techniques are needed to achieve such goals.  

There are two discretization techniques of differintergal 

continuous operators; a direct and an indirect one (Al-Alaoui, 

1993, 2001, 2006).   In the indirect discretization method one 
may first develop a rational continuous-time operator (CTO), 

which then discretized using any of the well know 

discretization techniques. The direct method, on the other 

hand, allows one to directly develop DTOs to discretize the 

fractional-order CTOs (Chen et al., 2003; Barbosa et al., 2005; 

Nei et al.; 2011). 

The method of continued fraction expansion (CFE) is one 

of the early methods that is implemented in the indirect 

discretization approach to obtain rational approximations from 

irrational functions (Chen et al., 2003; Siami et al., 2001). One 

must be careful when using the CFE approach when 

discretizing closed-loop continuous fractional-order transfer 

functions; it may result in unstable models due to generating 

non-minimum phase DTOs. An alternative approach to the 

CFE was adopted by (Ortigueira and Serralheiro, 2007), 

where an IIR ARMA modeling are used to develop discrete-

time fractional-order operators, which yields high order 

models. 

Notice that some operators, such as the Al-Alaoui 

operator, are obtained by interpolating the trapezoidal and 
rectangular integration rules (Alaloui, 2001; Vinagre et al., 

2000). The Interpolation and inversion processes may induce, 

in some cases, unstable fractional-order models. 

This work introduces a direct discretization technique to 

discretize the continuous differintegral operators that depends 

only on its fractional order. The significance of the proposed 

method is achieved by identifying the stability region for 

discrete-time systems. Moreover, the proposed method yields 

a 2nd-order DTO with a frequency response that is almost 

identical to that of a 9th-order one introduced in (Al-Alaoui, 

2001; Chen et al., 2002). 

The paper is organized as follows: next section 

summarizes some preliminaries and background. Section III 

introduces the main results of this work. The stability regions 

of the new operators are discussed in section IV. Section V 

presents a comparative study between the proposed operators 

and those obtained using continued fraction expansion via 
numerical simulation. Finally, section VI highlights the 

concluding remarks.  

II. PRELIMINARIES AND BACKGROUND 

Fractional-order calculus is a generalization of the 

classical integer-order one (Oldham and Spanier, 1974). The 

fractional-order differintegrator operators are denoted by 

  
  

 . One may define the fractional-order integrator,    
  

  

by   
 

 , where a and t represent the time limits  and     is 

the order of the operator. The digital implementation and 

synthesize of fractional-order controllers require proper 
discrete-time forms of the fractional-order differintegral 

operators (Ortigueira, and Serralheiro, 2007; Chen et al., 
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2003; Oustaloup et al., 2000); one must then look for a 

dynamic, accurate, and efficient discretization techniques to 

discretize the continuous fractional-order operators.   

There are two discretization techniques; direct and indirect 

discretization. In the indirect method, the fractional-order 

operators are first approximated by a rational finite-order 

transfer functions; i.e.,     
      

      
 (Gupta, and Yadav, 2012; 

Oustaloup et al., 2000; Lubich, 1986), and then the resulting 

form is discretized using any existing technique such as Tustin 

method, Al-Alaoui operator, or a linear combination of other 

discrete-time operators. For example, the Al-Alaoui integral 

operator is simply a linear interpolation of the backward 

rectangular rule and the trapezoidal rule, i.e.,      
                       , where       (Al-Alaoui, 

2006). A similar technique was also used to develop a 

dynamic hybrid digital integrator using a linear combination 

of Simpson’s and the Trapezoidal integrators (Chen et al., 

2003; Gupta et al., 2012). All these operators reduce the 

frequency deviation over limited range of the frequency 

bands, while they deteriorate their phase responses.  

Figure 1 shows the frequency response of Tustin operator, 

        
        

        
, the Al-Alaoui operators,         

        

     
   

 
 
, and compared with Chen discrete-time operators 

(Chen and Moore, 2002). Another hybrid discrete-time 
differentiator that approximates an integer-order integrator 

was also introduced in (Chen et al., 2003) and given in 

equation (1) for completeness: 

     
       

                  
;    

         

   
,    

         

   
        (1) 

 

Where T is the sampling time and       is a scaling 

factor.  

Equation (1) can be used to generate several quadratic forms 

that discretize    .   
 

 
Figure 1: Frequency response of Tustin, Al-Alaoui, and 

the DTO of equation (1) 
 

 Figure 1 shows the frequency response of the three 

aforementioned operators, which approximate the differential 

operator,    for        s. The bilinear (Tustin) 

transformation exhibits a sever magnitude deviation at both 

ends of the frequency spectrum. The Al-Alaoui operator, on 

the other hand, reduces such deviation at high frequency and 

yields an almost linear phase due to the asymmetric pole-zero 

selection. Hence, any attempt to obtain an accurate discrete-

time form for discrete-time systems using the CFE results in a 

high order rational z-transfer function, which is cumbersome 

and, in some cases, may yield unstable equivalent discrete-

time systems.  

Since the goal is to look for a closed-form discrete-time 

model for    , the direct discretization methods are exploited 

further to achieve such a goal. In all methods, one may replace 
the continuous frequency operator by a generating function, 

i.e.,             
  

. For example, applying a direct 

discretization to the GL definition of the fractional-order 

integro-differential operator yields (Lubich, 1986; Vinagre et 

al., 2000; Podluby, 1996, 1999), 

 

    
           

   

 

   
   

                
                          (2) 

   

where     is the flooring operator, and where 

   
           

 
      

   

 
      

       
                            (3)  

Taking the Z-transform of (2) and using the short memory 

principle (Vinagre et al., 2000), the following generating 

function may discretizes    , i.e., 

                     
  
        

      
     
                          (4) 

where      is the sampling time, and      
    

 
  is an 

increasing memory size       . 

Equation (4) defines a transfer function of a FIR-type 

discrete-time model of    . The memory size,    determines 

the accuracy of the generating function. A compromise 

between accuracy and size must be made to develop a 

realizable discrete-time operator.  

The large memory size of the FIR discrete-time form of 

equation (4) does not yield an acceptable frequency response 
and would complicate the analysis and modeling of fractional-

order systems.  Therefore, one has to look for an IIR-type 

rational z-transfer function to minimize size of the discrete-

time operators of       
Most researchers perform a CFE to generate an IIR-

discrete-time differentiators/integrators (Al-Alaoui, 2001; 

Chen et al., 2003; Lubich, 2006; Kilbas et al., 2006). The CFE 

does not always yield a stable minimum phase system, nor 

does it yield a flat-phase frequency response. Hence, one has 

to compromise between the size of the expansion and the type 

of the generating functions used. Several generating functions 

were used to discretize     , and listed below for 

completeness, to obtain a rational z-transfer functions of the 

fractional-order integrators/differentiators (DTFoI/DTFoD) 
(Chen et al., 2002, 2003; Vinagre et al., 2000, 2003; Nie et al., 

2011): 

a) Backward-Euler method alone by letting 

         
  
  

     

 
 
    

.  

b)  Trapezoidal (Tustin) discretization rule alone to 

expand         
  
  

        

        
 
  

. 

c) Al-Alaoui Operator alone to approximate         
  
 

 
 

  
 
     

  
   

 

  

  

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Normalized Frequency  ( rad/sample)

P
h
a

s
e
 (

d
e

g
re

e
s
)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Normalized Frequency  ( rad/sample)

M
a
g

n
it
u

d
e
 (

d
B

)

 

 

Tustin

Al-Alaoui

Chen et. al.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2017



 

d) A Hybrid interpolation of Simpson’s and Trapezoidal 

discrete-time integrators of the form: 

                                               (5) 

where       
             

        
, and       

        

        
. 

The interpolation technique in (5) is a generalization of the 

first three methods. Since the magnitude of the frequency 

response of the integer-order integrator,    , lies between that 

of the Simpson’s and Trapezoidal discrete-time integrators 

(Al-Alaoui, 2001, 2006), then the linear combination in (5) for 

      can be used to obtain a typical an IIR-type 

discrete-time operator as follows (Chen et al., 2003):  

                 
  
    

     

        
  

 

                                 (6) 

where        ,     
   

      
 
 

  and      
         

   
. 

 Using the symbolic MATLAB Toolbox, one may obtain 

several forms of the CFE of (6) that 

approximate          
  

. For example, when       and 

for         s, equation (6), yields several discrete-time 

transfer functions,          , that discretize     , where n, and 

a represent the order and the  weighting factor of the 

approximation, respectively (Chen et al., 2003, i.e., 

                  
    

                       

              
                             (7a) 

                  
    

                                

                         
          (7b) 

                   
    

                                         

                                
    (7c) 

Figure 2 displays the frequency response of (7a,b,c) for 

        . The magnitude frequency response of the 2nd-

order approximation yields a warping effect at high frequency, 

while the phase diagram of the three forms exhibit a 

decreasing phase value over most of the spectrum. 

 
Figure 2: Frequency response of      using (7a, b, c) 

 

Remark 1: The discrete-time approximation of (7c), 

reported in (Chen et al., 2003), represents an unstable non-

minimum phase form since it has a pole and a zero outside the 

unit circle at          , and          , respectively. 

However, since    , then there is an almost pole-zero 

cancellation, which is evident from its frequency response 

shown in Figure 2. This would cause instability when 
implemented in larger systems. Furthermore, according to 

(Chen, et al., 2003), one must improve the phase performance 

of             by cascading a causal lead compensator      

         , which requires the implementation of a fractional 

sampler. 

Remark 2: Since the CFE generates discrete-time forms 

of different orders, the stability region of such transformation 

is not straightforward and may not be guaranteed. Hence, one 

should look for a new form of discrete-time transformation 

that defines the stability region of the discrete-time fractional-

order operators. 

III. EL-KHAZALI OPERATORS 

As pointed out in section II, the CFE of any generating 
function could yield a higher order and an unstable non-

minimum phase discrete-time approximation. The aim of this 

work is to avoid such subtleties by developing a dynamic 

closed-form solution to effectively discretize the fractional-

order operators,    , which only depends on the order of the 

operator. Moreover, one would also be able to define the z-

domain stability region of the DTO that approximates    .  

A.   First-Order Operators 

The key point to develop a discrete-time operator that 

approximates     is to generate a form that maintains an exact 
phase value over a wide range of frequency spectrum. The 

following first-order discrete-time operator is considered to 

generate a dynamic fractional-order z-transfer function of the 

form: 

                  
 

 
 
  

 
         

         
                             (8) 

where       R, and       R both depend on  . 

Observe that (8) can describe both an integral/differential 

operators. 

 

Theorem 1: Consider equation (8), where T is the sampling 

time. Let,             
 

           
         then 

equation (8) discretizes the fractional-order operator    .  

 

Proof: Consider first the fractional-order differentiator,    , 

which has a leading phase of      and a unity gain over the 

entire spectrum. When    ,              , then 

equation (8) yields the well know Tustin transformation,  

i.e.,                   , where                . 

Now, for       ,                  , and the pole-
zero maps of (8) are located inside the unit circle as shown in 

Figure 3.  

z
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Figure 3: Pole-zero maps of (8) 

 

Since equation (8) is expected to exhibit a flat phase 
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     . Consider the test point when Ω = π/2 

(corresponding to half the sampling frequency), the phase 

angle of (8) must equal     , i.e., 

                                                                              (9) 

Solving (9) and using the symmetry of the real pole and zero, 

i.e., |                then, 

                       
 

             
 ;                   (10) 

Finally, since                      , then equation 

(8) is a stable operator. 

 Figure 4 shows the frequency response of (8) for different 

values of α. The proposed first-order operator exhibits an 

acceptable response for        . Obviously, the 

magnitude frequency response deviates off the exact values at 

both ends of the frequency spectrum since         
           

 
Figure 4: Frequency response of (8) for     s. 

 

B. Second-Order Operator 

The second-order discrete-time operator (DTO) has symmetric 

real poles and zeros. Similar to the continuous biquadratic 

approximation of the Laplacian operator,   , introduced in 
(El-Khazali, 2013), the following 2nd-order DTO may be 

considered to discretize    : 

                   
 

 
 
  

 
                  

                  
                  (11) 

where, 

                                            (12) 

Substituting from (12) into (11) yields, 

                 
 

 
 
                        

                      
              (13) 

Theorem 2: Let T be a sampling time,      , and 
consider (12), then the z-transfer function given by (13) 

discretizes the fractional-order operator,     , where  

              
            

  
  ;             

  

 
                   (14) 

Proof: Using the same arguments of theorem 1, the phase 

contribution of the poles and zeros of (13) as depicted in 

Figure 5 is required to exhibit a flat phase over the entire 

spectrum, i.e., 

                                                              (15) 

Now, for symmetry, consider the midpoint of the normalized 
frequency spectrum at Ω = π/2. Substituting from (12) into 

(13) and solving (15) yields, 
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Figure 5: Pole-Zero maps of (13) 

      
            

  
      ,       

            

  
             (16) 

 Clearly, equation (16) gives a closed-form solution to the 

values of poles and zeros of (13). As            , 

while        , and equation (13) reduces to the bilinear 

transformation     
 

 
  

    

   
   Moreover,           for all 

     .  

Figure 6 displays the frequency response of (13) for 

                 . Obviously, as   increases, the phase 

response of (13) exhibits a constant value over a wider range 

of frequency band.  Figure 7, on the other hand, compares 
between the frequency response of the 1st and 2nd-order 

approximations for     , while Figure 8 displays a comparison 

between the frequency response of the two operators for 

       and a sampling time          . Notice that as 

   , the frequency response of the 1st-order operator is 

almost identical to that of the 2nd-order one with less 

magnitude frequency deviation at both ends of the frequency 

spectrum. Hence, for large values of α, one may adopt the 1st-

order operator instead of the 2nd-order one. 

IV. STABILITY REGION 

The stability of continuous fractional-order systems was 

extensively investigated by many researchers (Matignon, 

1996). It was verified that the stability region of such systems 

is defined off the cone that makes angles of  
  

 
 with the real 

axis (Matignon, 1996). In order to identify the stability region 

of the DTO of (8) or (13), the boundaries of the stable region 

of continuous fractional-order systems, defined by the vectors 

          ;      , are mapped through the operators 

(8) or (13). Substituting            into (8) and solving for 

z yields the boundaries of the stability region of the 1st-order 

discrete-time operator given by (8), i.e.,  

                         
            

            
                                 (17) 

Similarly, the boundaries of the stability region for the 2nd-

order operator in (13) are given by: 

 

                    
          

  
,                                           (18) 
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where,         
   

  ,                      
 
   

  , 

and                  
 
   

  . 

Figure 9 shows the stability region for both the 1st- and 2nd-

order DTOs, which are contained inside the unit circle. It 
implies that both (8) and (13) yield a robust and stable 

representation to   . The low order of these operators yields a 

fast impulse response in the spatial domain; thus converging 

to its steady-state behavior faster than 9th-order DTOs. 

 
Figure 6: The frequency response of (13) for different 

values of  .  

 
Figure 7: Frequency response of (8) and (13) for     . 

 

Figure 8: Frequency response of (8) and (13) for       

 

fast impulse response in the spatial domain; thus converging 

to its steady-state behavior faster than other forms of DTOs 

obtained by other methods. This point is left out due to space 

limitation.  

 
Figure 9: Stability regions of (8) and (13) for      . 

 
Figure 10, on the other hand, shows the effect of the 

fractional-order, α, on the stability region of the 2nd-order 

operator (13). Clearly, as    , the stability regions expand 

to coincides with the unit circle. 

 
Figure 10: Stability region of (13) for different values of α 

 

To obtain an accurate DTOs using the CFE technique, one 

may often requires a 7th-order or a 9th-order rational z-transfer 

function to discretize     (Chen et al., 2002, 2003). The next 

section summarizes the effectiveness of the proposed 

operators of (8) and (13) against other forms of DTOs.  

V.  NUMERICAL SIMULATION 

To appreciate the proposed DTOs of (8) and (13), their 

frequency response are compared with other forms of DTOs 

reported in (Al-Alaoui, 2001; Chen et al., 2003). The case 

when        for         s is taken as a bench mark.  

Equation (13) yields, 

                
                                     

                              
              (19) 

The following 9th-order DTO that discretizes      using the 

CFE and reported in (Chen et al., 2003) is investigated against 

the one given by (19), i.e., 

      
                                           

                                                   
 

                                      

                                                 
 

         (20) 

Figure 11 displays the frequency response of (19) and 

(20). Both forms exhibit similar magnitude and phase 

responses. However, using (19), the magnitude frequency 

deviation at low frequency is better than that of (20), while the 

phase response of (20) at low frequency is better than that of 

(19). But, the significant improvement of (19) over the one in 
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(20) is evident by the order reduction. For example, if one 

wishes to discretize a system with Laplace operators of two 

different orders, one would need an 18th-order model when 

using (2), while a 4th-order one will be sufficient when using 

(19), which is faster and requires less hardware design. 

Notice that since both poles and zeros of (8) or (13) are 

symmetric and lie in the stable region. Interchanging the poles 

and zeros with each other approximates the fractional-order 

discrete-time integrators, (    ), or equivalently, by using the 

reciprocal of (8) or (13) one can also discretize DTFoIs. 

 
Figure 11: Frequency response of (19) and (20) that 

discretize      

VI. CONCLUSIONS 

Two closed-forms of first and second-order DTOs were 

introduced to discretize the fractional-order Laplacian 

operator,    . The operators depends solely on the fractional-

order,  , which can accommodate systems of “variable” 

orders. The two operators exhibit flat phase and constant gain 

frequency response over a wide range of frequency with a 
perfect symmetry in the phase response. The proposed 

solution is straightforward and yields a stable operator of low 

order. It is an IIR-type z-transfer function that discretize    . 

It is worth noting that the first-order operator can be used for 

reasonable high fractional orders; (say        ). The 

proposed closed-form operators exhibit a flat phase frequency 

response with less magnitude deviation, at both ends of the 

spectrum, than other forms obtained when using the CFE 

technique. The significance of the proposed operators 

becomes evident in system analysis and controller design, 

which is left for future consideration.   
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