Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

A Family of High-Performance Solvers
for Linear Model Predictive Control

Gianluca Frison* Leo Emil Sokoler *
John Bagterp Jgrgensen *

* Technical University of Denmark, DTU Compute - Department of
Applied Mathematics and Computer Science, DK-2800 Kgs Lyngby,
Denmark. (corresponding author: giaf at imm.dtu.dk).

Abstract: In Model Predictive Control (MPC), an optimization problem has to be solved at
each sampling time, and this has traditionally limited the use of MPC to systems with slow
dynamic. In this paper, we propose an efficient solution strategy for the unconstrained sub-
problems that give the search-direction in Interior-Point (IP) methods for MPC, and that usually
are the computational bottle-neck. This strategy combines a Riccati-like solver with the use of
high-performance computing techniques: in particular, in this paper we explore the performance
boost given by the use of single precision computation, and techniques such as inexact search
direction and mixed precision computation. Finally, we test our HPMPC toolbox, a family of
high-performance solvers tailored for MPC and implemented using these techniques, that is
shown to be several times faster than current state-of-the-art solvers for linear MPC.

1. INTRODUCTION

Model Predictive Control (MPC) has bee traditionally
limited to systems with slow dynamic, with sampling times
of seconds or minutes. This is due to the fact that an
optimization problem needs to be solved at each sampling
time. Nowadays, thanks to algorithmic as well as hardware
improvements, this is no more the case, and recent works
show that, in case of small systems, even control frequency
of milliseconds are possible. The two main approaches
for fast MPC are explicit (see Bemporad et al. [2002])
and structure-exploiting on-line MPC (see e.g. Rao et al.
[1998],Wang et al. [2010]).

In recent years, several approaches have been proposed to
the fast on-line solution of small-scale linear MPC prob-
lems, as flat code generation (CVXGEN, Mattingley et al.
[2012]) and customized triple-loop based BLAS (FORCES,
Domahidi et al. [2012]). However, these solvers do not fully
exploit the hardware capabilities of modern architectures,
and rely on compilers for the code optimization. As a
result, typically they can attain only a small fraction of
processor peak performance.

In this paper, we propose an efficient solver for the Linear-
Quadratic Control Problem (LQCP), that is a common
sub-problem in optimal control and estimation, and in
particular it gives the search direction in Interior-Point
(IP) methods for linear MPC. Our solver for LQCP only
requires 3 calls to linear-algebra routines for the factoriza-
tion of the KKT system: this decreases the data movement,
and allows us to hand optimize these few routines. In
particular, we make use of high-performance techniques
such as blocking for registers, SIMD instructions, cus-
tomized BLAS and mixed precision computation. The
latter exploits the fact that on the target architecture (in
this paper, an Intel’s processor) the peak performance of
single precision computation is twice as much as in double

Copyright © 2014 IFAC

precision. The resulting solver for LQCP is shown to attain
a large fraction of the peak performance for a wide range
of problem sizes.

This high-performance solver is used as a routine in
primal-dual and Mehrotra’s predictor-corrector IP meth-
ods for linear MPC. Furthermore, we propose the use of
inexact IP methods, where the search directions are found
by solving the LQCP sub-problems in single precision in
early iterations. These IP methods can produce a solution
in double precision in a time that is only slightly larger
than in single precision. The resulting solver is several
times faster than state-of-the-art solvers for linear MPC
(see Domahidi et al. [2012] as a reference), and the high-
performance is attained for a wider range of problem sizes.

The paper is organized as follows: section 2 describes
the LQCP and linear MPC problems. Section 3 presents
high-performance solvers for the LQCP, in single, double
and mixed precision. Section 4 briefly introduces primal-
dual and Mehrotra’s predictor-corrector IP methods, and
proposes the inexact IP. Section 5 presents the results of
some numerical test, and Section 6 contains the conclusion.

2. PROBLEMS DESCRIPTION

In this paper, we focus our attention on efficient solvers
for the LQCP. This is a rather general formulation that
can represent several problems in optimal control and
estimation, and in particular it gives the search direction
in Interior-Point (IP) methods for MPC. Thus an high-
performance implementation of a solver for the LQCP
can boost the performance of solvers for a wide class of
problems.

2.1 Linear-quadratic control problem

The LQCP is the equality constrained quadratic program

3074

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

N-1
unﬁlglﬂ b= ngo on(Tn,un) + on(TN) W

st. Tpy1 = Apxy + Bruy + by

where
Up, ! R, Sy sn Unp
@n(znaun) = |Tn S/;L Q/n dn Tnp | = XTILQan
Ll |sn @ pn] L1
(2)
unN 000 UN
QDN(LL‘N) = |TN 0P p N :X]/\/PXN
1 0p m| L1

All matrices can in general be dense and time variant. In
this paper, we assume that the matrices Q,, are symmetric
positive definite.

2.2 Linear MPC problem

The linear MPC problem with linear constraints is the
quadratic program

N-1
min ¢ =Y on(@n,un) +on(TN)
Un yTn+1 n—0
st Tpi1 = Apxp + Bpun + by 3)
Cnn + Dpuy 2> dy,
Cnzn > dN

where o (zy) are defined as in (2). Again, all matrices
can in general be dense and time variant.

3. SOLVERS FOR THE LQ CONTROL PROBLEM

In this section we present algorithms (and relative imple-
mentation) to efficiently solve LQCP. These algorithms
can be used as building blocks in different IP methods.

3.1 Solution strategies

There exists several solution strategies for the LQCP (1).
In the following of the paper we will consider two of them.

The first solution strategy is based on the fact that
the LQCP (1) is an instance of the equality constrained
quadratic program

min ¢ =1Hz+g'2
: ’ (4)
st. Az=b
The (in general only necessary) optimality conditions for

(4) are the well-known KKT conditions, that can be
written in matrix notation as

A e

that is called the KKT system associated with (4). In
the case of the LQCP, it can be proved that, if the

matrices R," S and P are positive definite, then the
S Qn

KKT conditions are also sufficient and (5) has an unique
solution. The KKT system of the LQCP is large and
sparse, and has a special structure that can be exploited
to obtain efficient solvers, see Rao et al. [1998]. The fact
that the solution of the LQCP can be obtained by means
of the solution of a system of linear equations (i.e. through

factorization of the matrix and backward and forward
substitutions) implies that we can use mixed precision to
perform the computations, as shown later.

Another solution strategy is based on dynamic program-
ming. We do not want to present the theory again (that
can be found for example in Jgrgensen [2005]), but only
show that this leads to an efficient solver in practice, where
the factorization and backward substitution in the solution
of (5) are fused, as shown in section 3.2.

To implement the TP methods, we need routines to fac-
torize and solve the KKT system, to solve an already
factorized KKT system, and to compute the residuals.
These routines can be seen as building blocks to implement
a number of different IP methods.

3.2 Factorization and solution of the KKT system

The dynamic programming approach can be used to de-
rive an efficient solver, analogue to the classical Riccati
recursion but more efficient in practice, where the factor-
ization and the backward substitution are fused together:
see Frison et al. [2014] for the details of the derivation.
The algorithm (together with the calls to BLAS func-

tions) is presented in Algorithm 1 (where M,? is the
lower triangular Cholesky factor of matrix M, parti-
tioned as Q,, in (2)), and only requires 3 function calls
per backward iteration and 3 per forward iteration: this
reduces the overhead associated with the function calls, as
well as the data movement. The cost of the algorithm is
N((Zn34+4n2n,+2n,n2+5nd)+(2n2+9n,n,+3n2))
flops, plus eventually N(2n2) if 7 is needed (as e.g. in
mixed precision).

Algorithm 1 Factorization and solution of LQCP

L
1: [N+1,22 } «— P > potrf
Lny1,32 Lny1,33

2: for n+ N — 0 do

3t Ll An Ly g0 [Br An bn| 4+ [00 Ly 3] > trmm
4: M = Qn + (L], 1 AR) (L], 1 An) > syrk

Ln11 .
5: Ln721 Ln722 — Mn/2 > potrf
Ln31 Ln,32 Ln33

6: end for

7: if PI =1 then

8: 7o <= Lo,22(L{ 5570 + L 55) > trmv
9: end if
10: for n<+ 0 — N do
11: Up 7(L;‘11)_1(L’ny21xn + L, 31) > gemv & trsv
12: Tn+1 < AnZn + Brun + bn > gemv
13: if PI =1 then
14: Tnt+l < L"+1:22(L4L+1,22"EO + L;+1132) > trmv
15: end if
16: end for

3.8 Solution of the (factorized) KKT system

In a predictor-corrector IP, the corrector step is computed
by solving a system of linear equations (in the form (5))
that has the same left hand side as the system giving
the predictor step, but a different right hand side. And
similarly, in mixed precision we need to solve multiple
systems with the same left hand side.

3075

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

An efficient algorithm to solve (5) for the LQCP exploiting
the already factorized L.h.s. matrix can be obtained by ex-
ploiting the analogy between Algorithm 1 and the classical
Riccati recursion, i.e. that L, 22 is the lower triangular
Cholesky factor of the Riccati recursion matrix P,. The
algorithm is presented in Algorithm 2. The cost of the
algorithm is N (8n2 + 8nyn,, + 2n2) flops, plus eventually
N(2n2) if 7 is needed.

Algorithm 2 Solution of (factorized) LQCP

1: pNy < p

2: forn+ N — 0do

3: Pn+1bn +— Ln+1,22Lfn+1722bn + Pn+1 > trmv

/ /

4 [lil p/n] — [s/n q;L] + [B,/,L A'n] - (Pnt1bn) > gemv
5 ln < L4 0n > trsv
6: Pn < Pn — Ln,len > gemv
7: end for

8: if PI =1 then

9: 7o < Lo,22L{) 550 + po > trmv
10: end if
11: for n<+ 0— N do
12: Up —(L;l’u)*l(LiL,mxn +1n) > gemv & trsv
13: Tn+1 ¢ Anxn + Brun + bn > gemv
14: if PI =1 then
15: T4l < L7L+1722L;’L+1,22x0 + P41 > trmv
16: end if
17: end for

3.4 Residuals computation

To solve a system of linear equations using mixed precision,
we need a routine for the computation of the residuals, that
in the solution of (5) are defined as

=] - B

If system (5) was solved exactly, the residuals would
be zero. However, because of the finite precision of the
computations, in practice residuals are generally not zero.
An algorithm for the computation of the residuals for
LQCP is presented in Algorithm 3. The cost of the
algorithm is N (6n2 + 8n,n,, + 2n2) flops.

Algorithm 3 Residuals of LQCP
1: rgo —(501‘0 + Roug + Béﬂ'l -+ 80)

T Tho < T1— ([Bo Ao} [ZE} +b0>
3: for n+1— N -1 do

o [l (5] - (5 o])=] men+ [2)

> symv & gemv

> gemv & symv & gemv

N

> gemv

5: Thn < Tn41 — ([Bn An] |:Z":| +bn) > gemv
n

6: end for

7t rqN 7N — (PTN +p) > symv

3.5 Implementation details

For each algorithm, we implemented two versions: one
calling BLAS, and the other calling tailored linear algebra
routines written in C using the following HPC techniques:
see Frison et al. [2014] for more details.

Blocking for registers. This is the single most important
technique, and can be used on all machines. It has a

double aim: reduce the number of memory operations,
and hide latency of floating-point operations. On modern
architectures, the CPU is much faster than the main
memory: as a consequence the cost of a memop is much
higher that the cost of a flop. A hierarchy of smaller
and faster memories (registers, caches) is used to mitigate
this difference in speed, and the programmer should re-
use data already present in faster memories. As an idea,
blocking is a technique that consist of loading a sub-matrix
in a certain memory level (O(n?) memops), to perform
the required operation on that sub-matrix (O(n?®) flops
for level-3 BLAS). In this way, the ratio flops/memops
is increased. In our implementation we only block for
registers, since for matrices too large to fit in cache BLAS
is high-performing, and thus we can switch to the version
calling BLAS. Blocking for registers is also used to hide
the latency of operations: for example, on most Intel
machines floating-point add and mul are pipelined and
can be issued every clock cycle, but their result is available
after respectively 3 and 5 clock cycles.

SIMD instructions. SIMD (Single-Instruction Multiple-
Data) are instructions that perform the same operation
in parallel on all elements of small vectors of data: this
reduces the number of operations, and can improve per-
formance up to n, times for small vectors of size n,,. Nowa-
days many architectures implement SIMD instructions: as
an example, Intel and AMD have the SSE instructions
(that operates on 2 doubles or 4 floats at a time) and
AVX instructions (that operates on 4 doubles or 8 floats at
a time). The size of the small vectors suggests that, using
SIMD instructions, the theoretical performance in single
precision is twice as much as the theoretical performance
in double precision. The drawback is that usually SIMD
are more difficult to program, and they have alignment
requirements: SSE instructions can efficiently load and
store data that is 16 bytes aligned, while for AVX instruc-
tions the alignment requirement is 32 bytes. The alignment
requirements limit the possibility for a compiler to use
SIMD. We explicitly deal with alignment requirements in
the IP methods, such that the data passed to LQCP solvers
is already aligned.

Customized BLAS. In our LQCP solvers, we need only
a small subset of BLAS, and then there is no need to
implement it all. The innermost loop of each linear-algebra
routine is implemented as a separate micro-kernel, hand
optimized using block for registers and SIMD intrinsics.
Furthermore, in the code used for this paper the size of all
matrices is fixed at compile time: this reduces the number
of branches, and allows the compiler to further optimize.

Single/double/mized precision. On the target architecture
one SIMD instruction can operate on twice as many floats
as doubles. This, together with the fact that floats occupy
half the space in memory (including registers and caches)
and use half the memory bandwidth, gives that the perfor-
mance in single precision is about twice the performance
in double precision. Hence the reason for using single pre-
cision whenever possible. Mixed precision iterative refine-
ment is a technique that allows to solve a system of linear
equations exploiting the higher performance of single pre-
cision in the most expensive parts while maintaining the
double precision of the final result, see Buttari et al. [2007].
A mixed precision algorithm for the solution of LQCP is

3076

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

presented in Algorithm 4. The algorithm can be seen as
an iterative algorithm, where the Lh.s. factorized in single
precision is used as a good preconditioner. Our numerical
tests show that in most cases 1 iterative refinement step is
enough to have almost double precision. For small systems,
the mixed precision algorithm is slower than the double
precision one, due to the cost of the additional solutions
and residuals computations; anyway, for large systems the
performance is close to the single precision one.

Algorithm 4 Factorization and solution of LQCP (mixed
precision)

1: factorize and solve LQCP in single precision using Algorithm 1
with PI = 1, obtaining (z,u,)

2: for it_ref < 1 — IT_REF_MAX do

3: compute the residuals in double precision using Algorithm
3, obtaining (rs,7q¢,7p)

4: Solve LQCP in single precision using Algorithm 2 with PI =
1 and (s, q,b) = (7s,7q,) as r.h.s, obtaining (Az, Au, Ar)

5: update the solution in double precision (z, u,) « (x,u, 7)+
(Az, Au, AT)

6: end for

4. IP METHODS FOR THE LINEAR MPC PROBLEM

The linear MPC problem (3) is an instance of the general
quadratic program

min 12’Hz+g'z
z

sit. Az=bD
Cz>d

that can be solved by means of an interior-point (IP)
method. In this paper, we consider the primal-dual TP
and Mehrotra’s predictor-corrector primal dual IP (in the
following, predictor-corrector IP), see Nocedal et al. [2006]
for details about the algorithms.

4.1 Primal-dual IP method

In the primal-dual IP, at each iteration k of the IP method
it has to be solved a system of linear equations in the form

H+C(T,7 Ap)C —A" Tur] _
—A 0 |

o {g — C'(Are + T,;;Akd + T, topge) (©)

where t; are the slack variables, 7, and A\, are the La-
grangian multipliers of the equality and inequality con-
straints, ug is the duality measure, o is a centering pa-
rameter and e is a vector on ones. In case of the linear
MPC problem, (6) is the KKT system of an instance of
the LQCP (1), see Rao et al. [1998]. This means that (6)
can be solved using Algorithm 1.

4.2 Predictor-corrector IP method

In case of the predictor-corrector method, at each iteration
of the IP method two systems of linear equations have to
be solved, respectively for the computation of the predictor
and of the corrector search directions. These systems are
similar to (6), and differ only for the right hand side:
this means that the factorization has to be performed
only once, and that they can be solved respectively using
Algorithm 1 and Algorithm 2.

4.8 Inexact IP methods

In Fig. 1 we show the result of a convergence test for
the duality measure in case of single, double and mixed
precision used in the computation of the search direction,
for both primal-dual and predictor-corrector IP methods.
The fact that the single precision solution behaves as the
higher precision ones till approximately 10~ suggest that
we can implement an inexact IP method (proposed for
MPC problems by Shahzad et al [2010], with MINRES to
compute the search direction), where the inexact search
direction is computed by solving the LQCP subproblems
using Algorithm 1 in single precision, exploiting the higher
performance of single precision computation. Numerical
tests shows that a value of the duality measure of 107° is
a good threshold value between single and higher precision.

5. NUMERICAL RESULTS

In this section we test the HPMPC toolbox, that is our im-
plementation of the solvers family presented in this paper.
In a first part, we compare different implementations of
the proposed solver for the LQCP; in the second part, we
assess the performance of the proposed IP methods for the
linear MPC problem. The test problem is the mass-spring
system, see Domahidi et al. [2012].

The test machine is a laptop equipped with the processor
Intel Core i7 3520M @ 2.9 GHz (up to 3.6 GHz in turbo
mode), running Linux Xubuntu 13.04. The compiler is gcc
4.7.3. All tests are performed on one core.

In Frison et al. [2014] we have already shown that the
approach based on SSE and AVX micro-kernels gives high-
performance on a number of Intel and AMD architectures.

5.1 LQ control problem

In this part we compare different approaches to implement
the solver for LQCP proposed in Algorithm 1: a version
making use of an highly-optimized BLAS (OpenBLAS ver-
sion 0.2.6), a version using customized BLAS-like routines
and AVX micro-kernels, and a version using customized
BLAS-like routines and triple-loops, all of them in double,
single and mixed precision with 1 iterative refinement step.

The results are in Fig. 2, where we assess the perfor-
mance in Gflops of the different implementations. The
processor theoretical peak performance in single precision
is computed as 3.6 GHz * 2 floating-point instructions
per clock (one add and one mul) * 8 flops per floating-
point instruction (single precision, AVX instructions) =
57.6 Gflops. In double precision, AVX instructions can
perform 4 flops per floating-point instruction, so the peak
performance is the half, 28.8 Gflops.

The use of an highly-optimized BLAS library gives high-
performance only for large systems, since it needs to
perform a number of operations (e.g. copies of data in
contiguous and aligned memory, blocking for different
memory levels) that heavily impact performance for small
matrices, while are well amortized for large ones. As a
result, the performance is really poor for small systems.
The code is implemented making explicit use of SIMD
instructions, so the performance in single precision is

3077

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Primal-dual IP, problem size: nx =8, nu=3,N =10

0
g ! ! double prec.
2] & mixed prec. - 1 iter. ref.
single prec.
a
2]
s Ol fgo,]
g " © 0 0 oo o0 o0 00
2
©
g &
z -0+ " 1
®
=]
ko) “
2
8 »
A5 NEVNEVNENENIY
,20 Il L L
0 5 10 15 20

iteration number

(a) Primal-dual IP.

Predictor-corrector primal-dual IP, problem size: nx =8, nu=3,N =10

0 ra) T T T

s . double prec. A

mixed prec. - 1 iter. ref.
) single prec. O
5 N © : 9
L o o
a o (0] o
5 0 0 0 o © 0

logqg(duality_measure)
5
T
L

K A A A

-20 Il Il Il
0 5 10 15 20

iteration number

(b) Predictor-corrector IP.

Fig. 1. Convergence test for the proposed IP methods, where the search direction is computed in single, double or mixed
(with 1 iterative refinement step) precision. The test problem is the mass-spring system with n, = 8, n,, = 3, N = 10.
The combination of single precision above p = 10~> and higher (double or mixed) precision below is an inexact IP
method that gives the same solution as an exact IP method, but requires less computation time.

higher that in double; the cross-over between mixed and
double precision is around n, = 60.

The triple-loop based approach can reach only a small
fraction of the peak performance (even if the loops size
is fixed at compile time), and the obtained performance
is almost identical in single and in double precision. As
a consequence, it can outperform BLAS only for very
small systems. Furthermore, there is no advantage in using
mixed precision, that would be always worse that double.

The proposed AVX micro-kernel based approach can at-
tain a large fraction of the peak performance in both
single and double precisions for a wide range of problem
sizes. For small problems, this approach outperforms both
optimized BLAS and triple-loop bases approach, and the
performance increases quickly with the problem size. The
maximum performance is attained at n, = 160 in double
precision (19.89 Gflops, 69% of peak) and n, = 128
in single (40.19 Gflops, 70% of peak) and mixed (34.37
Gflops, 60% of peak) precisions. For larger problems, there
is a certain degradation in performance, since memory
footprint exceeds cache size, and our code does not perform
blocking for cache. Anyway, for this size BLAS is high-
performing, and the algorithm calling BLAS can be used
instead.

5.2 Linear MPC' problem

Here we assess the performance of the different IP methods
for the linear MPC problem (3). We tested exact IP
methods in single, double and mixed, and inexact ones
in single+double and single+mixed precisions, where the
threshold between single and higher precisions is 7 = 1075,
for both primal-dual and predictor-corrector IP methods.

The results are in the table in Fig. 3. Since the factor-
ization of the KKT matrix is the most expensive part
in IP algorithms, the behavior of the IP methods closely
resembles the behavior of Algorithm 1 in the different
precisions. Single precision is always the fastest. Among
higher precisions, the best results are usually obtained for
inexact IP methods with the combination single+double

for small problems, and single+mixed for large problems.
For the largest problem, the use of inexact IP method
and mixed precision requires a computational time slightly
larger than the single precision, with the same accuracy as
the double precision.

Whether primal-dual IP or predictor-corrector IP is the
most efficient choice is problem dependent: the one has a
lower cost per iteration, the other requires less iterations.
Anyhow, in general primal-dual IP may be the best choice
for small problems, and it takes more advantage of mixed
precision computation.

Comparing the results in the table in Fig. 3 with the ones
in Domabhidi et al. [2012], we can see that the solvers of
our HPMPC solvers family are several times faster than
state-of-the-art solvers such as FORCES, CVXGEN and
CPLEX, and that the performance gap increases with the
problem size.

6. CONCLUSION

In this paper, we presented an efficient algorithm for the
solution of the linear-quadratic control problem (LQCP).
The fact that this algorithm performs only few function
calls to linear-algebra routines was exploited to imple-
ment them using high-performance computing techniques,
such as blocking for registers, SIMD instructions and
customized BLAS. These high-performance routines were
used as building blocks in solvers for the LQCP in single,
double and mixed precision. In turn, the LQCP solvers
were used as routines in IP methods, and in particular we
proposed the use of inexact IPs where the inexact search
direction is obtained solving the LQCP in single precision.
This approach gives a solution in double precision, while
exploiting the higher performance of single precision com-
putation on modern architectures. An implementation of
these solvers, HPMPC, is several times faster than state-
of-the-art solvers for MPC. As future work, we plan to add
multi-thread support, and optimize the code for embedded
architectures (e.g. Intel Atom, ARM, PowerPC).

3078

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

N=10, n,=2

OpenBLAS - double prec. —al
OpenBLAS - single prec.
OpenBLAS - mixed prec. -4
AVX micro-kernel - double prec. —&— B
AVX micro-kernel - single prec.
AVX micro-kernel - mixed prec. - ©
triple loop - double prec. ——
triple loop - single prec.
40 "

Gflops

(a) Large scale.

N=10, n,=2

OﬁenBLAS * double brec. A X
OpenBLAS - single prec.

OpenBLAS - mixed prec. -4

AVX micro-kernel - double prec.

AVX micro-kernel - single prec.

AVX micro-kernel - mixed prec. &

triple loop - double prec. -

triple loop - single prec. />< T

Gflops
\
}

&

o 5 T
LSy T —g
At . S
&

B A -
0 ATE A & I I I I I I I
5 10 15 20 25 30 35 40 45 50
n

X

(b) Small scale.

Fig. 2. Performance of different implementations of the proposed LQCP solver: triple-loop based, micro-kernel based
and optimized BLAS based, in single, double and mixed precision. Figure (a) (respectively (b)) is scaled along the
y axis to have theoretical single (respectively double) precision peak performance at turbo frequency at the top of

the picture, 57.6 Gflops (respectively 28.8 Gflops).

HPMPC: primal-dual TP HPMPC: predictor-corrector IP FORCES#
Ny Ny N s | d m s+d s+m s | d m s+d s+m s d
4 1 10 0.04 | 0.04 0.06 0.04 0.04 0.05 | 0.05 0.10 0.05 0.08 0.08 0.11
8 3 10 0.09 | 0.09 0.16 0.09 0.11 0.14 | 0.14 026 0.14 0.20 0.29 0.33
12 5 30 0.41 | 051 071 0.44 0.48 0.60 | 0.71 1.13 0.65 0.84 1.67 2.00
22 10 10 0.41 | 055 0.62 0.45 0.47 0.53 | 070 091 0.62 0.73 2.90 3.25
30 14 10 0.80 | 1.09 1.16 0.90 0.92 099 | 134 1.63 1.18 1.32 6.70 7.23
60 29 30 || 10.05 | 18.23 14.11 12.45 11.23 || 11.58 | 20.35 1842 16.16 15.02 || 153.02 143.80
90 44 30 || 29.80 | 60.04 42.23 38.53 33.57 | 32.67 | 65.59 52.67 50.54 43.05 * *

Fig. 3. Proposed primal-dual and predictor-corrector IP methods (run time in [ms] for 10 iterations, averaged over 100
random initial states): exact IP methods in single (s), double (d) and mixed (with 1 iterative refinement step)
(m) precision; inexact IP methods in double (s4+d) and mixed (with 1 iterative refinement step) (s+m) precision,
where the threshold between single and higher precisions is u = 107°. Bold represents the fastest high-precision
solver for each problem size. Notice that the first 6 problems are taken from Domahidi et al. [2012]: the proposed
predictor-corrector IP method is from 2 (1st problem) to about 10 (6th problem) times faster than FORCES, that
in turns is faster that CPLEX and CVXGEN. # FORCES code is compiled using gcc 4.6.3, with optimization flags
-02 -mavx -funroll-loops. * The code for the larger problems could not be downloaded, since the connection to the

server drops due to the long code generation time.

REFERENCES

Bemporad, A., Morari, M., Dua. V., Pistikopoulos, E.N.
(2002). The Explicit Linear Quadratic Regulator for
Constrained Systems. Automatica.

Buttari, A., Dongarra, J., Langou, J., Langou, J.,
Luszczek, P., Kurzak J. (2007). Mixed Precision Iter-
ative Refinement Techniques for the Solution of Dense
Linear Systems. The International Journal of High Per-
formance Computing Applications, 21(4), 457-466.

Domabhidi, A., Zgraggen, A., Zeilinger, M.N., Morari, M.,
Jones, C.N. (2012). Efficient Interior Point Methods
for Multistage Problems Arising in Receding Horizon
Control. proc. IEEE CDC 2012

Frison, G., Jorgensen, J.B. (2013). Efficient Implemen-
tation of the Riccati Recursion for Solving Linear-
Quadratic Control Problems. proc. IEEE MSC 2013.

Frison, G., Sgrensen, H.H.B., Dammann, B, Jgrgensen,
J.B. (2014). High-Performance Small-Scale Solvers for

Linear Model Predictive Control. proc. IEEE ECC 2014.
Jorgensen, J.B. (2005). Moving Horizon Estimation and

Control. Ph.D. thesis, Department of Chemical Engi-

neering, Technical University of Denmark, Denmark.

Mattingley, J, Boyd, S. (2012) CVXGEN: a Code Gener-
ator for Embedded Convex Optimization. Optimization
and Engineering, 12(1):1-27.

Nocedal, J., Wright, S.J. (2006) Numerical Optimization.
Springer, New York, 2nd edition.

Rao, C.V., Wright, S.J., and Rawlings, J.B. (1998). Ap-
plication of interior-point methods to model predictive
control. Journal of Optimization Theory and Applica-
tions, 99(3), 723-757.

Shahzad, A., Kerrigan, E.C., Constantinides, G.A. (2010).
A Fast Well-conditioned Interior Point Method for Pre-
dictive Control. proc. IEEE CDC 2010.

Wang, Y. and Boyd, S. (2008). Fast model predictive
control using online optimization. proc. IFAC W.C.

3079

