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Abstract: Implementing complex control schemes for a mechanically fragile and expensive
system can be a risky undertaking. We can reduce the operational risks by a) identifying regions
of state-space where the system is far from critical system bounds and exhibits natural stability,
and b) designing a backup controller that keeps the system from crashing if we venture beyond
those regions. We propose to maximize the safety-margin of the system’s operational bounds,
using a stochastic interpretation of the algebraic Lyapunov equation. This technique allows us
to find optimally safe open-loop stable setpoints of the system. Next, we propose to add the
parameters of a linear output feedback controller as optimization variables, such that setpoint
and controller are jointly designed to yield the safest operational regimes. We demonstrate these
methods on the application of rotational launch of tethered airplanes for power-generation.

Keywords: optimal control; robust control; output feedback; Lyapunov equation; steady-states;

renewable energy systems

1. INTRODUCTION

Some physical systems require a controller which is care-
fully balanced between performance and constraints, such
as complex system dynamics and damage-avoiding con-
straints. An example of such a system can be found in
the field of airborne wind energy (AWE). To the effect
of demonstrating rotational startup for AWE systems,
the Leuven/Freiburg Highwind group is putting into ser-
vice a large second generation carousel (Geebelen et al.,
2012), a device which tows around an airplane on a tether
of adjustable length. Nonlinear model predictive control
(NMPC) is the enabling technology here.

Before hitting the start button of this new experimental
setup and towing around a sensor-packed airplane in gusty
conditions, it makes sense to study the open-loop behavior
and map out control settings which correspond to steady-
state solutions that are a safe distance away from violating
critical bounds, such as the height of the airplane above
the ground. Also, it is desirable to have a simple controller
that can take over when more complex schemes fail during
prototyping.

This paper formulates an answer to both these research
questions using techniques from the field of robustness and
stability optimization, Zhou et al. (1996). In Section 2, we
introduce a rigorous vocabulary to talk about operational
safety, propose a method to optimize operational safety
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open-loop in an approximate fashion, and we extend the
method for a simple superimposed controller. Section 3
highlights two implementation details: the elimination of
a subset of decision variables, and the treatment of systems
with invariants. Section 4 treats the AWE application
which inspired the presented research. Discussion and
conclusion sections follow at the end.

2. METHODS

The key idea of the proposed method is to scale up
a safety-margin around a set of likely system states as
much as possible, without leaving the region where system
operation is safe. This idea and its formulation will be
developed in the following subsection, followed by an
extension for the incorporation of output feedback. In
this section, we will treat systems described by ordinary
differential equations (ODE). A generalization for systems
with invariants is given in Section 3, and in Section 4, a
class of differential-algebraic equations (DAE) is treated.

2.1 Optimally safe setpoints

Consider the continuous time dynamic system

with states € R"™, control inputs v € R™ and f
continuously differentiable. Neglecting modeling error and
external disturbances for a moment, we define the system
to have a asymptotically safe setpoint (z*,u*) if it holds
that:
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(1) Control bounds are respected: u* € U C R™.

(2) z* is in the interior of the operational set X.

(3) The point is a stationary point i.e. f(z*,u*) = 0
holds.

(4) The undisturbed system is asymptotically stable at

this point: a(%) < 0, where « is the spectral abscissa

i.e. the maximum of real parts of the eigenvalues.

We will further assume that the operational set is defined
by means of a collection of scalar operational bounds

X = {z[hi(z) < 0}. (2)
Furthermore, we will assume that the linearized system
dynamics matrix A = % is invertible on X x U such

that for a given w, the steady state equation f(z,u) =0
implicitly defines a locally unique steady-state function
x = S(u) with a particular domain. We restrict our
analysis to one such S. Also, we assume further that the
linearized system is controllable.

It follows from the above conditions that we can always
construct an open region in state-space around a safe
setpoint (z*,u*) which is invariant under forward prop-
agation of system dynamics and which lies entirely inside
the operational set. Next, we will extend the notion of this
safe region to a stochastically excited system.

Allowing for disturbances w € RP, we consider the system
z = f(x,u,w). (3)

For a given fixed control input ©* and a stationary stochas-
tic realization of w, the disturbed system will never reach
the true steady state 2* = S(u*), but will remain in a
region close to it if the system is asymptotically stable
and the disturbances are sufficiently small. The deviation
Z of the state z from z* will then behave as a stochastic
process as well.

We define the point (z*,u*) to be stochastically safe with
confidence level 0 < p < 1 for the disturbed system if it
holds that:

(1) The point is asymptotically safe for the corresponding
undisturbed system.

(2) For each operational bound h;(z) < 0, the probability
of the stochastic realization of h;(x) satisfying its
bound is at least p.

If we assume zero-mean Gaussian white noise with co-
variance Y,, as realization of w, then the covariance of
the deviation of states w.r.t. to a safe steady-state point,
Yz = P is given in linear approximation as the discrete
Lyapunov equation as elaborated on in Houska (2007);
Zhou et al. (1996):

AP+ PAT + D%, DT =0, (4)
sink source

with 4 = g—i(:v,u,O), D = g—i(x,u,O) and P a positive-
definite symmetric matrix. This equation captures how
the uncertainty injected through the source term (distur-
bances) finds a dynamic equilibrium with the sink term
(strictly dissipative system dynamics). The equation is
exact if f is linear in z and w.

In linear approximation of h;(x), we have that its (scalar)
covariance is given by

Fig. 1. State-space, state covariance and bounds

Oh; _oh; T
e = 5. P o (5)

Under these approximations, we can guarantee that real-
izations of the perturbed state around the safe setpoint
are within the operational set with safety margin 0 < ~,
by imposing the following bounds:

hi(x™) + v/ En; (2*) <0, (6)

with ~ bearing a relationship with the confidence level
through the cumulative normal distribution function ®:

®(y) =1-p/2. (7)

Our first contribution is the proposal to maximize the
safety margin v simultaneously with the search for a
stochastically safe setpoint, yielding the optimal stochasti-
cally safe setpoint, in an optimal control problem formu-
lation:

minimize —~ (8a)
z,u,y,P
subject to  f(x,u,0) =0 (8b)
u e U (8c)
Oh; ,0h; "
hi+7y oz P oz < 0 (8d)
AP+ PAT + DL, DT = 0. (8e)

For an illustrative summary of this method, we refer to
Figure 1. Here, we have an illustration of state-space for
a given control input v*, with operational bounds h; = 0
depicted in solid lines, defining the operational set. The
dot near its center is the stationary point z* = S(u*).
The dotted lines represent the approximate operational
bounds, linearized in x*. The inner ellipsoid is a represen-
tation of covariance P, with the eigenvectors defining the
principal axes, and eigenvalues the squares of axis lengths.

oh; poh, T

The quantity 9o P52 corresponds to the maximum

reach of the ellipsoid in the direction towards the linearized
operational bound h;. The outer ellipsoid is a scaled up
version with factor v. Note that two constraints on Equa-
tion (8d) are active here and none are violated; we can say
that the point (z*,u*) is stochastically safe with safety
margin . The goal of Method (8) is to scout the design
space u for the setpoint with the largest safety margin ~.
The other decision variables can be eliminated in principle.

Equation (8e) admits a positive-definite solution only
when the spectral abscissa is smaller than zero. Hence, the
requirement of asymptotic stability is implicitly captured
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in this method. Moreover, we do not directly optimize for
robust stability, as would be the case with an objective
term trace(P) or when using the smoothened spectral
abscissa (Vanbiervliet et al., 2009), but rather look at the
effect of the interplay between disturbance and stability
margin on several operational bounds. We optimize under
the constraint of the effects not being too large.

2.2 Joint design of setpoint and control

The existence of an open-loop stochastically safe setpoint
as defined in Method (8) of the previous section is not
guaranteed. And when it exists, the corresponding safety
margin might be insufficient. To diminish these problems,
one can improve stability by embedding a controller into
the dynamics. As an example, we propose to introduce
simple output feedback control in the system with coeffi-
cients as new the decision variables. By adding additional
degrees of freedom to the optimization problem we can
only perform better or as good as Method (8).

Consider the linearization of System (3) around a candi-
date steady-point (z*,u*):

= Az+ Bu+ Dw )
§= Yi+ o,
with B = %(w*,u*,O), Y = %(x*), y(z) € R® an obser-

vation function, and v a stochastic variable corresponding
to measurement noise.

In the previous section, we had @ = 0. Here, we couple gy
back to @ with a linear feedback matrix K € R™**:

=Kz +v). (10)

Adding this feedback into the dynamics of Method 8 leads
to a method for jointly designing setpoint and control for
optimal stochastic safety:

TR 7 e
subject to  f(z,u,0) = 0 (11b)
aqj T Taqu
, -3 4 <
qﬁ”\/m KYPYTKTZL < 0 (1l¢)
oh; _Oh;"
hi ——Pp < 0 (11d
7 Oor Oz - (11d)
(A+ BKY)P
+ P(A+ BKY)" = 0 (1le)

+ D%, D" + BKY, K" B

where we have parametrized set U by functions ¢; as we
did earlier for X. Note that the introduction of output
feedback on the system linearized around steady-state has
direct influence on the state covariance P only, and on
the safety margin as a direct consequence. The potential
of output feedback to alter also the steady-state point
— the joint design aspect — arises indirectly through the
optimizer.

3. IMPLEMENTATION

Methods (8) and (11) are in principle directly suitable
for solution with a derivative-based general-purpose non-
linear programming (NLP) solver, if the derivatives can

be cheaply obtained through an automatic differentiation
(AD) package. However, we introduce in this paper three
important implementation techniques which improve con-
vergence.

3.1 Elimination of covariance

It was observed in numerical experiments that, when
started with a known asymptotically safe point as ini-
tial guess, both an implementation with an interior-
point method ( IPOPT, Wéchter and Biegler (2006) )
and a sequential quadratic program (SQP) method (
WORHP, Biiskens and Wassel (2012) ), showed better global
convergence behavior when P was eliminated as decision
variable.

Indeed, Equation (8e) is linear in P and hence one can
write the vector of its entries P = vec(P) as the solution
of a linear system AP = B using

A= A1"+1"® A
T (12)
B = vec(DX,,D"),

with ® the Kronecker-product. The size of this linear
system can be reduced from n to n(n + 1)/2 by taking
symmetry of P into account. We omit a closed form
expression for this reduced system here, but note that it is
easily obtained in the AD tool we use. We further note that
there exist dedicated algorithms with better complexity to
solve the Lyapunov equation (Benner and Saak, 2013).

We implemented the methods in this paper in python with
the help of the open-source AD tool CasADi (Andersson
et al., 2012). The linear solve operation to obtain P is
an example of a node in the matrix-valued graphs that
one can construct in CasADi to represent mathematical
expressions and obtain derivatives through AD.

3.2 Treatment of invariants

Systems described with non-minimal coordinates come
with a constraint C(x) = 0 € R® on state-space that
is invariant in time. Method (8) being an optimization
method, one is easily tempted to just add this constraint
alongside steady-state constraint (8b) and consider the
job done. However, both constraints describe the same
dynamics; they form a rank-n constraint-Jacobian matrix
of size (n 4+ ¢) X n. The resulting non-linear problem
violates the linear independence constraint qualification
(LICQ) required for many off-the-shelf gradient-based
non-linear program solvers. In practice, this violation leads
to stagnating progress during the iterations.

To resolve this, we borrow a technique from Sternberg
et al. (2012), for treatment of invariants in an optimal
control problem context. The technique uses projection
and results in:

flz,u)—JIC =0, (13)
with J = (VC)T € R™" the constraint-Jacobian and
Jt = JT(JJT)~! its Moore-Penrose pseudoinverse. This
simplifies into the steady-state condition f(x,u) = 0 if

C = 0 holds. That the latter should hold becomes obvious
by left multiplying Equation (13) with J:
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Jf(x,u) = C since JJT =1,
c = C since%—g%:%

C Time 1nvariance i’s implied
by the dynamic equations.
We obtain the following requirements for P:
P—-V(P+ AP+ PA"T + D, DTV =0, (14)
with V' = 1 — J!J. Hence, we suggest the following
adaption to Method (8), and similar for Method (11):

0 =

ump@ (152)
subject to  f(x,u,0) — J'C =0 (15b)
u € U (15¢)

T
hi() + 7 %};’ P%’lj < 0 (15d)
P-V(P+Q)V = 0  (15)
AP+ PAT + D, DT = Q. (15f)

Note that we can and should eliminate P and @ together
from the problem by introducing a linear solve node as
explained in the previous subsection.

3.8 Enforcing P positive definiteness

Rather than resorting to a sequential convex solver, we
had success with a simpler method: to use a standard
NLP solver, to start it with an initial guess for which P
is positive definite, and to simply return a failure in line-
search when a candidate P is proposed by the nonlinear
solver that is not positive-definite.

4. APPLICATION

The experimental setup this method was designed for is
illustrated in Figure 2. The goal is launching an airplane
starting from standstill next to the carousel, and ending
up injecting it into a power harvesting mode far away
downwind. The tether is initially slowly rolled out as the
airplane is towed around by a beam rotating around a
vertical axis. For short tether lengths, the carousel’s height
prevents the airplane from touching the ground. For longer
tether lengths, the airplane may well physically crash if
the system is operated in uncarefully chosen setpoints
or becomes unstable due to e.g. a faulty implementation
of a controller. This section shows how safe steady-state
points for this apparatus can be found for a range of tether
lengths.

4.1 Modeling

The carousel model is given as a CasADi script encoding
a fully implicit DAE described by Gros et al. (2013).
Assuming perfect velocity control of the carousel, and after
eliminating the pure integrator states introduced to make
the control action smoother, we can summarize the model

as
{g(m, yu,2) =0

Cz) =0, (16)

with

Carousel arm frame

Body frame
~— aileron (anti-symm)
flaps (symm)

rudder

Reference frame

\

elevator

Fig. 2. Tlustration of the carousel setup, which tows
around an airplane, and illustation of the airplane
in detail with its controls surfaces and rotational
modes. Positive angular positions for control surfaces
correspond to rotational modes along positive axes.

states z € R*=18 .

X, ¥, 2 airplane position in carousel
arm frame [m]

ellel2,el3, components of rotation matrix

e21,e22,e23, from carousel frame to airplane

e31,e32,e33 frame

dx, dy, dz time derivatives of (x, y, z)

WX, Wy, W.Z angular rates of airplane in its
frame [m/s],

controls u € R™=6 :
aileron, rudder, angular position of aerody-

elevator, flaps namic control surfaces [rad]
T tether length [m]

ddelta carousel turn speed [rad/s],
algebraic variables z € R :

nu tether tension normalized by
tether length [N/m],
invariants C(z) € R™® :
6 orthonormality constraints on e;;

consistency between (x, y, z) and r, and derivative
of this,

and we augment this model with

disturbances w € RP=6 .

wind velocity in the world
frame [m/s], ¥ = 0.52

biases on control surface posi-
tions [rad], ¥ = 0.012.

wind_x,
wind_z

wind_y,

dist_aileron,
dist_elevator,
dist_rudder,
dist_flaps

A property of this model is that the state derivatives & and
algebraic variables z appear linearly in g. This allows us to
obtain an explicit form for # from which z is eliminated:

m s 9917 g(0,,0,u) — [f(x,u,p)] (17)

z 61 62 fa('r’ u’p)
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3
® 0.2}
aileron
Fig. 3. Steady-state plot for a sweep along
(aileron,elevator) with r = 1m, ddelta =

—4rad/s, rudder = 0,flaps = 0. Every point
corresponds to a steady-state. Stability s is visible as
thin contours, full for stable and dotted for unstable.
In the shaded region, operational bounds are violated
(smoothened for visual cleanliness). Superimposed
on the edges of the graph are depictions of airplane
configurations that hold near these edges.

The operational bounds defining our operational set X are:

Angle of attack [deg] —4.5,8.5]
Sideslip angle [deg] -9,9]
Airplane position (z) [m)] — 00, 1.5]
Carousel motor torque [Nm)] —20, 20]
Control surfaces angle [rad] —0.20, 0.20]
Lift coefficient [-] —0.15, 1.5
Winch motor torque [Nm] —78,78]
Tether tension [N] 0, 600]
Airspeed. [m/s] 10, 65]

4.2 Steady state exploration

Before we demonstrate in the next section the main
methods of this paper, we investigate in this section the set
of asymptotically safe points. Given the function x = S(u)
that maps from control inputs to steady-state solutions
for our model, we sweep along two coordinates of u while
keeping the remainder fixed to convey a rough idea of
the six-dimensional geometry of the minimally safe set.
A notable property we highlight is the stability metric

5= a(ZT%Z), (18)

with Z, a normalized basis for the null-space of J, project-
ing away the zero eigenvalues that arise from the system
invariants. In Figure 3, we observe a) that a rectangle of
operational feasibility exists, and b) that elevator has far
more possibility to affect stability than aileron. It makes
intuitive sense to pick a setting for elevator near the top
of this rectangle, but not too close to the edge, to be able
to operate the system safely.

As the tether is rolled out quasi-statically, we mnotice
from Figure 4a and 4b that regions of stability become
unreachable due to violations of the operational bounds.
Also, we observe that we should increase the elevator
along with r to maintain operation feasibility. In Figure 4c,
it appears there is a far-reaching peak of stability (up to

0500,

5 6

(b) Sweeping with ddelta, eleva-
tor —0.10

(a) Sweeping with ddelta, eleva-
tor —0.25

0.2

0.1F

00} 01

By 0.0}

elevator
rudder

—0.2F

—03} —01F

—04r —02f

-0.5

(c) Sweeping with elevator (d) Sweeping with rudder
Fig. 4. Steady-state plots with increasing r on the x-axis.
Stable region is at the left hand side.

r = 4m) that is impossible to attain with elevator alone.
In Figure 4d, we notice that a similar peak is observed that
does lie in the operationally feasible region attainable by
using rudder action.

As we interpret these graphs, it becomes clear that a) we
are considering both stability and feasibility to determine
safe setpoints, a trade-off that is not easy to make intu-
itively, and b) we should combine authority in multiple
inputs to find a path to bring us up safely to long tether
lengths, something which is difficult to do by interpreting
two-dimensional plots. Stochastic safety is our answer to
the former difficulty, and this paper’s main methods are
an elegant — albeit approximate — solution to the latter.

4.3 Safe setpoints

Before, manual inspection of slices of the asymptotically
safe set led us to believe that we should not expect
asymptotically safe points further than at r = 4m.

In this section, we sweep over r while optimizing for
stochastic safety over the remaining controls. In Methods
(8) and (11), we simply restrict all r coordinates in U to
a single value and use hot-starting to efficiently carry out
the sweep. For the closed-loop methods, we choose (y, z) as
observations and (aileron,rudder) as feedback controls.
Measurement noise X, was discarded in this simulation.

Figure 5 presents the results for this application. Figure 5a
shows we found asymptotically safe points well beyond the
tether lengths we expected (up to 6m). Using linear output
feedback, we get further still. For each tether length, we
have in effect found the largest ellipsoid scaled up from
state covariance with factor «y that still fits in the linearized
operational set, as depicted in Figure 1. In Figure 5b, the
optimizer picks &~ —0.28 for elevator at r = 1lm which
lies at the center of the window of feasibility of Figure 3.
Also, elevator is steadily increased; a correct prediction
from the previous section. In Figure 5d, the controller is
de-tuned with increasing r, mainly because control force
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— open-loop \ , i/ — open-loop elevator
5H 1 —0.25 - 1
05[] memm closed-loop [N [ | m—closed-loop elevator
P e s e s el SRR —
(

) 1 2 3 {1 5 6 7 8 9 0o 1 2 3 15 6 7 8 9
r[m] r[m]

(a) Plot of the safety margin . (b) Plot of some of the optimal
control settings.

Optimal setpoints: feedback matrix

Optimal stability 0.6

0.2 1N

— open-loop

i 0.0 i
= closed-loop

—0.21

04t

o 06 PR I
04¢ 0o 1 2 3 {1 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
r[m] r[m]

(c) Plot of stability s. The exis-
tence of v implies stability.

(d) Plot of the four entries of the
optimal K.

Fig. 5. Results of the search for optimal stochastic safety
for a sweep along r.

rises with air speed for a fixed control surface angle. Using
the methods of this paper we have successfully found safe
regions in control-space to fall back to, when advanced
controllers fail.

5. DISCUSSION

Our particular application was about backup control, for
which nothing but system’s integrity is of importance. For
other applications, the proposed methods in this paper
can benefit from adding extra performance metrics into
the objective.

The methods presented here are exact for systems that
are linear in z and w and operational constraints linear
in z. To some extent, linearization error can be seen as a
disturbance acting on the system, something the method
can deal with if quantified.

Incorporating state-of-the art Lyapunov solving algo-
rithms into the AD context is the subject of further
study, while the extension of the method to limit cycles
is straightforward (Sternberg et al., 2012; Gillis and Diehl,
2013).

6. CONCLUSION

In this paper, we introduced notions of marginal and
stochastic safety. We argued that the latter was a use-
ful criterion to find setpoints for disturbed physical sys-
tems with hard constraints that must be met. Next, we
developed a method to optimize the stochastic safety
margin. After highlighting some implementation details,
we demonstrated the techniques on the application that
was the inspiration for the research, safe rotational start-
up for power-generating tethered airplanes, for which we
extended the known region of safe operation significantly.
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