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1. INTRODUCTION

The performance of a Kalman filter relies on properly
defined noise statistics. Failure to do so in the design
of a Kalman filter could result in large estimation errors
or even a divergence of state estimates. In the past four
decades, many approaches have been taken for improving
the accuracy of noise covariance estimation. The pioneer-
ing work of noise covariance estimation by Mehra (1972)
introduced two correlation least-squares based algorithms,
namely output and innovation correlation methods for ob-
taining noise covariance matrices in linear time-invariant
systems. Mehra (1972) also stated conditions for finding a
unique solution.

Odelson, Rajamani, and Rawlings (2006) presented a new
algorithm for noise covariance estimation of linear time-
invariant systems, which is a constrained auto-covariance
least-squares (ALS) method inspired by the innovation
correlation method of Mehra (1972). Odelson et al. (2006)
estimates noise covariance matrices using least-squares
semi-definite programming (SDP), which greatly reduces
the variance of estimation compared to the innovation
correlation method.

Rajamani and Rawlings (2009) introduced a new algo-
rithm called the “one-column version”, which is a sim-
plified version of the ALS method. The computational
complexity of constructing the ALS problem for high di-
mensional systems can be significantly reduced. Instead
of using the identity matrix as the weight in the least-
squares cost function, a method was proposed to calculate
the optimal weighting for further minimizing the variance
of the estimation error.

All the papers listed above are for linear time-invariant
models only. Rajamani and Rawlings (2007) had success-
fully extended the standard ALS method to time-varying

and nonlinear systems. However, due to the structure and
approximations in their method, their algorithm may not
work for time-varying neutrally stable or open-loop unsta-
ble systems. This paper provides a new algorithm for noise
covariance estimation that can be applied to more general
time-varying and nonlinear systems than those considered
in Rajamani and Rawlings (2007).

2. NOMENCLATURE AND PRELIMINARIES

E[·] and cov(·) denote the expected value and covariance
of a random variable, respectively. ‖.‖F is the Frobenius
norm of a matrix. The notation P � 0 denotes that matrix
P is positive-semidefinite and symmetric. The symbol ⊗
is the standard Kronecker product. The symbol ⊕ is the
matrix direct sum:

N⊕
k=1

Gk := diag (G1, · · · , GN ) =

G1 . . . 0
...

. . .
...

0 . . . GN

 .
The symbols 1nr,nc and 0nr,nc represent nr × nc matrices
with all entries equal to one or zero, respectively.

The symbol (·)s denotes the vectorization of a matrix;
recall also that

(ABC)s = (C> ⊗A)(B)s.

IN,p ∈ <(pN)2×p2 denotes a permutation matrix that only
contains zeros and ones (Odelson et al., 2006) so that(

IN ⊗R
)
s

= IN,p(R)s

The notation (·)ss represents the column-wise stacked
lower triangular elements of a symmetric matrix, hence it
is possible to establish a relationship between (·)s and (·)ss
as

(Q̂)s = Dr(Q̂)ss,
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where Dr ∈ <r
2× r(r+1)

2 is a full column rank duplication
matrix, which contains only zeros and ones (Magnus and
Neudecker, 1999, p.57).

M r,c
l ∈ <r×c denotes an auxiliary matrix containing only

zeros and ones:

M r,c
l :=

[
0r×(l−1) Ir 0r×(c−r−l+1)

]
.

x ∼ N (µ, P ) denotes a random variable x with a normal
distribution with mean µ and covariance matrix P .

x ∼ U(a, b) denotes a uniformly distributed scalar random
variable x within the interval x ∈ [a, b].

3. LINEAR TIME-VARYING SYSTEMS

Consider the following discrete-time linear time-varying
model:

xk+1 := Akxk +Gkwk,

yk := Ckxk + vk,

where Ak ∈ <n×n and Ck ∈ <p×n are the dynamics
and sensor matrices; Gk ∈ <n×r is a time-varying noise
matrix; {xk}Mk=1 is an unknown state sequence; {yk}Mk=1

are given output measurements; {wk}Mk=1 and {vk}Mk=1 are
two unknown noise sequences, which affect the state and
output, respectively.

Assumption 1. The noise sequences {wk}Mk=1 and {vk}Mk=1
are i.i.d. random variables having Gaussian (or normal)
distributions N (0, Q) and N (0, R), respectively, with zero
mean and unknown covariance matrices Q and R.

Since the true noise covariance matrices Q and R are
unknown, it is not possible to design an unbiased state
estimator with a sequence of optimal filter gains {Lk}Mk=1.
Instead, we use a given sequence of sub-optimal filter gains
{Lsk}Mk=1 and any appropriate given initial state guess x̂1|0
to obtain the estimated state sequence

x̂k := x̂k|k−1 + Lsk
(
yk − ŷk|k−1

)
, k = 1, . . . ,M,

where x̂k+1|k and ŷk|k−1 are the one-step ahead predicted
state and output, respectively, given by

x̂k+1|k := Akx̂k,

ŷk|k−1 := Ckx̂k|k−1.

The state error terms are defined as:

εk := xk − x̂k|k−1, k = 1, . . . ,M,

hence

x̂k+1|k = Ak(x̂k|k−1 + Lsk(yk − ŷk|k−1))

= Akx̂k|k−1 +AkL
s
k(Ckxk + vk − Ckx̂k|k−1)

where x̂k+1|k and ŷk|k−1 are the one-step ahead predicted
state and output, respectively, given by

x̂k+1|k := Akx̂k, ŷk|k−1 := Ckx̂k|k−1,

and

εk+1 = (Ak −AkLskCk)︸ ︷︷ ︸
Āk

εk + [Gk −AkLsk]︸ ︷︷ ︸
Ḡk

[
wk
vk

]
︸ ︷︷ ︸
w̄k

.
(1a)

Assumption 2. The initial state error term ε1 has a Gaus-
sian distribution: ε1 ∼ N (0, P1) with zero mean and
unknown covariance P1.

We define the state space model of innovations as

zk := yk − ŷk|k−1,

hence

zk = Ckεk + vk. (1b)

A necessary and sufficient condition for the optimality of
a Kalman filter is that the innovation sequence {zk}Mk=1 be
white Gaussian noise (Mehra, 1970). However, for a sub-
optimal filter, z1, z2, . . . , zM are correlated with each
other, thus we could produce an auto-covariance matrix of
{zk}Mk=1 that represents the similarity between the original
signal and some time lagged versions of itself.

For any k ∈ {1, . . . ,M}, the auto-covariance of vector zk
with j time-lags is defined as:

C
(1)
j (zk) := E[(zk+j − µk+j)(zk − µk)>]

= E[zk+jz
>
k ]− µk+jµ

>
k

for j = 0, 1, . . . , N − 1, where N is the maximum number
of time-lags and µk+j := E[zk+j ].

Because the state error term εk is a function of ε1

and {w̄k}Mk=1, Assumption 2 ensures that

∀ j, k : µk+j = 0 =⇒ C
(1)
j (zk) = E[zk+jz

>
k ].

In order to minimize the effect of the initial guess uncer-
tainty, let us start from εk0−1, (k0 > 1) and pick a frag-

ment of innovations {zk}k0+Me−N
k=k0

. The auto-covariance
with j time-lags is then given by:

Cj
(
{zk}k0+Me−N

k=k0

)
:=

E
[
zk0+jz

>
k0 · · · zk0+Me−N+jz

>
k0+Me−N

]
,

where Me is the estimation data length such that N �Me

and Me ≤M .

Assumption 3. The state error term εk0−1 has a Gaussian
distribution: εk0−1 ∼ N (0, Pk0−1) with zero mean and
unknown covariance Pk0−1.

The auto-covariance matrix (ACM) of {zk}k0+Me−N
k=k0

can
now be defined as

R :=


C0

(
{zk}k0+Me−N

k=k0

)
...

CN−1

(
{zk}k0+Me−N

k=k0

)
 .

We also define matrix Ri as

Ri := E

 zk0+iz
>
k0+i

...
zk0+i+N−1z

>
k0+i

 , i = 0, . . . ,Me −N,

so that

R = [R0 R1 · · · RMe−N ] .

Note that the auto-covariance matrix R is a function of Q,
R and Pk0−1; an expression for R will be given by (4) in
Section 4.

Next, we define the sample estimate of Ri as
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R̄i :=
1

Mb −N + 1
×

zk0+i . . . zk0+i+Mb−N
zk0+i+1 . . . zk0+i+Mb−N+1

...
. . .

...
zk0+i+N−1 . . . zk0+i+Mb−1

×


z>k0+i

z>k0+i+1
...

z>k0+i+Mb−N


and

R̄ :=
[
R̄0 R̄1 · · · R̄Me−N

]
,

where Mb is the data length for estimating R̄i such that
Me ≤ Mb. Building the matrix R̄ requires the innovation
sequence {zk}k0+Me+Mb−N−1

k=k0
, hence, for fixed k0, Me, Mb

and N , we require M ≥ k0 +Me +Mb −N − 1.

We can now define a least squares optimization problem
to estimate the true covariance:

(P ∗k0−1, Q
∗, R∗) := arg min

P̂k0−1,Q̂,R̂

∥∥∥R(P̂k0−1, Q̂, R̂)− R̄
∥∥∥2

F

s.t. P̂k0−1, Q̂, R̂ � 0. (2)

Compared to time-invariant system models, the estimate
error covariance Pk := E[(xk − x̂k|k−1)(xk − x̂k|k−1)>] in
our model is the solution to a time-varying Riccati equa-
tion and does not reach a steady state value. Therefore, the
state and measurement noise covariance Q and R cannot
be estimated from a Lyapunov equation as in Rajamani
and Rawlings (2007).

4. SOLVING THE OPTIMIZATION PROBLEM

Let us start from εk0−1 and consider the evolution of (1a)

and (1b). The innovation sequence {zk}k0+Me−1
k=k0

can be
shown to be given by

z = Ṽ
(
Ẽεk0−1 + G̃w̃

)
+ ṽ, (3)

where

Ṽ := C̃Ã−1, Ẽ :=

[
Āk0−1

0

]
, G̃ :=

k0+Me−2⊕
k=k0−1

Ḡk,

C̃ :=

k0+Me−1⊕
k=k0

Ck, Ã := InMe
−

 0 0
k0+Me−2⊕
k=k0

Āk 0

 ,
z :=

[
z>k0 z>k0+1 · · · z>k0+Me−2 z>k0+Me−1

]>
,

w̃ :=
[
w̄>k0−1 w̄>k0 · · · w̄>k0+Me−3 w̄>k0+Me−2

]>
,

ṽ :=
[
v>k0 v>k0+1 · · · v>k0+Me−2 v>k0+Me−1

]>
.

It is possible to use the above expressions to show that

R(Pk0−1, Q,R) = Γ
(
IMe−N+1 ⊗ Pk0−1

)
Γ̄>+

Ω
(
INd
⊗Q

)
Ω̄> + Φ

(
INd
⊗R

)
Φ̄>

+ Ψ
(
IMe−N+1 ⊗R

)
,

(4)

where Nd := (Me−N+2)(Me−N+1)
2 and

Γ := S̃F̃ , Γ̄ := S̃dF̃ , Ω := S̃J̃ , Ω̄ := S̃dJ̃ ,
F̃s := ṼẼ , F̃ := IMe−N+1 ⊗ F̃s,

Φ := S̃Ũ , Φ̄ := S̃dŨ , Ψ :=

1p×p(Me−N+1)

P̃Õ

 ,

B̃ := Ṽ
k0+Me−2⊕
k=k0−1

Gk, D̃ := −Ṽ
k0+Me−2⊕
k=k0−1

AkL
s
k,

P̃i := M
p(N−1),pMe

p(i+1)+1 , H̃ := M p,pN
1 ,

J̃i :=
(
M

r(i+1),rMe

1

)>
, J̃ :=

Me−N⊕
i=0

B̃J̃i,

Ũi :=
(
M

p(i+1),pMe

1

)>
, Ũ :=

Me−N⊕
i=0

D̃Ũi,

Õi :=
(
M p,pMe

p+1

)>
, Õ :=

Me−N⊕
i=0

D̃Õi,

S̃i := M pN,pMe

pi+1 , S̃ :=
[
S̃0 S̃1 · · · S̃Me−N

]
,

S̃d :=

Me−N⊕
i=0

H̃S̃i, P̃ :=
[
P̃0 P̃1 · · · P̃Me−N

]
.

In order to fit the problem into a standard linear least-
squares formulation, we must vectorize the matrix R,
which is the column-wise stacking of a matrix into a vector.
Hence, the vectorized matrix (R)s can be expressed as

(R)s = (Γ̄⊗ Γ)I(Me−N+1),n(Pk0−1)s + (Ω̄⊗ Ω)INd,r(Q)s

+
(
(Φ̄⊗ Φ)INd,p + (Ip(Me−N+1) ⊗Ψ)I(Me−N+1),p

)
(R)s.

Consider the dimension and dense structure of matrices Γ̄,
Γ, Ω̄, Ω, Φ̄, Φ and Ψ; calculating the Kronecker product
of these matrices will be extremely slow and require
significant amounts of computer memory. Alternatively,
we could parallelize the computation of each vector (Ri)s
and combine them together to form the vector (R)s. The
vectorized matrix (Ri)s can be expressed as

(Ri)s = (Γ̄i ⊗ Γi)I1,n(Pk0−1)s + (Ω̄i ⊗ Ωi)Ii+1,r

(Q)s + ((Φ̄i ⊗ Φi)Ii+1,p + Ip ⊗Ψi)(R)s,

where

Γi := S̃iF̃s, Γ̄i := H̃Γi, Ωi := S̃iB̃J̃i, Ω̄i := H̃Ωi

Φi := S̃iD̃Ũi, Φ̄i := H̃Φi, Ψi :=

 Ip

P̃iD̃Õi

 .
Let b̄ := (R̄)s. We can now rearrange our original opti-
mization problem (2) into a least-squares problem with

decision variables P̂k0−1, Q̂ and R̂:

min
θ

∥∥∥∥∥∥∥∥∥∥∥∥

 A0

...
AMe−N


︸ ︷︷ ︸

A

(P̂k0−1)ss
(Q̂)ss
(R̂)ss


︸ ︷︷ ︸

θ

−

 b̄0
...

b̄Me−N


︸ ︷︷ ︸

b̄

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(5)

s.t. P̂k0−1, Q̂, R̂ � 0,

where

Ai :=
[
(Γ̄i ⊗ Γi)I1,nDn (Ω̄i ⊗ Ωi)Ii+1,rDr(
(Φ̄i ⊗ Φi)Ii+1,p + Ip ⊗Ψi

)
Dp

]
,

b̄i := (R̄i)s.
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5. PROPERTIES OF ALS ESTIMATE AND
DISCUSSION

In this section, we analyze the properties of the ALS
estimate, followed by a discussion and comparison with the
approach introduced in Rajamani and Rawlings (2009).

Constructing the sequence of sub-optimal filter gains
{Lsk}Mk=1 requires initial guesses of the noise covariance
matrices, Qg and Rg. These can either be chosen to be,
for example

Qg = Ir, Rg = Ip,

or estimated using the output correlation method intro-
duced by Mehra (1972), which does not require prior
estimates of Q, R or Lk.

The correlation between zk and zk+j will keep decreasing
and eventually become uncorrelated as the time-lag j
increases. Hence, the maximum number of time-lags N can
be determined by looking at the plot of the autocorrelation
function of the innovation sequence {zk}Mk=k0

against the
time-lag variable, where for all j > N the correlations
between zk and zk+j are negligible.

Lemma 1. For a stochastic process {zk}k0+Mb−N
k=k0

, the es-
timate of the auto-covariance

Ĉj
(
{zk}k0+Mb−N

k=k0

)
:=

1

Mb −N + 1
×[

k0+Mb−N∑
k=k0

zk+jz
>
k · · ·

k0+2Mb−2N∑
k=k0+Mb−N

zk+jz
>
k

]

is a consistent unbiased estimate 1 of Cj
(
{zk}k0+Mb−N

k=k0

)
,

such that

E[Ĉj ] = Cj ∀ Mb, j,

cov(Ĉj) −→ 0 as Mb −→∞,
and

Ĉj −→ Cj as Mb −→∞.

Proof. The proof of this result can be found in Jenkins
and Watts (1968, p. 174-180). Another way of stating this
fact is that the ensemble average Cj can be estimated

by the time average Ĉj ; this is usually referred to as the
ergodic property (Jenkins and Watts, 1968, p. 222). �

Theorem 1. If the linear least squares problem (2) has
a unique solution, then the ALS noise covariance esti-
mates Q∗ and R∗ are unbiased for all sample sizes and
converges asymptotically to the true covariance matrices
Q and R as Mb →∞.

Proof. A similar proof for LTI systems can be found
in Odelson et al. (2006). Recall the linear least-squares
problem (5):

θ∗ := arg min
θ
‖A θ − b̄‖22.

A necessary and sufficient condition for a unique solution
requires matrix A to be full rank (Lawson and Hanson,

1 An estimate is said to be unbiased if the expected value of the
estimated variable is equal to the true value. If the covariance of an
unbiased estimate tends to zero as the sample size Mb increases, the
estimator is said to be consistent.

1995, p. 36). Hence, the expected value of the estimate of θ̂
is

E[θ∗] =
(
A >A

)−1
A >E[b̄]

=
(
A >A

)−1
A >b (by Lemma 1, E[b̄] = b)

=
(
A >A

)−1
A >A θ = θ.

The covariance of the estimate is

cov(θ∗) =
(
A >A

)−1
A >cov(b̄)A

(
A >A

)−1
.

According to Lemma 1, cov(b̄)→ 0 as Mb →∞, so that

cov(θ∗)→ 0 as Mb →∞.

Therefore, θ∗ is unbiased for all sample sizes and converges
asymptotically to the true θ as Mb →∞. �

Rajamani and Rawlings (2007) provided a different ap-
proach for estimating the noise covariances for time-
varying and nonlinear systems, which is based on the
assumption that

lim
N→∞

(
N∏

k=k0

Āk

)
εk0 = 0. (6)

The advantage of their algorithm is that the number of
decision variables in the objective function is reduced from
three to just two vectorized matrices: (Q)s and (R)s.
Hence, the computational effort of solving the auto-
covariance least square is reduced.

However, for neutrally stable systems, the statement (6)
does not hold. Even if the assumption is true, in order
to remove the term P̂k0−1 from the decision variables, the
computational complexity to ensure(

k0+N∏
k=k0

Āk

)
P̂k0−1

(
k0+N∏
k=k0

Āk

)>
≈ 0

mainly depends on the value of N , dimension and sparsity
of matrices Āk.

6. NONLINEAR SYSTEMS

Consider the following discrete-time nonlinear state space
model:

xk+1 := f(xk) + g(xk)wk
yk := h(xk) + vk

where xk ∈ <n is the state, yk ∈ <p is the measurement,
wk and vk satisfy Assumption 1. If we linearize the
nonlinear functions f(xk), g(xk) and h(xk) around the
current estimate x̂k and predicted state x̂k|k−1, then we
have

Ak :=
∂f(xk)

∂xk

∣∣∣∣
xk=x̂k

, Gk := g(x̂k), (7a)

Ck :=
∂h(xk)

∂xk

∣∣∣∣
xk=x̂k|k−1

. (7b)

Assumption 3 requires the estimation errors {εk}Mk=1 to
be bounded and the expectation of εk to converge to zero
as k increases. For nonlinear state estimation using the
extended Kalman filter (EKF), Reif et al. (1999) states five
conditions for improving the stability and convergence of
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the EKF, including observability, small initial estimation
error, small noise terms and no model error.

Given an appropriate guess of initial state x̂1|0 and noise
covariance matrices Qg and Rg, if Assumption 3 holds for
the EKF, then the true noise covariance matrices Q and R
can be estimated using the time-varying ALS method
introduced in the previous section.

7. NUMERICAL EXAMPLES

7.1 Linear Time-varying System

Consider a neutrally stable linear time-varying system, for
which the evolution of each state follows a random walk
and the output matrix Ck varies with time:

xk+1 :=

[
1 0 0
0 1 0
0 0 1

]
︸ ︷︷ ︸

Ak

xk +

[
1
1
1

]
︸︷︷︸
Gk

wk,

yk := Ckxk + vk,

where xk ∈ <3×1, wk and vk satisfy Assumption 1 and the
time-varying output matrix Ck ∈ <1×3 consists of a pre-
generated irregular sinusoidal wave 2 {ηk}M+2

k=1 , such that

Ck := [ηk+2 ηk+1 ηk] , k = 1, . . . ,M.

We randomly pick an initial state x1 ∼ N (0, I3), then
generate output measurements {yk}5000

k=1 based on noise
covariances 3Q = 4 × 10−3 and R = 5.5 × 10−2. By
choosing an initial state error covariance P1|0 = I3 and
the guessed initial state x̂1|0 = 03,1. The sub-optimal filter

gains {Lsk}Mk=1 and the state error covariance {Pk}Mk=1 can
be obtained from the Kalman filter equations (Humpherys
et al., 2012):

Pk|k−1 := AkPk−1A
>
k +GkQgG

>
k , (8a)

Lsk :=
(
Pk|k−1C

>
k

) (
CkPk|k−1C

>
k +Rg

)−1
, (8b)

Pk := (I − LskCk)Pk|k−1, (8c)

with guessed noise covariances Qg = 1 and Rg = 1.

We re-generate output measurements using different initial
state and noise sequences and repeat the simulation 200
times with k0 = 600, N = 30, Me = 50 and different
values ofMb. Table 1 presents the mean and variance of the
estimated results compared to their true values. Note that,
as Mb increases, the variance of the 200 estimated results
gets smaller and the mean of estimated results becomes
more accurate, which verifies the statement in Theorem 1.

Figure 1 is a scatter plot of 200 estimations of the noise
covariances Q∗ and R∗, as well as the average of all
200 estimations. Figure 2 shows that, in this case, the

eigenvalues of
∏N
k=1 Āk do not go to zero as N increases,

therefore (6) does not hold.

7.2 Nonlinear System

Let us now consider tracking a sinusoidal wave whose
amplitude, phase and frequency follow a random walk:
2 The wave was generated based on the “nonlinear cyclical model”
in Section 3.2.3 of Fusco (2009) with sample period Ts = 0.1 sec and
an average amplitude of 1.5m.
3 The signal to noise ratio (SNR) is 5.03 dB.

Table 1. Noise Covariance Estimation Results

Q Mean of Q∗ Variance of Q∗

True Value 4× 10−3

Mb = 500 4.142× 10−3 3.148× 10−6

Mb = 1000 4.075× 10−3 1.439× 10−6

Mb = 2000 4.026× 10−3 6.201× 10−7

R Mean of R∗ Variance of R∗

True Value 5.5× 10−2

Mb = 500 5.813× 10−2 1.394× 10−5

Mb = 1000 5.646× 10−2 7.344× 10−6

Mb = 2000 5.531× 10−2 3.278× 10−6

2 3 4 5 6
x 10

−3

0.05

0.052

0.054

0.056

0.058

0.06

X: 0.004
Y: 0.055

X: 0.004026
Y: 0.05531

Q*

R
*

True Value

Mean of Estimated Values

Fig. 1. Estimation of Noise Covariances Q∗ and R∗

Fig. 2. Eigenvalues of Matrix
∏N
k=1 Āk as N increases

[
ak+1

bk+1

ck+1

]
︸ ︷︷ ︸
xk+1

:=

{
+ak cos(ckTs) + bk sin(ckTs)
−ak sin(ckTs) + bk cos(ckTs)
+ck︸ ︷︷ ︸

f(xk)

+

wakwbk
wck


︸ ︷︷ ︸
wk

yk := [0.8 −0.5 0]

[
ak
bk
ck

]
︸ ︷︷ ︸

h(xk)

+vk

where Ts = 0.1 sec is the sampling time and wk and vk
satisfy Assumption 1. We randomly pick an initial state
from a uniform distribution, such that
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Table 2. Noise Covariance Estimation Results

True Value Mean Variance

Q(1, 1) 3× 10−4 2.792× 10−4 8.361× 10−9

Q(2, 2) 3× 10−4 2.735× 10−4 1.196× 10−8

Q(3, 3) 2× 10−4 2.380× 10−4 3.771× 10−9

R 1× 10−4 1.039× 10−4 1.750× 10−10
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X: 0.0002735
Y: 0.000238
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Y: 0.0002

Q*(2,2)

Q
*
(
3
,
3
)

True Value

Mean of Estimated Values

Fig. 3. Estimation of Noise Covariance Q∗(2,2) and Q∗(3,3)

x1 :=

x1
1 ∼ U(−1, 1)
x2

1 ∼ U(−1, 1)
x3

1 ∼ U(0.3, π)

 ,
then generate output measurements {yk}5000

k=1 based on noise
covariance matrices 4 :

Q = diag
(
3× 10−4, 3× 10−4, 2× 10−4

)
, R = 1× 10−4.

The initial state error covariance is P1|0 = 0.1×I3 and the
guessed initial state is x̂1|0 = 03,1. The sub-optimal filter

gains {Lsk}Mk=1 and the state error covariance {Pk}Mk=1 are
obtained from the EKF equations (7) and (8) with the
guessed noise covariance matrices Qg = I3 and Rg = 1.

Similar to Example 7.1, we repeat the simulation 200 times
with k0 = 600, N = 50 and Me = 300. Table 2 compares
the mean and variance of the estimated results to their
true values for Mb = 2000. Figures 3 and 4 are scatter
plots of 200 estimates of some components of the noise
covariance matrices Q∗ and R∗. As in Example 7.1, we
have also observed that the covariance of the estimates
decrease as Mb increases.

8. CONCLUSIONS

In this paper, we have developed a noise covariance es-
timation algorithm for time-varying and nonlinear sys-
tems based on a constrained (positive semi-definite) auto-
covariance least-squares method. We used two examples to
investigate the performance of the algorithm and both of
them returned relatively good results. Compared with Ra-
jamani and Rawlings (2007), our method added one more
term into the decision variable during optimization, but
in return can deal with more general models, such as

4 The noise covariances are small, because we assume the irregular
sinusoidal output {yk}5000k=1 changed slowly over time with sampling
frequency 10 Hz and the an average amplitude between 1 and 1.5m.
The signal to noise ratio (SNR) is 31.9 dB.

0 1 2 3 4 5 6
x 10

−4

0.6

0.8

1

1.2

1.4

1.6x 10
−4

X: 0.0002792
Y: 0.0001039

X: 0.0003
Y: 0.0001

Q*(1,1)

R
*

True Value

Mean of Estimated Values

Fig. 4. Estimation of Noise Covariance Q∗(1,1) and R∗

neutrally stable systems. The overall computational time
of constructing and solving the optimization problem can
be significantly reduced by using parallel implementations
and efficient SDP solvers. Future work could include ap-
plying this method in various fields for improving state
estimation and prediction accuracy, such as chemical engi-
neering, ocean wave prediction for wave energy converters
and motion tracking using inertial measurement units.
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