
Comparison of Controllability Conditions for Models of Antiangiogenic  

and Combined Anticancer Therapy 
 

Andrzej Świerniak*, Jerzy Klamka* 


*Department of Automatic Control, Silesian University of Technology, Gliwice, Poland  

(e-mail: Andrzej.Swierniak@polsl.pl , Jerzy.Klamka@polsl.pl ) 

Abstract: We compare sufficient conditions for local controllability for a class of models of treatment 

response to antiangiogenic and combined anticancer therapies. The combined therapy is understood as 

combination of direct anticancer strategy e.g. chemotherapy and indirect modality (in this case 

antiangiogenic therapy). We discuss different control objectives related to multimodal therapies in the 

light of present knowledge of self-organization of tumor cell populations treated by anticancer drugs. 

Controllability of the models in the form of semilinear second order dynamic systems enables to expect 

that the objectives could be reached. 
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1. INTRODUCTION 

Self-organization of tumor cells is nowadays understood as a 

major obstacle against successful anticancer therapies. It 

leads among others to emergency of drug resistance in the 

response to chemotherapy and development of autonomous 

vascular network in the process of tumor angiogenesis. The 

site of action of almost all traditional cytotoxic drugs is the 

cellular DNA or the processes associated with this DNA. 

Drug resistance in cancer is common. Some tumors are 

inherently unresponsive to cytotoxic chemotherapy. Others 

may respond well initially but relapse rapidly with drug-

resistant disease. Many factors have been implicated in 

cellular resistance and these mechanisms may be drug or 

class specific. The cells in the normal human body which 

turnover most rapidly and therefore are the most impacted by 

traditional cytotoxics are those of the bone marrow, skin, hair 

follicle, and gastrointestinal mucosa. It has been discovered 

that even small tumors need their own supply system in the 

form of autonomous vascular network for growth, 

development and, ultimately, for metastasis [Hanahan et al. 

(2011)]. To create this vasculature cancer cells release 

proangiogenic growth factors starting a cascade of signal 

leading to formation of blood vessels and their loops which 

are responsible for delivery of nutrients and oxygen. The size 

of this formated vascular network becomes a bound for the 

size of the tumor. Taking this in account Judah Folkman 

[Folkman (1971, 1972)] proposed a new strategy of combat 

against cancer called antiangiogenic therapy the idea of 

which was to break the cascade of signals and events leading 

to the angiogenesis in an arbitrary point. The therapy became 

one of the hopes for efficient cancer treatment with modest 

side effects and many advantages over standard drug 

treatments. Since it is directed towards special part of normal 

tissues and only indirectly destroys tumor cells it has been 

called in [Kerbel (1997)] a therapy resistant to drug 

resistance. Being directed against tumor vasculature the 

therapy does not exploit tumor cell sensitivity, relying instead 

on tumor suppression consequent to inhibition of associated 

vasculature. It has been also found to be efficient for slowly 

growing tumors which are difficult for classical 

chemotherapy. Yet another good news is that targeting tumor 

vasculature rather than tumor cell population would avoid the 

necessity of having to obtain intra-tumor drug delivery. The 

drawbacks are: difficulties in observations of the results, high 

dosage necessary for fast growing tumors, side effects related 

to menstruation, diabetes, wound healing. Nevertheless the 

enthusiasm related to first experimental successes of 

antiangiogenic therapy has been followed by more cautious 

expectations.  

In [Ebos et al. (2011)] the gap between preclinical (mouse 

models – localized primary tumor) and clinical testing (late-

stage metastatic) is suggested. Antiangiogenic agents make 

not such impressive results as in preclinical trials. Depending 

on a disease stage different results were obtained. Hundreds 

of clinical trials included mostly inhibitor targeting the 

vascular endothelial growth factor (VEGF) pathways (one of 

the pro-angiogenic protein). In some cases slowed metastatic 

disease progression occurs, leading to progression-free 

survival and overall survival benefits compared with control, 

but it was not associated with survival improvements. Yet 

another important constrain in efficient antiangiogenic 

therapy is the accessibility of antiangiogenic agents. 

Moreover, contrary to Kerbel’s hopes, two types of resistance 

have been observed. First one–evasive, include revasculariza-

tion as a result of upregulation of alternative pro-angiogenic 

signals, protection of the tumor, increased metastatis, second 

one–intrinsic, includes rapid adaptive responses, in the case 

of pre-existing conditions defined by the absence of any 

beneficial effect of anti-angiogenic agents [Bergers et al. 

(2008)]. Nowadays antiangiogenic therapy is considered 

rather as an essential component of multidrug cancer therapy 

([Li-Song et al. (2010)], [Ma et al. (2010)]), especially with 

chemotherapy. Although tumor eradication in such combined 

therapy may be still the primary goal the chaotic structure of 

the angiogenically created network leads to another target for 

antiangiogenic agents. Namely using angiogenic inhibitors to 

normalization of the abnormal vasculature (the so-called 

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 11530



 

 

 

pruning effect) facilitate drug delivery [D’Onofrio et al. 

(2010)], [Jain (2011)]. The continuous treatment with 

angiogenic inhibitors ultimately leads to a decrease in tumor 

blood flow and a decreased tumor uptake of co-administrated 

cytotoxic drugs. In the periodic therapy the main goal of anti-

angiogenic agents is to normalize tumor vasculature.  

The questions which of these goals could be reached in finite 

treatment horizon could be answered, at least theoretically by 

analysis of controllability of dynamical systems used as 

models of the processes of tumor growth in the presence of 

vascularization. Controllability is a qualitative property of 

dynamical control systems and its meaning, roughly 

speaking, is following: a dynamical system is controllable if 

it is possible to steer it from an arbitrary initial state to an 

arbitrary final state using the set of admissible controls. In the 

existing literature there are many different definitions of 

controllability strongly depending on the class of dynamical 

control systems (see e.g. [Klamka (1991, 1996)], and 

references therein). In the present paper, we consider 

constrained local controllability problems for second-order 

finite-dimensional semilinear stationary dynamical systems 

described by the set of two ordinary differential state 

equations. More precisely we discuss a class of models 

proposed in [Hahnfeldt et al. (1999)] to which two control 

variables describing two treatment modalities have been 

introduced. To our knowledge, the problem of controllability 

for such models is absent in the literature except of our 

previous studies in which controllability of the simplified 

model of this class proposed in [D’Onofrio et al. (1999)] for 

antiangiogenic therapy [Swierniak et al. (2011)] and 

combined therapy [Klamka et al. (2013)] have been studied. 

The results are based on theorems proved in [Klamka 

(1996)]. The idea of the theorems is that under suitable 

assumptions constrained global controllability of a linear 

first-order associated approximated dynamical system implies 

constrained local controllability near the origin of the original 

semilinear second-order dynamical system. Moreover we find 

similar conditions for controllability for the original 

Hahnfeldt et al. model [Hahnfeldt et al. (1999)] and discuss 

differences and similarities. We compare results published by 

us previously with those obtained recently (not published 

yet). 

2. TWO COMPARTMENTAL MODELS OF CANCER 

GROWTH INCLUDING VASCULARIZATION 

Phenomena related to tumor growth in the presence of its 

vascularization and anticancer treatment are very complex. 

Thus their modeling should take into account their dynamical 

behavior and spatial organization leading to models in the 

form of partial differential equations (see e.g. [McDougall et 

al. (2010)]). Nevertheless, such models are difficult for 

mathematical analysis and almost not tractable when used for 

designing of treatment protocols. In [Hahnfeldt et al. (1999)] 

a model based on experimental data from anti-angiogenic 

therapy and non-therapy trials of Lewis lung tumors in mice 

is proposed. Roughly speaking the main idea of this class of 

models is to incorporate the spatial aspects of the diffusion of 

factors that stimulate and inhibit angiogenesis into a non-

spatial two-compartmental model for cancer cells and 

vascular endothelial cells. If 𝑁 denotes size of cancer cells 

population and 𝐾 a parameter describing the size of vascular 

network then such growth could be expressed by Gompertz 

type growth equation. Second equation describes vascular 

network growth, includes stimulators of angiogenesis 

(characterized by parameter 𝛾), inhibitory factors secreted by 

tumor cells (characterized by 𝜆) and natural mortality of the 

endothelial cells (characterized by 𝜇). In this model 𝛽 

denotes proliferation ability of the cells. The effect of therapy 

in such models can be included in the form of control actions 

entering the system as multipliers in the bilinear terms. Since 

antiangiogenic agents disturb directly only the vascular 

network the control variable (𝑢) is present only in the first 

equation. The second variable (𝑣) related to chemotherapy 

appears in both equations [Swierniak (2008)]. The 

coefficients 𝜓, 𝜂, 𝜉 are non-negative constants (conversion 

factors) that relate the dosages of anti-angiogenic (𝑢) and 

cytostatic (𝑣) agents (𝜓 is much greater than 𝜉). 

𝑁̇ = −𝛽𝑁 𝑙𝑛(𝑁/𝐾) − 𝜓𝑣𝑁 (1) 

𝐾̇ = 𝛾𝑁 − 𝜆𝐾𝑁2/3 − 𝜇𝐾 − 𝜂𝑢𝐾 − 𝜉𝑣𝐾 (2) 

Similar behaviour could be obtained if Gompertz type growth 

is substituted by logistic type one. 

𝑁̇ = −𝛽𝑁(1 − 𝑁/𝐾) − 𝜓𝑣𝑁 (3) 

The modification of this model, proposed in [D’Onofrio et al. 

(2004)] which also satisfies Hahnfeldt’s suggestions 

described above assumes that the effect of SF and MF on the 

relative velocity of growth is constant while the IF is 

proportional to the active surface of the area of tumor being 

in contact with the vascular network and the same to the 

square of the tumor radius: 

𝐾̇ = 𝛾𝐾 − 𝜆𝐾𝑁2/3 − 𝜇𝐾 − 𝜂𝑢𝐾 − 𝜉𝑣𝐾 (4) 

Combining the models of tumor growth and the associated 

models of vascular network growth we obtain a set of two-

compartmental models properties of which have been 

compared in [Swierniak (2009)]. The interesting finding 

[D’Onofrio et al. (2004)] is that all these models when 

uncontrolled (without therapy) have the same equilibrium 

point defined by the same values of both variables 𝑁 and 𝐾: 

𝑁∗ = 𝐾∗ = ((𝛾 − 𝜇)/𝜆)
3/2

 (5) 

This equilibrium point is both locally and globally 

asymptotically stable. The line of reasoning is based on the 

Lyapunov type analysis. In [Ergun et al. (2003)] yet another 

simplified model which also satisfies assertions proposed in 

[Hahnfeldt et al. (1999)] has been proposed but the dynamics 

of vessel carrying support is independent of the size of the 

tumor: 

𝐾̇ = 𝛾𝐾2/3 − 𝜆𝐾4/3 − 𝜂𝑢𝐾 − 𝜉𝑣𝐾 (6) 

Moreover this model does not contain the natural mortality 

factor. Although this term has been present in previously 

discussed models all simulation results presented by the 

authors are obtained for 𝜇 = 0. Thus to simplify further 

considerations and to have possibility of comparison of 
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results for all the models mentioned above we will omit this 

term in our further consideration. It leads to the simpler form 

of the equilibrium which is also relevant for the [Ergun et al. 

(2003)] model: 

𝑁∗ = 𝐾∗ = ( 𝛾/𝜆 )3/2 (7) 

For constant dosage of antitumor drugs in the combined 

therapy this result enables to find such continuous protocols 

which lead to asymptotic eradication of vascular network and 

in turn the tumor. In this case values of 𝑁 and 𝐾 in 

equilibrium are not the same [Swierniak (2008)] but still they 

are closely related by linear map. For example a condition for 

constant doses of antiangiogenic 𝑈 and cytotoxic 𝑉 drugs 

ensuring complete asymptotic removal of the tumor for 

model (1), (4) or (3), (4) is given by: 

𝑈 +
𝜉𝑉

𝜂
=  

𝛾

𝜂
⟹ 𝐾∗, 𝑁∗ → 0  

Similar results are obtained for periodic therapies with mean 

values defined by analysis of asymptotic effects of constant 

continuous therapy for all these models excluding the original 

Hahnfeldt model (with Gompertz–type growth equation). For 

this model the eradication condition is only necessary but not 

sufficient. Constant or periodic therapies which ensure tumor 

eradication discussed previously have an important 

drawback. They should be applied for long therapy horizon. 

Shortage in the antiangiogenic drugs, their costs, emergency 

of resistance and side effects cause that the parameters of 

treatment protocols and cumulated dose of the drugs should 

be bounded. Thus realistic control problems related to the 

combined anticancer therapy should be formulated as finite 

horizon control problems. In [Dolbniak et al. (2013)] results 

of simulation for simple protocols of continuous and periodic 

therapy for finite treatment horizons are presented. 

Parameters proposed by Hahnfeldt et al. [Hahnfeldt et al. 

(1999)] were used in order to implement each model under 

similar conditions. In periodic treatment angiogenic treatment 

as the starting therapy has been implemented, to use a fact, 

that vascular network should be normalized before 

chemotherapy. Period for this protocols is 5 days. There was 

no significant variation in tumor volume after therapy when 

greater dose was used. In the case of ten time lower doses 

effect of therapy were highly related to the length of the 

cycle, for shorter periods tumor volume was greater than for 

larger ones. In periodic protocols dose of the anti-angiogenic 

agents for Hahnfeldt et al. and its modifications was changed 

to a higher one. It was due to the fact that the previous value 

had no effect (d’Onofrio–Gandolfi modification) or only a 

small treatment effect (in Hahnfeldt et al. model). The 

therapeutic effect was smaller than during the continuous 

therapy. The dynamics of all models was similar.  

In [D’Onofrio et al. (2010)] the role of vessel density (which 

can modulate the effect of drugs) and the effect of vascular 

“pruning” (by using anti-angiogenic drug in a combined 

therapy) was analysed and the authors proposed to modify the 

equation of tumor growth to the form 

𝑁̇ = −𝛽𝑁 𝑙𝑛(𝑁/𝐾) − 𝜓(𝐾/𝑁)𝑣𝑁 (8) 

where 𝜓(𝐾/𝑁) is a function of vessel density. Too 

aggressive or sustained anti-angiogenic treatment may prune 

away vascular network, resulting in resistance to further 

treatment and in and inadequate for delivery of drugs or 

oxygen Based on functions described in [D’Onofrio et al. 

(2010)], it has been observed that the best properties of 

vascular network are when density (endothelial cells/cancer 

cells) is 2. One way of checking, at least theoretically, 

whether there exist protocols enabling reachability of such 

different final targets is to find conditions for controllability 

of the models under discussion. 

3. MODELS OF COMBINED THERAPY AS 

SEMILINEAR DYNAMICAL SYSTEMS 

Semilinear stationary finite-dimensional control systems are 

described by the following ordinary differential state equation 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐹 (𝑥(𝑡), 𝑢(𝑡)) + 𝐵𝑢(𝑡) (9) 

with initial conditions: 𝑥(0), where the state 𝑥(𝑡) ∈ ℝ𝑛 and 

the control 𝑢(𝑡) ∈ ℝ𝑛, 𝐴 is 𝑛 × 𝑛 dimensional constant 

matrix, 𝐵 is 𝑛 × 𝑚 dimensional constant matrix. Moreover, 

let us assume that the nonlinear mapping 𝐹: 𝑋 × 𝑈 → 𝑋 is 

continuously differentiable near the origin and such that 

𝐹(0,0) = 0, and 𝑋 and 𝑈 denote state and control spaces, 

respectively. 

In practice admissible controls are always required to satisfy 

certain additional constraints. We assume that the set of 

values of controls 𝑈𝑐 ⊂ 𝑈 is a given closed and convex cone 

with nonempty interior and vertex at zero.  

The associated linear dynamical system for semilinear 

dynamical system (9) is defined as: 

𝑧̇(𝑡) = 𝐶𝑧(𝑡) + 𝐵𝑢(𝑡) for 𝑡 ∈ [0, 𝑇] (10) 

with zero initial condition 𝑧(0) = 0, where 

𝐶 = 𝐴 + 𝐹𝑥(0,0)  (11) 

is an 𝑛 × 𝑛-dimensional constant matrix. 

The models considered in the previous section are strongly 

nonlinear but by logarithmic change of variables and some 

scaling transformations we are able to transform them into 

the semilinear form. As mentioned before, for practical 

reasons, we omit the natural mortality factor represented by 

parameter 𝜇. Defining: 

𝑥 = 𝑙𝑛 𝑁/𝑁∗, 𝑦 = 𝑙𝑛 𝐾/𝐾∗, 𝑥∗ = 𝑦∗ = 0,  

𝜏 = 𝛽𝑡, 𝜗 = 𝛾/𝛽, 𝜗 = (𝜆𝛾)1/2/𝛽, (12) 

𝑥̇ = 𝑑𝑥/𝑑𝜏, 𝑦̇ = 𝑑𝑦/𝑑𝜏   

we are led to the following system for model (1), (4): 

𝑥̇(𝑡) = 𝑦(𝑡) − 𝑥(𝑡) − 𝜀𝑣(𝑡),  

𝑦̇(𝑡) = 𝜗(1 − 𝑒(2/3)𝑥(𝑡)) − 𝜎𝑢(𝑡) − 𝜍𝑣(𝑡), (13) 

𝜎 = 𝜂/𝛽   , 𝜀 = 𝜓/𝛽   , 𝜍 = 𝜉/𝛽  
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If Gompertz type growth of the tumor is substituted by the 

logistic type one (3) then the first equation of the model (13) 

has the form: 

𝑥̇(𝑡) = 1 − 𝑒𝑦(𝑡)−𝑥(𝑡) − 𝜀𝑣(𝑡) (14) 

Similarly if the dynamics of vasculature capacity is modelled 

by (2) as in Hanfeldt et al. study or by (6) as in [Ergun et al. 

(2003)] then the second equation of (13) should be 

substituted by: 

𝑦̇(𝑡) = 𝜗(𝑒𝑥(𝑡)−𝑦(𝑡) − 𝑒(2/3)𝑥(𝑡)) − 𝜎𝑢(𝑡) − 𝜍𝑣(𝑡) (15) 

or  

𝑦̇(𝑡) = 𝜗(𝑒−(1/3)𝑦(𝑡) − 𝑒(1/3)𝑦(𝑡)) − 𝜎𝑢(𝑡) − 𝜍𝑣(𝑡) (16) 

respectively. It is worth to note that the associated linear 

system will be the same for both Gompertz type and logistic 

type growth equations.  

4. SUFFICIENT CONDITIONS OF CONTROLLABILITY 

For the semilinear dynamical system (9), it is possible to 

define many different concepts of controllability. We shall 

focus our attention on the so called constrained controllability 

in the time interval [0, 𝑇]. In order to do that, first of all let us 

introduce the notion of the attainable set at time 𝑇 > 0 from 

zero initial conditions, denoted shortly by 𝐾𝑇(𝑈𝑐) and 

defined as follows: 

𝐾𝑇(𝑈𝑐) = {𝑥 ∈ 𝑋:  𝑥 = 𝑥(𝑇, 𝑢) , 𝑢(𝑡) ∈ 𝑈𝑐} (17) 

where 𝑥(𝑡, 𝑢), 𝑡 >  0 is the unique solution of the differential 

state equation (9) with zero initial conditions and a given 

admissible control. Under the assumptions stated on the 

nonlinear term 𝐹 such solution always exists. Now, using the 

concept of the attainable set, we recall the well-known 

definitions of constrained controllability in [0, 𝑇] for 

semilinear dynamical system. 

Definition 1 The dynamical system (9) is said to be 

𝑈𝑐 −locally controllable in [0, 𝑇] if the attainable set 𝐾𝑇(𝑈𝑐) 

contains a neighborhood of zero in the space 𝑋. 

Definition 2 The dynamical system (9) is said to be 

𝑈𝑐 −globally controllable in [0, 𝑇] if 𝐾𝑇(𝑈𝑐) = 𝑋. 

The main result is the following sufficient condition for 

constrained local controllability of the semilinear dynamical 

system (9) which will be used to study controllability of the 

models of combined anticancer therapy: 

Theorem 1 [Klamka (1996)]. Suppose that (i) 𝐹(0,0) = 0, 

(ii) 𝑈𝑐 ⊂ 𝑈 is a closed and convex cone with vertex at zero, 

(iii) The associated linear control system (10) is 𝑈𝑐 −globally 

controllable in [0, 𝑇]. 

Then the semilinear stationary dynamical control system (9) 

is 𝑈𝑐 −locally controllable in [0, 𝑇].  

To verify the assumption (iii) about constrained global 

controllability of the linear time-invariant dynamical system, 

we may use the following Theorem 2. 

Theorem 2 [Klamka (1996)]. Suppose the set 𝑈𝑐 is a cone 

with vertex at zero and nonempty interior in the space ℝ𝑚. 

Then the associated linear dynamical control system (10) is 

𝑈𝑐 −globally controllable in [0, 𝑇] if and only if 

 it is controllable without any constraints, i.e. 

𝑟𝑎𝑛𝑘[𝐵, 𝐶𝐵, 𝐶2𝐵, … , 𝐶𝑛−1𝐵] = 𝑛 (18) 

 there is no real eigenvector 𝑤 ∈ ℝ𝑛 of the matrix 𝐶𝑡𝑟 

satisfying inequalities 

𝑤𝑡𝑟𝐵𝑢 ≤ 0,    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑢 ∈ 𝑈𝑐 (19) 

The theorems could be proved using the generalized open 

mapping theorem. The second condition could be also 

interpreted in the following way: For each real eigenvector 

𝑤 ∈ ℝ𝑛 of the matrix 𝐶𝑡𝑟 (transposition of matrix C) there 

exist such controls 𝑢 ∈ 𝑈𝑐 that 𝑤𝑡𝑟𝐵𝑢 changes its sign. 

Moreover for single input systems this condition is equivalent 

to the requirement that matrix 𝐶 has only complex 

eigenvalues (see Corollary from [Klamka (1996)]). 

Now, let us use these conditions to check constrained local 

controllability of the models of combined anticancer therapy 

presented in the previous section. In this case the state vector 

𝑥 = [𝑥, 𝑦]𝑇, the control vector 𝑢 = [𝑢, 𝑣]𝑇 , and 𝑧 is the state 

of the associated linear system. The admissible controls are 

assumed to be positive, hence the set of admissible controls is 

a positive cone 𝑈𝑐 in the space ℝ2. 

Taking into account the general form of the semilinear 

dynamic system we have for (13): 

𝐴 = [
−1 1
0 0

], 𝐹(𝑥, 𝑦, 𝑢, 𝑣) = [
0

−𝜗(𝑒(2/3)𝑥 − 1)
], 

𝐵 = [
0 −𝜀

−𝜎 −𝜍
] 

 

Hence, we have 

𝐹(0,0,0,0) = [
0
0

], 𝐹𝑥(0,0,0,0) = [
0 0

−𝜗2/3 0
] 

𝐶 = 𝐴 + 𝐹𝑥(0,0,0,0) = [
−1 1

−𝜗2/3 0
] (20) 

As discussed in our paper [Klamka et al. (2013)] the rank 

condition for the linear associated system is always satisfied 

and if 𝜗 > 3/8 characteristic polynomial have two complex 

eigenvalues: 

𝑠1 = 0.5(−1 − 𝑗√𝛥) = 0.5 (−1 − 𝑗√1 − (8/3)𝜗) 

𝑠2 = 0.5(−1 + 𝑗√𝛥) = 0.5 (−1 + 𝑗√1 − (8/3)𝜗) 

then the system is constrained controllable. 

For 𝜗 = 3/8 we have one real eigenvalue 𝑠12 = −0.5 with 

multiplicity 2. The real eigenvector has the following form  

𝑤 = [−1 2]𝑇 

thus 
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𝑤𝑡𝑟𝐵𝑢 = −2𝜎𝑢 + (𝜀 − 2𝜍)𝑣. (21) 

Since 𝜓 is much greater than 𝜉(𝜀 ≫ 𝜍) thus for each 

eigenvector (21) is changing sign depending on the values of 

admissible controls. Hence, taking into account the Theorem 

2 the system is locally controllable with positive admissible 

controls. 

For 𝜗 > 3/8 we have two different real eigenvalues. Real 

eigenvalues have the following form: 

𝑠1 = 0.5 (−1 − √1 − (8/3)𝜗) < 0 

𝑠2 = 0.5 (−1 + √1 − (8/3)𝜗) < 0 

and the corresponding real eigenvectors are 

𝑤1 = [
−1

−𝑠1
−1] and 𝑤2 = [

−1
−𝑠2

−1]. 

Thus,  

𝑤1
𝑡𝑟𝐵𝑢 = 𝑠1

−1𝜎𝑢 + (𝜀 + 𝑠1
−1𝜍)𝑣  

𝑤2
𝑡𝑟𝐵𝑢 = 𝑠2

−1𝜎𝑢 + (𝜀 + 𝑠2
−1𝜍)𝑣. (22) 

And similarly as in the previous case we can prove that the 

conditions of Theorem 2 are satisfied. 

Summarizing semilinear dynamical system (13) is 

constrained controllable in a given time interval [0, 𝑇] with 

positive controls. The important finding is that this property 

does not depend on parameters of the model estimation of 

which may be difficult. This may be not true if only one 

modality (e.g. only antiangiogenic therapy) is used. As it has 

been proved in [Swierniak et al. (2011)] local constrained 

controllability of the model of antiangiogenic therapy is 

guaranteed only when its parameters satisfy additional 

condition 𝜗 > 3/8 which, as mentioned before, is the case of 

complex eigenvalues of the characteristic polynomial for the 

associated linear system. The interesting finding is that the 

obtained controllability conditions do not change if the 

logistic type growth equation is used instead of the Gompertz 

type one. The reason is that in both cases the linear associated 

systems are the same with matrix 𝐶 given by (20). 

Now, let us consider constrained local controllability of the 

original Hahnfeldt model of the combined anticancer therapy 

described by the semilinear differential state equations (15) 

with Gompertz type equation for tumor growth and defined in 

a given time interval [0, 𝑇]. Hence 

𝑥̇(𝑡) = 𝑦(𝑡) − 𝑥(𝑡) − 𝜀𝑣(𝑡),  

𝑦̇(𝑡) = 𝜗(𝑒𝑥(𝑡)−𝑦(𝑡) − 𝑒(2/3)𝑥(𝑡)) − 𝜎𝑢(𝑡) − 𝜍𝑣(𝑡), (23) 

Therefore, taking into account the general form of semilinear 

dynamical systems we have 

𝐴 = [
−1 1
0 0

], 𝐹(𝑥, 𝑦, 𝑢, 𝑣) = [
0

𝜗(𝑒𝑥−𝑦 − 𝑒(2/3)𝑥)
], 

𝐵 = [
0 −𝜀

−𝜎 −𝜍
], 𝑧 = [

𝑥
𝑦]. 

Thus, we have  

𝐹(0,0,0,0) = [
0
0

], 𝐹𝑧(0,0,0,0) = [
0 0

1

3
𝜗 −𝜗

], 

𝐶 = 𝐴 + 𝐹𝑧(0,0,0,0) = [
−1 1
1

3
𝜗 −𝜗

]. (24) 

In order to consider controllability of dynamical system (23) 

we use Theorem 2 presented in this section. 

Characteristic polynomial 𝑃(𝑠) for matrix 𝐶𝑡𝑟 has the form: 

𝑃(𝑠) = 𝑑𝑒𝑡(𝑠𝐼 − 𝐶𝑡𝑟) = 𝑑𝑒𝑡 [𝑠 + 1
1

3
𝜗

1 𝑠 + 𝜗

] = 

𝑠2 + 𝑠(1 + 𝜗) +
2

3
𝜗. 

Hence 𝛥(𝜗) = 𝜗2 −
2

3
𝜗 + 1 > 0. 

It means that there are always two real eigenvalues leading to 

conclusion that in the case of single input (i.e. monotherapy) 

sufficient condition of local constrained controllability is not 

satisfied (see Corollary). For controllability verification in the 

case of two control variables (the combined therapy) we use, 

once more, Theorem 2. 

Since 𝑟𝑎𝑛𝑘 𝐵 = 2 then 

𝑟𝑎𝑛𝑘[𝐵 𝐶𝐵] = 2 = 𝑛 

The eigenvalues have the following form: 

𝑠1 = 0.5 (−1 − 𝜗 − √𝛥(𝜗)) < 0 

𝑠2 = 0.5 (−1 − 𝜗 + √𝛥(𝜗)) < 0 

and the corresponding real eigenvectors are 

𝑤1 = [
−1

(𝜗 + 𝑠1)−1] and 𝑤2 = [
−1

(𝜗 + 𝑠2)−1]. 

Thus,  

𝑤1
𝑡𝑟𝐵𝑢 = −(𝜗 + 𝑠1)−1𝜎𝑢 + (𝜀 − (𝜗 + 𝑠1)−1𝜍)𝑣  

𝑤2
𝑡𝑟𝐵𝑢 = −(𝜗 + 𝑠2)−1𝜎𝑢 + (𝜀 − (𝜗 + 𝑠2)−1𝜍)𝑣. (25) 

We can check that there exists a combination of admissible 

controls that the expressions (25) will change their signs. 

Therefore once more the sufficient condition of local 

constrained controllability is satisfied for the combined 

therapy. The conditions of local controllability do not change 

if we model cancer population growth by logistic type 

equation instead of the Gompertz type one. The reason is the 

same linear approximation of both equations. 

5. CONCLUSIONS 

In this study we have compared controllability conditions for 

a class of two-compartmental models of treatment response 

to antiangiogenic therapy and its combination with 
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chemotherapy. This type of cancer treatment is still in 

experimental and clinical trials. The results are promising 

however still the knowledge of the processes behind the 

evolution of cancer vascular network, the equilibrium 

between stimulation and inhibitory factors, different forms of 

antiangiogenic. therapy, its side effects and the results of 

combined use of different treatment modalities is far from 

being complete. The important finding presented in the paper 

is that sufficient conditions of local constrained 

controllability for the simple models of combined therapy are 

satisfied that is generally not true when antiangiogenic 

therapy as a sinle treatment is used. In the case of the original 

Hahnfeldt model the sufficient condition of local constrained 

controllability for monotherapy is not satisfied at all and for 

its modification proposed by d’Onofrio and Gandolfi its 

satisfaction needs additional constraints on the system 

parameters. The conditions are independent of the type of 

growth equation used for description of the cancer growth 

dynamics (Gompertzian or logistic ones). The third model of 

this class presented in the paper proposed by Ergun et al. 

could be treated in similar way. The models discussed in the 

paper enable inclusion of some phenomena which may have 

both negative or positive effect on the results of therapy. One 

example is dependence of cytotoxic drug delivery on the 

structure of vascular network, its normalization and pruning 

by antiangiogenic inhibitors (e.g. (8)). Other phenomena 

which have not been discussed and could be easily 

incorporated in the models under discussion are PK/PD 

effects of both types of agents. Especially duration of the 

treatment protocols and cumulated dose of the drugs should 

be included because of long half-time of some antiangiogenic 

drugs One way to take this effect into account is 

incorporation delays in control dynamics We hope that its 

controllability could be also examined using theorems 

presented in [Klamka (2004)] based on the similar 

mathematical engine (generalized open mapping theorem). 
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