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Abstract: Stabiliser faults in multi-machine power systems are examined in this paper
where fault-masking and system reconfiguration of the nonlinear system are obtained using
a virtual actuator approach. Phasor Measurement Units, which can be integrated in wide-area
transmission grids to improve the performance of power system stabilisers, are utilised when
reconfiguring remaining stabilisers after a local failure has made one inoperable. A stability-
preserving reconfiguration is designed using absolute stability results for Lure type systems.
The calculation of a virtual actuator that relies on the solution of a linear matrix inequality
(LMI) is detailed in the paper. Simulation results of a benchmark transmission system show the
ability of the fault-tolerant reconfiguration strategy to maintain wide-area stability of a power
system despite failure in one of the stabilisers.
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1. INTRODUCTION

Multi-machine power systems can experience problems re-
lated to low-frequency oscillations (in the 0.1-2 Hz range).
These oscillations arise from the power and phase-angle
relationship interacting with generators’ inertia, forming
an equivalent multi-mass-spring system. Large scale power
systems exhibit both local and inter-area oscillations. Lo-
cal oscillations are related to oscillation of a single machine
with respect to the rest of the system, inter-area oscilla-
tions are related to oscillations of a group of plants against
another group. These problems are intensified in highly
stressed conditions such as emergency conditions. If these
oscillations are poorly damped, they might lead to a loss
of synchronism between synchronous machines and cause
cascading tripping events.

Power system stabilisers (PSSs) are effective tools to damp
such low-frequency oscillations. They are added on voltage
controlling elements of the power system and superimposes
auxiliary signals on the voltage regulation, compensating
oscillations in active power transmission [Kundur, 1994].
The performance of a power system is usually analysed
by checking the eigenproperties, and improved by adding
active damping control to the electromechanical modes.

? This work was supported through the SOSPO project by the
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The performance of locally designed PSSs can be im-
proved using wide-area measurement signals and wide-
area control (WAC) (as shown by Snyder et al. [1998]).
With the growing use of new technologies such as pha-
sor measurement units (PMU) and fast communication
technologies, WAC have given new possibilities in power
system operation. This includes use of such wide area in-
formation for improved stability and for emergency control
[Begovic et al., 2005]. When the PSSs in a multi-machine
power system work collaboratively, a proper functionality
is expected from each individual stabiliser as a fault in one
stabiliser could cause unsatisfactory performance or even
instability of the collective control. In the present systems,
cascaded tripping is a concern if an individual PSS fails.
In this paper, we show how we can use wide-area measure-
ment signals and design a wide-area reconfiguration block
that can reconfigure the control action and stabilise the
system in an event of failure in some of the local stabilisers.

The purpose of reconfiguring the control after a fault is
to preserve specific properties of the closed-loop system
[Blanke et al., 2006]. In this work we use the virtual
actuator method for reconfiguration [Richter, 2011]. The
idea of a virtual actuator is to keep the nominal controller
in the loop and transform the input signals designed for
the nominal plant to signals appropriate for the remaining
healthy actuators. The reconfiguration method is applied
to power systems with PSSs installed on synchronous
generators. When a PSS fails, a wide-area virtual actuator
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is designed that restructures the nominal control loop by
using the remaining healthy PSSs to compensate the active
damping that is missing due to the fault. The advantage
of this approach is the separation of fault-tolerant control
design from nominal control design. Nominal design and
tuning can be used for the remaining stabilisers, fault-
tolerance is obtained through a reconfiguration block.

Design of wide-area stabilisers was pursued in [Snyder
et al., 1998], where locale controls were extended with
remote measurements to improve observability of inter-
area modes. In [Kamwa et al., 2001], wide-area informa-
tion was used in a hierarchical control scheme. A level
of fault tolerance was obtained in (Chen et al. [2006],
Chen and Guo [2005]) where a robust wide-area controller
used mixed H2/H∞ output-feedback control. Adaptive
stabilisers using wide-area information were designed in
[Zhang et al., 1993] and [Ni et al., 2000]. The test example
in [Ni et al., 2000] showing fault tolerance after a PSS
failure will also be used in this paper.

The contributions of this work are the following: A wide-
area fault-tolerant virtual actuator is designed for the
power system which stabilises the system after a fault in
local stabilisers. The proposed method does not require
changes in local controllers but accommodates faults by
adding signals to the output of them. The nonlinearities
in the model of the system are taken into account by
modelling the power system in the Lure form. A new design
method for virtual actuator for Lure systems based on
absolute stability theory is proposed which improves the
results of Richter et al. [2012].

The paper is organised as follows. The dynamic power
system model used for stabiliser design is first described
and instability mechanisms are explained. The nonlinear
nature of the emergency dynamics is then discussed and a
Lure form is introduced to enable generic analysis. Section
3 then discusses reconfiguration based on a virtual actu-
ator approach for nonlinear systems and extends virtual
actuator based theory to cope at ease with the problem
at hand. A benchmark test system is presented in section
4 that develops instability when one of the power system
stabiliser units fail and simulations are performed in sec-
tion 5 showing successful reconfiguration and recovery of
stability using the new approach.

2. POWER SYSTEM MODEL

The flux-decay model of a generator with an automatic
voltage regulator (AVR) is considered as this model is
often used for stabiliser design. In the flux-decay model,
the ammortisseur effects are neglected. The dynamics of
machine i in the network is (from [Sauer and Pai, 1998]),

δ̇′i = ω0ωi (1)

Miω̇i = Pm,i − Pe,i −Diωi (2)

T ′d0,iĖ
′
q,i = −(1− (xd − x′d)Bii)E

′
q,i + (xd − x′d)id

+KA(EAV R,i − vref + vpss) (3)

TR,iĖAV R,i = −EAV R,i + Et (4)

where, for each generator i

Pm,i Mechanical input
Pe,i Electrical output

EAV R,i AVR filter
Di Damping power coefficient
Mi Inertia coefficient
xd, xq, x

′
d d,q-axis synchronous, transient reactances

id, iq d,q-axis current
vref Reference terminal voltage
vpss Stabiliser input
TR,i AVR time constant
T ′d0,i d-axis transient open circuit time constant
E′i∠δi Internal potential with magnitude E′i and phase

δi
E′q,i∠δ

′
i q-axis component of the internal potential with

magnitude E′q,i and phase δ′i
ωi Rotor speed devation from a reference
ω0 Synchronous speed
KA AVR gain
Et Terminal voltage

The stator equations are

Et sin(δi − δt,i)− xqiq = 0 (5)

Et cos(δi − δt,i)− x′did + E′q,i = 0. (6)

The network equations between the generators needs to
follow the current-balance i = Yv, where v is the vector
of complex bus voltage, i is the bus currents and Y the
admittance matrix. Using the Kron-reduced internal node
network, the power and currents can be calculated using

Pe,i =E′i
2
Gii + E′i

∑
j 6=i

E′jYij sin(δi − δj + αij)

id,i =−E′iBii +
∑
j 6=i

E′jYij cos(δi − δj + αij) (7)

iq,i =E′iGii +
∑
j 6=i

E′jYij sin(δi − δj + αij),

where Ỹij = Yij∠φij = Gij + jBij is the ijth element of

Y and αij = arctan
Gij

Bij
. The model is formulated as in

[Kakimoto et al., 1980]. As each machine has four states,
an n-machine network would comprise 4n states.

The power system model can obtain oscillatory behaviour
under certain circumstances related to the transmission
line properties between machines, the level of power trans-
mitted and to the control system parameters. Oscilla-
tory behaviour is encountered under conditions of high
reactance of the system (transmission and consumers)
and high generator outputs. High synchronizing torque is
then needed for generators, but the associated high gain
in automatic voltage regulation loops cause deteriorated
system damping [Kundur, 1994]. Additional damping is
achieved through adding a stabilising loop to generator
control through the auxiliary input vpss. This power sys-
tem stabiliser (PSS) loop obtains damping by controlling
generator torque as a function of deviation of rotational
speed from its nominal value. The design of PSS controllers
is commonly done using a linearised version of the system
equations. In high load conditions or in emergencies, sys-
tem variables move away from the linearisation point of
the system dynamics. When we wish to obtain guarantees
for stability during emergency situations, and associated
large transients, the normal approach of linear design of
stabilisers will not suffice. Instead a nonlinear model and
an adequate nonlinear design approach are required.
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2.1 Lure System

Aiming at analysis of properties of the nonlinear system
Eqs. 1 to 8, and subsequent design of a stabilising control,
the system is conveniently described in generic terms
using a Lure form as system representation. With active
power and the d-axis current of each machine as nonlinear
internal feedback in the model, see [Kakimoto et al., 1980],
the general Lure system formulation is,

ΣP :


ẋ(t) = Ax(t) +Bvv(t) +Buc(t) +Bdd(t)

v(t) = ϕ(Cvx(t))

y(t) = Cx(t)

z(t) = Czx(t)

(8)

Here y(t) ∈ Rr is the measured output and z(t) ∈ Rq

is the control-relevant performance output. The feedback
signal v is obtained using the nonlinear characteristic
ϕ(·) : Rs 7→ Rs satisfying the following assumption.

Assumption 1. (Nominal Lure nonlinearity). The function
ϕ is decomposed, element-wise Lipschitz, and sector-
bounded in the sector [0,K], with K = diag(k1, . . . , ks).

It is convenient to transform the sector condition [−αi, αi]
to [0, 1]. This is obtained with a loop transformation A′ =
A − BΛC, B′ = 2BΛ where Λ = diag(α1, α2, .., αn)
is used. In the power system model, the Lure nonlinearity
consists of the output power and the d-axis current for
each machine. To bound the nonlinearity, the following
assumption is made.

Assumption 2. (State bounds). It is assumed that the

quadrature axis internal voltage satisfies |E′q,i − E′q,i| ≤
E∆, where E′q,i is the nominal voltage.

This assumption puts a bound on the Lure nonlinearity.
If the deviation E∆ is chosen appropriatly, it should not
affect the result.

The Lure system (8) is controlled by means of some
given nominal controller ΣC . Power System Stabilisers
control strategies usually involves using the generators
angular frequency or the terminal frequency deviation in a
supplementary feedback block through vpss. The following
assumption is made on the nominal closed-loop system.

Assumption 3. (Nominal closed-loop stability). The given
nominal closed-loop system of ΣP and ΣC is input-to-state
stable (ISS) 1 w.r.t. the inputs (r,d).

Faults change the nominal Lure system (8) to the faulty
Lure system

ΣPf :


ẋf (t) = Afxf (t) +Bvvf (t) +Bfuf (t) +Bdd(t)

vf (t) = ϕf (Cvxf (t))

yf (t) = Cxf (t)

zf (t) = Czxf (t),

(9)

To distinguish the faulty system behavior from the nom-
inal behavior, all signals that are affected by faults are
labeled by subscript f . A PSS failure is an event that
changes the nominal input matrix B to the faulty input
matrix Bf by setting the corresponding row to zero. The
following assumption is made for the faulty system:
1 A system is ISS if there exists functions β ∈ KL,γ ∈ K∞ such that
|x(t)| ≤ β(|x0|, t) + γ(‖u‖∞) [Khalil, 2002]

Assumption 4. (Stabilisability). The pair (Af ,Bf ) is as-
sumed to be stabilisable.

3. LURE VIRTUAL ACTUATOR FOR CONTROL
RECONFIGURATION

In this section we will present a new reconfiguration result
using a passivity-based stabilising design of Lure type
systems extending the result from Richter et al. [2012].

The concept of fault-hiding using control reconfiguration
is shown in Figure 1. After a fault, the controller ΣC

interconnected to the faulty plant by means of the con-
nections yc = yf and uc = uf is generally not suitable
for controlling the faulty system. In particular, in the
case of stabiliser failures, the loop is partially opened.
The reconfiguration block ΣR will hide the system fault
from the controller, and regain stability of the closed-loop
system. The virtual actuator implementation is shown in

ΣPf

ΣC

yfuf

d zf

r

(a) Controller on faulty plant

ΣPf

ΣR

ΣC

yfuf

ycuc

d z

r

(b) Reconfiguration block
hides fault

Fig. 1. Illustration of fault hiding. The reconfiguration
restructures the nominal control and modifies the
output, to hide the fault from the controller.

Figure 2. The reconfiguration block ΣR proposed in this
paper is a Lure virtual actuator

ΣA :



ẋ∆(t) = A∆x∆(t) + (A−Af )xf (t) +Bvv∆(t)

+B∆uc(t)

x∆(0) = x∆0

v∆(t) = ϕ (Cv(x∆(t) + xf (t)))−ϕf (Cvxf (t))

uf (t) = Mx∆(t) +Nuc(t)

yc(t) = yf (t) +Cx∆(t)

A∆ , A−BfM , B∆ , B −BfN

(10)

(Fig. 1, ΣR = ΣA). The virtual actuator ΣA, whose
linear form was introduced in [Steffen, 2005], expresses the
difference between nominal and reconfigured dynamics in
its state x∆ and tries to keep this difference small. The
matricesM andN are free design parameters that may be
used to affect the virtual actuator behavior. Note that the
implementation of the Lure virtual actuator requires the
knowledge of the state xf of the faulty Lure system, which
must either be measured or estimated using an observer 2 .

Although we are primarily interested in actuator failures
(i.e. PSS failures), we define more general actuator faults.

2 The preservation of stability after introducing an observer is
expected but must be analysed separately; a generic discussion of the
combination of nonlinear virtual actuators with nonlinear observers
is available in [Richter, 2011].
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The method presented below is applicable to the following
definition of faults.

Definition 1. (Actuator and internal faults). An actuator
fault f is an event that changes the nominal input matrix
B ∈ R(n×m) to the faulty input matrix Bf of the same
dimensions. An internal fault is an event that changes
the system matrix A to Af , the nominal characteristic
ϕ : Rs 7→ Rs to the faulty characteristic ϕf of identical
dimension and the sector K to the faulty sector Kf .

In this paper, we assume that faults appear abruptly and
remain effective once they have occurred.

3.1 Fault-hiding property and separation principle

In order to prove the strict fault-hiding constraint, the
state transformation xf (t) → x̃(t) , xf (t) + x∆(t) is
applied, after which the reconfigured plant (9), (10) is
described by(

˙̃x(t)
ẋ∆(t)

)
=

(
A 0
0 A∆

)(
x̃(t)
x∆(t)

)
+

(
B
B∆

)
uc(t)

+

(
Bvṽ(t)
Bvv∆(t)

)
+

(
Bd

0

)
d(t) (11a)

x̃(0) = x0 + x∆0, x∆(0) = x∆0 (11b)

ṽ(t) = ϕ(Cvx̃(t)) (11c)

v∆(t) = ϕ(Cvx̃(t))−ϕf (Cv(x̃(t)− x∆(t))) (11d)

yc(t) = Cx̃(t), zf (t) = Czx̃(t)−Czx∆(t). (11e)

This model shows that yc, the measured output made
available to the controller, depends only on the state x̃,
which is governed by the nominal dynamics if the virtual
actuator initial condition is x∆0 = 0, which proves that

Bd Cz

Bf s−1 • C

Bv Af • Cv

ψf

A−Af •

ψf Cv •

Bv ψ Cv

M •

N B∆ s−1 • C

• A∆

-

x∆

uf yf

d zf

Nominal Controller

ycuc

r

Fig. 2. Virtual actuator for Lure-type systems.

the Lure virtual actuator satisfies the strict fault-hiding
constraint. Due to Assumption 3, the interconnection
(ΣP̃ ,ΣC) is ISS.

The difference system is, however, affected by the dynam-
ics of the state variable x̃ through the variable v∆ (but
not the converse, which would contradict fault hiding).
The nominal closed-loop system (ΣP̃ ,ΣC) is connected
in series to the difference system ΣA, which implies that
the series interconnection theorem for input-to-state stable
systems is applicable, where the first system ΣP̃ is ISS by
Assumption 3 and it remains to ensure by proper design
that the difference system is ISS w.r.t. the inputs uc(t)
and x̃(t).

3.2 Passivity-based stability recovery

It remains to give sufficient conditions for input-to-state
stability of the difference system ΣA w.r.t. its external
inputs.

Theorem 1. (Global reconfigured closed-loop ISS).
Consider the faulty Lure system (9) under Assumptions 3,
1, and let S = K−1

f . The reconfigured closed-loop system

is globally ISS if there exists X = XT � 0 and Y such
that the matrix inequality(
−(XAT +AX −BfY − Y TBT

f ) −XCT
v −Bv

? S + ST

)
� 0

(12)

is satisfied, where M = Y X−1.

Proof. We first consider the unforced difference system
(for uc = 0, x̃ = 0) and show that satisfaction of LMI (12)
implies global asymptotic stability of the difference sys-
tem. According to the circle criterion, the unforced differ-
ence system is absolutely stable at the origin if its linear
subsystem is passive, which is the case according to Boyd
et al. [1994] if the matrix inequality(
−(A−BfM)TP − P (A−BfM) −CT

v − PBv

? S + ST

)
� 0

is feasible in the variables P = P T � 0 and M . The
latter inequality is nonlinear for the purpose of designing
M due to products between variables P and M . The
following standard trick turns it into an equivalent LMI:
the Schur lemma turns it into the equivalent inequalities
S+ST � 0 and −(ATP +PA−MTBT

f P −PBfM)−
(CT

v −PBf )(S+ST )−1(CT
v −PBf )T � 0. Pre- and post-

multiplying with P−1 (a congruence transformation) and

substitutions X , P−1 and Y , MP−1 give the result
−(XAT + AX − Y TBT

f − BfY ) − (XCT
v − Bf )(S +

ST )−1(CT
v X−Bf )T � 0. Applying the Schur lemma once

more gives the LMI (12).

It remains to be shown that absolute stability of the
unforced difference system extends to the input-to-state
stability of the difference system with nonzero inputs uc

and x̃. This follows from the fact that LMI (12) implies not
only global asymptotic stability for all Lure nonlinearities
in the sector, but also global exponential stability. To-
gether with Assumptions 3 and 1 and according to [Khalil,
2002, Lemma 4.6], this implies that the forced difference
system is globally ISS w.r.t. uc and x̃ as inputs. �
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Remark 1. (Performance). The simplest way to incorpo-
rate performance goals into the design consists in ignoring
the Lure nonlinearity for the purpose of performance op-
timization (setting it to zero). Henceforth, linear perfor-
mance indices can be included in the design, based on e.g.
the H∞ or H2 norm, see e.g. Richter and Lunze [2009].
Optimal performance is not really achieved for the Lure
system, but improvements may in practice be found over
a purely stabilising design. Absolute stability is in any
case preserved by such semi-heuristic design extensions.
Further design freedom can be achieved through N which
does not affect stability.

The stabilising design of the Lure virtual actuator (10) is
summarised in Algorithm 1.

Algorithm 1 Stabilising Lure virtual actuator synthesis

Require: A, B, Bv, C, Cv, ϕ
1: Initialise the nominal closed-loop system with Bf =
B, ϕf = ϕ, M = 0, N = I, x(0) = x0, x∆(0) = 0

2: repeat
3: Run nominal closed-loop system
4: until fault f detected and isolated
5: Construct Af , Bf , ϕf and S, update virtual actua-

tor (10)
6: Solve LMI (12) for X and Y
7: Update virtual actuator (10) with M = Y X−1 and

arbitrary N
8: Run reconfigured closed-loop system

Result: Input-to-state stable reconfigured closed-loop
system

4. SYSTEM UNDER STUDY

To test the proposed method for reconfiguring stabilisers,
a test case was selected. The system in consideration is
Kundur’s two area system [Kundur, 1994], which exhibits
different kinds of electromechanical oscillations; both local
interplant and inter-area. As [Ni et al., 2000] a time-
domain simulation is performed on the test system, where
a PSS failure occurs. The test system and principle of
reconfiguration is shown in Figure 3.

The system consists of 4 generators and 11 busses. The
structure is symmetric, but with a higher load in one
area, generating a power transfer from the first area to
the second.

The objective is to create a reconfiguration block in case
of a PSS failure as shown in Figure 3, by compensat-
ing through the other PSSs. In the simulation case, the

0 100 200 300 400 500 600 700

0.6

0.62

0.64

0.66

0.68

Time (s)

δ
1
−
δ
4
(r
a
d
)

Fault

Fig. 4. The simulated response of test system after PSS-
G2 failure. An oscillatory and growing seperation
develops in rotor angle between G1 and G4.

loadings are the same as in [Kundur, 1994], that is the
generator units are loaded at Pm,1 = 700 MW, Pm,2 = 700
MW, Pm,3 = 719 MW and Pm,4 = 700 MW. The system
is stabilised by fitting PSS on all the generators. A wide-
area LQ controller is used as nominal PSS (with weights
Q = I and R = diag(1, 0.01, 1, 1) to intensify the role of
G2), to stabilise the electromechanical modes.

The reconfiguration test case is performed for a setup,
where a failure of the PSS at generator 2 is introduced.
The resulting time response of the failure is illustrated
in Figure 4. Simulation results indicate that the system
becomes unstable, when a small disturbance is introduced
to the generators.

5. SIMULATION RESULTS

To test the method, a simulation of the test system
is performed, with a virtual actuator calculated as in

G1

G2

G3

G4

1

2

3

4

5 6 7 8 9 10 11

L4 L7C4 C7
PSS

PSS

PSSPSS

Σr

220 km

Fig. 3. Simplified illustration of the reconfiguration after a PSS failure at generator G2.
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Theorem 1. A fault is introduced at t = 20 s, where the
stabiliser on G2 is set to be non-active, making the system
unstable. The virtual actuator is updated according to
Algorithm 1 at t = 30 s. This result does not consider time
delay due to the communication network. If the control
is centralised, the nominal system would already comply
with the assumptions. If not, the time delay should be
considered during the reconfiguration design. The results
are shown in Figure 5.

0 10 20 30 40 50

−0.01

0

0.01

S
p
ee
d
(p
u
)

Time (s)

Fault
Reconfig.

ω1
ω2
ω3
ω4

30 35

−0.1

0

0.1

V
A

ex
ci
ta
ti
o
n
(p
u
) Gen 1

30 35

Time (s)

Gen 3

30 35

Gen 4

Fig. 5. The simulated response of PSS failure occuring at
t = 20 s, where a reconfiguration occurs at t = 30 s.

A zoom of the added stabilising signals to the healthy
stabilisers are shown in Fig. 5. Compared to the non-
reconfigured simulation in Fig. 4, these additional signals
are able to stabilise the closed-loop system. A small
switching transient is present when the virtual actuator
is modified.

In the presented work, all the networks PSSs will con-
tribute to stabilisation after a failure. The method can be
extended to only use nearby PSSs to stabilise the system.
If the PSSs have knowledge of the control strategy of
its neighbours and have wide-area state information, the
additional stabilising input can be computed locally.

6. CONCLUSIONS

In this work, we introduced a new design method for
virtual actuator fault-tolerant control of Lure systems and
applied it successfully to power system reconfiguration.
Using the flux-decay model an optimisation depending
on system parameters can be performed which guarantees
stability of the closed-loop system. Simulation showed its
ability to stabilise the frequently used two-area system
from [Kundur, 1994].

Closed-loop stability is preserved after PSS failures, with-
out changing the basic control strategies implemented in
power system stabilisers. This is a salient feature of the
approach, as PSSs are often designed with specific proper-
ties (such as having a washout effect on the control signal

to avoid modifying the steady-state behaviour), which are
preserved through the reconfiguration. Since the virtual
actuator works by adjusting setpoints for the local PSSs,
this FTC scheme is suitable for retrofit during service.
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