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Abstract: This paper presents a new approach to self-calibration of the robotics hand-eye relations based 
on active vision systems. At the same time, the calibration of the line structured light sensor can be 

accomplished. According to the special designed motion of the camera, the whole calibration process can 

be divided into two steps, including two groups of four linearly independent translations and one pure 

rotation. This method requires no reference object and only needs two characteristic points in the scene. 

Besides, it can accomplish the self-calibration of the camera intrinsic parameters and the rotational matrix 
as a whole, which reduce the computation errors and cost. After verification by our experiments, the 

method is proved to be convenient and rapid with the precision required by the industrial fields with much 

fewer steps of calibration. 



1. INTRODUCTION 

The line structured light sensor has been utilized in many 
industrial fields (Jason et al., 2011). It mainly consists of an 

imaging sensor and a structured-light projector. The imaging 

sensor can catch the distorted pattern of the projected 

structured-light. Then, according to the relative positions 

between the camera and the projector, we can extract the 

three-dimensional information of the surface (Chen et al., 

2012). The calibration of the line structured-light sensor 

includes the calibration of camera intrinsic parameters and 
the light plane. Several methods of calibrating the camera 

intrinsic parameters and the light plane have been already 

presented by (Wang et al., 2007) and (Chen et al., 2012).  

Calibration of the robotics hand-eye system plays a 
significant role in the computer vision. One purpose of 

calibration is to identify the unknown position and orientation 

of the camera with respect to the end of the manipulator. 

However, the motion of the robot’s end effector is considered 

under the robot base coordinate system, while the image data 

are in the camera frame. So, the basic constraints of the 

calibration of the hand-eye vision system has originally been 
discussed by (Shiu and Ahmad, 1989), (Tsai and Lenz, 1989) 

and (Chen, 1991). They have presented ingenious methods to 

solve the transformation between different coordinate 

systems, on which our new method is based. Later the 

solution is optimized by the research work of (Zhuang et al., 

1994), (Dornaika and Horaud, 1998) and (Strobl and 

Hirzinger , 2006). However, because of involving many 

nonlinear equations, the computation of above methods costs 
too much. Then, (Henrik et al., 2006) utilized calibration 

reference to determine the rotation matrix of hand-eye 

relation. However, there are some occasions when the 

reference objects cannot be placed in the scene easily (Ma et 

al., 1996). So, the technique of self-calibration is significant. 

Research work concerned with the active vision systems in 

which the motion of the camera can be controlled, has been 

considered (Hu and Wu, 2002). 

Fig.1 shows that the camera motion can be controlled with 
the motion of the manipulator. That is, the manipulator can 

be controlled to do translational and rotational motions along 

the designed path. In the new method proposed in this paper, 
the calibration of the line structured-light sensor and hand-

eye relations can be achieved in two steps. In this way, our 

method improves the efficiency of the whole process of 

calibration with much fewer steps. Additionally, the self-

calibration of the camera intrinsic parameters and the 

rotational matrix can be accomplished as a whole to reduce 

the computation effort and errors. Furthermore, characteristic 

points, instead of reference object, are easy to be found in any 
common scene. With the continuity of the designed process, 

the method can be utilized in certain industrial fields, where 

the accuracy requirement could be met. 

 

Fig. 1. Schematic diagram of hand-eye vision system 
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2. PRELIMINARIES 

2.1 Coordinate Relations of Hand-eye Vision Systems 

In robotics hand-eye systems, the coordinate relations of 

hand-eye vision systems can be expressed as follows (Wang 

et al., 2007) 

1

1

B H B H B

W H C H C H

u

X R R A v R t t

 
 

    
  

                 (1) 

where  stands for the depth information of target objects 

under the camera coordinate system. The rotation matrix B

HR  

and the translation vector B

Ht  stand for the transformation 

between the robot base coordinate system and the hand 

coordinate system. H

CR , H

Ct stand for the transformation 

between the hand coordinate system and the camera 

coordinate system. 
WX stands for the three-dimensional 

coordinate of the target point under the world coordinate 

system.  ,u v  stands for the image pixel coordinates of the 

target point. All the coordinate systems are shown in Fig.1. 
B

HR , B

Ht ,  ,u v  can be obtained from the controller. 

 

A is the matrix of the camera intrinsic parameters. When 
taking the lens distortion into consideration (Weng et al., 

1992)  

0
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                             (2) 

where  ,  stands for the scale factor of the image plane in 

the direction of ,u v respectively.  is the distortion parameter 

of the two axes of the image plane.  0 0,u v is the image centre. 

2.2 Proposition of Focus of Expansion 

Proposition (Ma et al., 1996): If the camera motion is a pure 
translation, the displacement vectors (the lines in the image 

plane obtained by connecting matched points) in the image 

intersect at a point e , known as the focus of expansion (FOE) 

(Jain et al., 1983), and the vector 1O e  connecting 
1O  (the 

optical center of the camera before the translation) and the 

point e  is parallel to the translation. And we have 
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                     (3) 

and 

1 2O O kc                                      (4) 

where 
1 0k k  .  , ,zc c cx y  are the coordinates of the point e  

under the camera coordinate system.  ,e eu v  is the projection 

of the point e  represented by the image pixel coordinates. 
2O  

represents the optical centre of the camera after the 

translation. c  is the unit vector of the orientation of the 

camera motion. So, 1 2k O O  and 1 1k O e . The geometrical 

relation is shown in Fig.2. 

 
Fig.2. Geometrical relations before and after the camera 
translation. 

Suppose S  is a point in the scene, then 
1S  and 

2S  are the 

projections of S in the two images before and after the 

translation. 

3. CALIBRATION OF ROTATIONAL MATRIX 

Suppose
1HX , 

2HX  are the coordinates of a point S  in the 

scene before and after the translational motion of the 

manipulator, respectively, using the hand coordinate system. 

Similarly,
1CX , 

2CX  are the coordinates of S  in the camera 

coordinate system. Then, according to (1), we have 

1 1

H H

H C C CX R X t  ,                             (5) 

2 2

H H

H C C CX R X t  .                            (6) 

Suppose kb  is the translational vector of the motion, then we 

have 

1 2H Hkb X X  .                                 (7) 

Substituting (5) and (6) into (7) yields 

1 2( )H

C C Ckb R X X  .                         (8) 

Then, according to (4), it equates with the equation 
H

Ckb R kc .                                    (9) 

It is then further equivalent to 

 H

Cb R c                                      (10) 

where ( , , )T

x y zb b b b  and ( , , )T

x y zc c c c . 

Since the camera is rigidly mounted on the end of the 

manipulator, H

CR is constant during the translations. So, after 

three linearly independent translations, we can get  

1 1

2 2

3 3

H

C

H

C

H

C

b R c

b R c

b R c

 







.                                   (11) 

It can be written in the form of multiplication of matrices: 
H

CB R C                                      (12) 

where  1 2 3, ,B b b b  and  1 2 3, ,C c c c , respectively. 

Since the parameters of B and C can be obtained, we have 

1H

CR BC .                                 (13) 
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4. CALIBRATION OF CONSTANT MATRIX 

After multiplying (10) with the coefficient
1k  and substituting 

(3) into (10), we have 

1

1 1 1 1= = =

1

e

H H H H

C C C C c e

u

k b k R a R k c R O e R z A v

 
 

  
  

.            (14) 

It equates with  
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1

e

C

H c e

u

k A R b z v

 
 

  
  

.                            (15) 

Let a constant matrix C

HP A R , then we have  

 
1

1

e

c e

u

k Pb z v

 
 

  
  

.                                 (16) 

Suppose
11 12 13

21 22 23

31 32 33

p p p

P p p p

p p p

 
 

  
  

, considering the matrix P  

and combining equations 14, 15 and 16, we get 

 1 11 2 12 3 13 1 31 2 32 3 33

1 21 2 22 3 23 1 31 2 32 3 33

0

0

i i i i i i i i i

i i i i i i i i i

b p b p b p b u p b u p b u p

b p b p b p b v p b v p b v p

     


     
.          (17) 

Equation (17) proves that we can get eight linear equations of 

the elements belonging to P after four translational motions. 

Then, we can change the form of P  as  
'

1 10

' '

33 33 2 0 2

'
33

0

0 0 1

p ru

P p P p p v r

rp

 



                         

                   (18) 

where , 1,2,3ir i   is the row vector of the C

HR . Since C

HR  is 

 
1

H

CR


, 3r can be obtained. 

 

According to (18), '

33 3 3p p r . Then, we can get that 

'

33 3 3/p r p .  The only solution of the eight linear equations 

can be solved using least square method. In other words, all 

parameters of P can be obtained.  Then, the entity of camera 

intrinsic and rotational matrix has been figured out. To 

complete the calibration of the robotics hand-eye system, we 
only need the solution of the translational vector of the 

system. 

5. CALIBRATION OF NORMAL VECTOR 

Suppose there is a point M  on the intersecting line of the 

light plane and the object surface.  , ,z ,1
T

c c cx y  stands for the 

homogeneous coordinate of M in the camera coordinate 

system.  , ,1
T

m mu v  is the homogeneous image pixel coordinate 

of M .  , ,1
T

m mx y  is the homogeneous coordinate of M  in the 

image plane. The position of M in the space is shown in Fig.1. 

And the relations between its coordinates are shown in Fig.3. 

 

According to (3), we have 

 0
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                               (19) 

and 

1 1

m m

m m

u x

v A y

   
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   
      

                                 (20) 

where E  is a 3 3  identity matrix. 

 

 

Fig.3. Model of relations between different coordinate 

systems 

After one group of translations, the projections of intersecting 

lines of the light plane and the object surface are caught by 

the camera. Since the lines are parallel during the translations, 

their projections intersect at the vanishing point. The point is 

the intersection of these parallel lines and the plane at infinity, 

which can stand for the orientation of the lines (Yang et al., 

2006). 

 
Suppose the equation of the projection is  

0i i ia x b y c                                   (21) 

where 1,2, ,i n   

 

Then, the coordinate  ,m mu v  of the vanishing point is the 

optimal solution of the equation 

 

2

2 2
1

, min
n

i i i
m m

i
i i

a x b y c
f u v

a b

 



 .                     (22) 

Equation (22) can be solved using least squares method. Then, 

according to (19) and (20),  , ,1
T

m mx y  can be obtained, which 

also represents the orientation of the intersecting lines in the 

camera coordinate system. Similarly, we can get the 

orientation vector of the other group of parallel lines in the 
same way after the second group of translations. 

 

Suppose the equation of the light plane in the camera 

coordinate system is  

1 2 3 4 0d X d Y d Z d    .                          (23) 

Since  M is on the plane, then we have 

1 2 3 4z 0c c cd x d y d d    .                         (24) 

Suppose the orientation vectors of the two groups of parallel 

lines obtained above are 1 2,   respectively. The normal 

vector of the light plane is n . Then, we have 

1 2 1 2 3( , , )n d d d    .                           (25) 

 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9349



 

 

    

 

6. CALIBRATION OF TRANSLATIONAL VECTOR 

6.1 Computation of Depth Information 

 1 1, ,1
T

s su v ,  2 2, ,1
T

s su v  are the homogeneous image pixel 

coordinates of S before and after a translational motion. 

 , ,1
T

s sx y  is the homogeneous coordinate of S  in the image 

plane.  1 1 1 1, ,z
T

C c c cX x y  and  2 2 2 2, ,z
T

C c c cX x y  stand for the 

coordinate of S before and after the motion in the camera 

coordinate system. The position of S in the space is shown in 

Fig.2. And the relations between its coordinates are also 

shown in Fig.3. 

 

According to (3) and (4), we have 
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1 1 1
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2 2 2
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y z A v
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    
        

   
       
      

                             (26) 

and 

           1 2C CX X kc                                  (27)  

where A  can be obtained by computing H

CA P R  

Substituting (2) and (26) into (27), we can obtain 

 

 

 

2 2 1 1 1 2 0 3

2 2 1 1 2 0 3

2 1 3
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c s c s
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z v z v k c v c

z z kc

 



   


  


 

.                   (28) 

Equations (28) can be induced to 

   

   

1 2 1 1 2 0 3 3 2

1 2 1 2 0 3 3 2

c s s
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z u u k c c u c c u

z v v k c v c c v

 



    


   

.           (29) 

Then, when
2 1 0s su u  , we have  

 1 2 0 3 3 2

1

2 1

c

s s

k c c u c c u
z

u u

   



.                       (30) 

Or
2 1 0s sv v  , we have 

 2 0 3 3 2

1

2 1

c

s s

k c v c c v
z

v v

  



.                              (31) 

From (30) and (31), we can see that there is corresponding 

relationship between the distance of the translation of the 

camera frame k and the depth information
1cz . Similarly, 

2cz can be solved in the same way. 

6.2 Calibration from Pure Rotation 

Let the end of the manipulator do one pure rotation, as is 

shown in Fig.4. 
5O  is the position of optical centre of the 

camera after the last translation of the manipulator. It is also 

the position of the optical centre before the rotation of the 

manipulator. 
6O stands for that of camera after the rotation. 

  

Then, according to the (5) and (6), we have  

5 5

6 6

C C

C H H H

C C

C H H H

X R X t

X R X t

  


 
.                            (32) 

  

Fig.4. Schematic diagram before and after the rotation 

Since the end of the manipulator do a pure rotation, the 

relationship between 
5HX and

6HX is 

6 5H H HX R X .                                   (33) 

According to (32) and (33), we can get  

 6 5

C H C H C

c H H C c H H C HX R R R X E R R R t             (34) 

where C

HR has already been figured out and 
HR can be read 

from the controller. Equation (34) shows that the motion of 
the camera coordinate system can be divided into two parts 

comprised of translation and rotation. 

 

Then, let the camera coordinate system do an imaginary 

rotation around
6O , which is shown in Fig.5. 

7O is the optical 

centre of the camera after the imaginary rotation, which is 

actually on the same position of 
6O . 

 

Fig.5. Schematic diagram before and after the imaginary 
rotation 

After the imaginary rotation, the orientation of all the axes of 

the camera coordinate system should be parallel with that 

before the pure rotation of the manipulator. And if we let  
1

7 6

C H

C H H C CX R R R X                             (35) 

where 
3CX stands for the coordinates of S in the camera 

coordinate system after the imaginary rotation, we can 

substitute (34) into (35) 

 7 5

C H C

C C H H C HX X R R R E t   .                  (36) 

This equation shows that 
1CX and 

3CX can be treated as the 

coordinates of S before and after a translational motion. 

 

According to (3), we have 

7 7

1

7 7 7

7 1

c s

c c s

c

x u

y z A v

z



   
   

   
      

.                            (37) 
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Substituting (37) and (26) into (35) yields 

7 6

1 1

7 7 6 6

1 1

s s

C H

c s c H H C s

u u

z v z A R R R A v 

   
   

   
      

.                    (38) 

Let
7 6/c cg z z , and matrix

11 12 13

1 1

21 22 23

31 32 33

C H

H H C

g g g

G g g g A R R R A

g g g

 

 
 

  
  

 . 

All the parameters of G can be solved according to the 

previous content in the paper. Then we have 

 

 

7 11 6 12 6 13

7 21 6 22 6 23

31 32 33

s s s

s s s

u g u g v g g

v g u g v g g

g g g g

  


  


  

.                      (39) 

 5 5,s su v ,  6 6,s su v are two projections of the same point S  in 

the image pixel plane, whose values can be obtained from the 

controller. By substituting  6 6,s su v into (39), we can get the 

imaginary projection  7 7,s su v . As is stated above, 

 5 5,s su v and  7 7,s su v can be treated as two coordinates before 

and after an imaginary translational motion.  Suppose d is the 

unit orientation vector of the motion, which can be computed 

by the two coordinates.  

 

Then, according to (4), we have  

5 7 2O O k d .                                   (40) 

Since this is an imaginary translation, we have 

5 7 7 5C CO O X X  .                              (41) 

Substituting (40) and (36) into (41) yields 

 2

C H C

H H C Hk d R R R E t  ,                      (42) 

from which we can get  

 
1

2

C C H

H H H Ct k R R R E d


  .                     (43) 

According to (40) and (41), 
2k can be solved as follows 

When
1 2 0 3 3 2 0d d u d d u     , 

 
 

5 7 5

2

1 2 0 3 3 7

c s sz u u
k

d d u d d u 




  
,                    (44) 

or 

         
 

 
5 7 5

2

2 0 3 3 7

c s sz v v
k

d v d d v




 
                        (45) 

where 
5cz  can be obtained after the last translational motion 

using (30) and (31). 

7. IMPLEMENTATION AND ANALYSIS 

Our method has been verified by experiments with actual 

image data. We utilize the DENSO VP-6242E/GM six-axis 
robot. The positioning accuracy of this kind robot is 0.02 

millimetres (mm). There is a camera (resolution 640 480 ) 

with the computer lens mounted on the end of the 

manipulator. Its focal length is 8mm. The manipulator has 6 
degrees of freedom, which allows us to control its end to 

move along any direction. The motion parameters can be read 

from the controller. 

7.1 Experiments 

After four translational motions, we can obtain the 
coordinates of four points as the focus of expansion (FOE). 

Then, we can compute the orientation vectors of the four 

translational motions respectively using the coordinates read 

from the controller before and after the translations.  

After three translations, we can get the rotational matrix 
directly 

0.9996 0.0278 0.0142

0.0218 0.9997 0.0240

0.0089 0.0241 0.9997

H

CR

  
 

    
  

. 

After four translations, the constant matrix and camera 

intrinsic parameters matrix can be solved as 

1400.5 2.7 282.5

39.2 1399.5 205.9

0 0 1

P

 
 

  
  

 and 
1413.46 9.7941 285.565

0 1425.20 236.27

0 0 1

A

 
 

  
  

. 

 

After the second group of translations, the camera can catch 

two groups of projections of parallel intersecting lines of the 
light plane and object surface. We can compute the 

coordinates of the two vanishing points in the image pixel 

plane and in the camera coordinate system respectively. Then, 

we can get the normal vector of the light plane is  

 0.1197 8.8011 1.8562
T

n   . 

Therefore, we can get the depth information of the light 

plane
4 598.7141d  . Finally, we can obtain the equation of the 

light plane is 10.0002 0.0147 0.0031 1 0X Y Z    . 
 

According to our proposed method, the translational vector of 

the hand-eye vision system can be obtained after the rotation 

as  

 4.9364 103.3236 103.1672H

C

T
t   . 

 

Table 1. Comparison of the actual and 

computed results 

 The computed values The actual values  

S  x axis y axis z axis x axis y axis z axis 
1 301.08 6.2873 -0.16 301.08 6.2873 -0.16 

2 310.44 7.02 0.23 310.74 6.80 -0.16 

3 325.99 7.33 0.22 325.91 7.18 -0.16 

4 341.03 8.42 0.23 340.82 8.14 -0.16 

5 341.44 -11.77 0.01 341.71 -11.95 -0.16 

6 327.47 -12.52 0.23 327.08 -12.59 -0.16 

7 312.06 -13.83 -0.51 311.68 -13.46 -0.16 

8 313.04 -33.56 -0.54 312.72 -33.65 -0.16 

9 328.11 -32.39 0.02 327.51 -32.62 -0.16 

10 342.49 -32.27 0.07 342.87 -31.98 -0.16 

11 332.34 -26.13 46.41 333.49 -25.94 46.57 

12 328.88 -8.86 33.61 328.57 -8.50 33.26 

13 324.13 7.52 23.47 324.53 7.91 23.07 

14 320.79 23.63 12.24 320.90 24.03 11.84 

15 312.46 40.24 1.94 312.82 40.63 1.76 

 

Since the positioning accuracy of the robot is 0.02mm, the 

robot can get the standard values of the coordinates of these 

points by touching them. To verify our method, we fix a 
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workpiece on the end of the manipulator. Then, we can get 

the standard coordinates by controlling the end of the 

workpiece to touch the points. The bias correction of the end 

of the workpiece is  6.1335 15.4984 286.7479st    . Then, we 

can get the actual values and the computed ones of the 
coordinates, which are shown in Table1. The unit is 

millimetre. 
1 10~S S  are the coordinates of two-dimensional 

text data of the characteristic points. 
11 15~S S are the three-

dimensional ones. 

7.2 Performance Evaluation and Comparison 

Above all, our method enhances the efficiency of the whole 

process of the calibration and reduces its computation effort 

and errors. 
a. We only need three linearly independent translational 

motions to get the rotation matrix, which requires one 

fewer translation than (Wang et al., 2007) did. Therefore, 

after we obtain the constant matrix, we can get the matrix 

of the camera intrinsic parameters  more easily. 

b. After the three translations stated above, we can also figure 

out the depth information without anther two translations 

along the direction of the normal vector of the light plane, 
which are required by (Chen et al., 2012). 

c. Combining a and b, we can make the calibration of line 

structured light much faster. 

d. The method is able to obtain the rotation matrix and the 

translational vector with two groups of translations and 

one pure rotation. However, the fastest process presented 

by (Wang et al., 2007), needs four groups of translations 

and two rotations.  That is, we can accomplish the 
calibration of hand-eye relation with much fewer steps. 

 

Additionally, the continuity of the whole process of the 

calibration enables the method to be applied in many 

industrial fields. For example, it can be utilized for the 

realization of trajectory tracking of robot manipulators 

guided by laser vision.  From Table1, we can see that the 

maximal error between the actual and computed values from 

1S  to 
15S is 0.40mm. Since the accuracy requirement in this 

industrial field is that the maximal error should be no more 

than  0.4mm (Yu and He, 1996), our method can meet the 

requirement to help accomplish the whole process of 

positioning, tracking and welding of the weld seam 

automatically. 
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