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Abstract: This paper considers the problem of solving parameter-dependent Riccati equations. In this 
paper, a tractable iterative scheme involving mainly additions and multiplications is developed for 
finding solutions to arbitrary accuracy. It is first presented in the parameter-independent case and then 
extended to the parametric case. It hinges upon two results: (i) a palindromic quadratic polynomial matrix 
characterization of the matrix sign and square root functions. (ii) a particular representation of parameter-
dependent matrices with negative and positive power series with respect to parameters. Several numerical 
examples are given throughout the paper to prove the validity of the proposed results. 
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1. INTRODUCTION 

Parameter-dependent algebraic Riccati equation (ARE) 
often arises in the design of controllers such as, for instance, 
gain scheduling control (Apkarian et al., 1995), (Stilwell et 
al., 1999), trade-off dependent control (Dinh et al., 2003), 
(Dinh et al., 2005). The main goal of this paper is to propose 
a computationally tractable algorithm for finding solutions to 
such problems, to arbitrary accuracy, based on the matrix 
sign or matrix square root functions framework (see for 
instance (Roberts, 1980), (Kenney et al., 1995), (Higham, 
1997) and references therein).  
It is worthwhile to note that algorithms based on the matrix 
sign function have proven to be particularly attractive for the 
solution of large-scale ARE problems in the parameter-
independent case. Several results, Supporting this statement, 
are available in the literature for linear continuous-time 
(Kenney et al., 1989), (Kenney et al., 1992), (Kenney et al., 
1995), (Quintana-Orti et al., 1998), (Higham, 2008) and 
discrete-time (Fabbender et al., 1999) invariant systems. 
Furthermore, some recent works try to extend these results to 
the parameter dependent case (Rice et al., 2010), (Guerra et 
al., 2012). Specifically, the method developed in (Rice et al., 
2010), consists in using the main iteration for the matrix sign 
function that is Newton’s method associated to a linear 
fractional transformation (LFT) parametric dependence. 
However, an LFT order reduction is needed at each step. If it 
can be performed efficiently in the single parameter case 
using standard linear time-invariant state-space model order 
reduction, it is known to be a very hard problem in the multi-
parametric case. In (Guerra et al., 2012) an alternative 
method, seeking for exact solution of the ARE problem, is 
proposed based on the matrix sign function integral 
definition. Unfortunately, it seems to be time consuming in 
the multi-parametric case.  

The proposed approach, hereinafter, does not rely on the 
Newton recursion for the matrix sign function. It proposes 
instead a “multiplication rich” (i.e. with only one inverse) 
scheme that converges to a rational matrix approximation of 
the ARE solution. On the one hand it gives a new insight of 
using the matrix sign (or matrix square root) for solving 
ARE’s in the parameter-independent case, and on the other 
hand it is easily generalized to the multi-parametric case.  
First, the application of the matrix sign to the solution of the 
standard ARE’s and also the link between the matrix square 
root and a particular ARE (Incertis Carro et al., 1977) (i.e. 
when the system has only real poles and under some 
restrictions on the output matrix) are outlined. Next, relying 
on a quite recent palindromic quadratic polynomial matrix 
characterization of the matrix sign and square root functions 
(see (Iannazzo et al., 2011)), a new iterative scheme is 
proposed by use of Laurent series expansion of LTI systems. 
Then an extension to ARE problems with coefficient matrices 
in a class of parameter-dependent matrices with negative and 
positive power series with respect to parameters is described.  
The remainder of this paper is organized as follows. Section 
II recalls some preliminary results on the matrix sign and 
square root functions and their applications to the solution of 
some ARE problems. Section III is devoted to the main 
results of this paper. These results will be presented in the 
parameter-independent case before a generalization to the 
multi-parametric case in section IV. All through the paper, 
some examples are presented in order to demonstrate the 
efficiency of the proposed approach. 
Notations: Hereafter ⊗  denotes the Kronecker product of 

matrices. ( )Z θ  denotes matrices of monomials (with 

negative and positive power series) in θ . ( )Zρ  denotes the 

spectral radius of matrix Z . The matrix nI  is the identity 

matrix of dimension n n× . Z  is any subordinate matrix 
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norm. *ℂ denotes the union of the open right-half ( +ℂ ) and 

the open left-half ( −ℂ ) complex plane. Finally, the form 
p

k

 
 
 

 

with ,  p k∈ ∈ℕ ℕ , is the binomial coefficient.  

2. PRELIMINARIES 

In this section, we introduce some preliminary definitions and 
results that are used extensively in the sequel.   

2.1  The matrix sign and square root functions 

Let us introduce the matrix sign function developed in 
(Roberts, 1980). It is well-known that the sign function is 
defined for *z ∈ℂ  by: 

 
( )
( )

1 ,       if Re 0
( )

1,      if Re 0

z
sign z

z

 >= − <
 (1) 

If ( )Re 0z =  then ( )sign z  is undefined. By analogy, the 

matrix sign function is restricted to square matrices with no 
eigenvalues on the imaginary axis. Let the matrix n nZ ×∈ℝ  
have a Jordan canonical form that is: 1  Z T J T −≜  with 

1 2( , )J diag J J=  where the square matrices 1J  and 2J  have 

eigenvalues respectively in −ℂ  and +ℂ . Then the sign of the 
matrix n nZ ×∈ℝ  can be defined as: 

 ( ) 1

2

1
0

0

J

J

I
sign Z T T

I
−

− 
 
  

≜  (2) 

where 
1JI  and 

2JI  are identity matrices of the same 

dimensions as 1J  and 2J  respectively. This definition leads 

to some easily verified properties of ( )S sign Z= :  

(P1) 2
nS I= . 

(P2) S is diagonalizable with eigenvalues 1± . 
(P3) SZ ZS= . 
(P4) if Z is real,  is realS . 

(P5) eigenvalues of SZ belong to *+ℂ . 
Based on property (P1) stated above we are led to an iterative 
method to calculate the matrix sign called Newton iterations 
(Roberts, 1980), (Kenney et al., 1989): 

 ( )
( )

0

1
1

1
,  1, 2,3,

2
lim

k k k

k
k

Z Z

Z Z Z k

sign Z Z

−
+

→∞

=

= + =

=

…  (3) 

Another closed method is the Newton-Shultz (N-S) iterations 
scheme that is multiplication rich and is presented as follows: 

 ( )
( )

0

2
1

1
3 ,  1,2,3,

2
lim

k k n k

k
k

Z Z

Z Z I Z k

sign Z Z

+

→∞

=

= − =

=

…  (4) 

Theorem 1: (Convergence of N-S iterations) 
Let n nZ ×∈ℂ  have no pure eigenvalues on the imaginary 
axis.   

 ( )2If 1 then  as kI Z Z sign Z k− < → → ∞  (5) 

and 
22 2

k

kI Z I Z− < − .  

Proof:  see  (Kenney et al., 1992).  
Remark 1: Theorem 1 describes a local convergence of the 
N-S iteration. 
Another concise definition of the sign of Z is given by 
(Kenney et al., 1989) and recalled hereafter. 
Lemma 1:  
Let n nZ ×∈ℂ have no eigenvalues on the imaginary axis.   

 ( ) ( ) 1 22sign Z Z Z
−

=  (6) 

Proof: Suppose that Z SN=  with ( )S sign Z= . Property 

(P1) leads to 1N S Z SZ−= = . As Z  commutes with S  

according to property (P3), 2 1 1 2N SZS Z ZSS Z Z− −= = = . 

Finally, using (P5) the principal square root of ( )1 22N Z=  

exists and (6) is verified. 
As for the matrix sign function, let us recall the matrix square 
root Newton-Shulz (SRN-S) iterations (see (Higham, 1997)). 
For this aim, consider n nZ ×∈ℂ  a matrix with no nonpositive 
real eigenvalues. Note that: 

 

1

2

1

2

0 0
,   

0
0

n n

n

Z Z
sign Z

I
Z

×
+

−

 
    = ∈    
     

ℂ  (7) 

Thus, the SRN-S scheme is given by:  

 ( )

( )

0 0

1

1

 and 

1
3  ,  1,2,3,

2
1

3
2

n

k k n k k

k n k k k

Y Z W I

Y Y I W Y k

W I W Y W

+

+


 = =

 = − =

 = −

…  (8) 

with  
1 1

2 2lim  and limk k
k k

Y Z W Z
−

→∞ →∞
= = .   

Theorem 2: (Convergence of N-S iterations) 
Let  n nZ ×∈ℂ  a matrix with no nonpositive real eigenvalues.   

1

2

1
2

0 0 0
If 1 then  as 

0 0
0

n k

n k

I Z Y Z
k

I Z W
Z

−

 
−     < → → ∞     −      

 (9) 

Proof:  Obvious from Theorem 1.  

2.2  Application to some AREs 

Two different AREs are alternately considered in this paper. 
The first one is a standard ARE of the form  

 1 0T T TA X XA XBR B X C C−+ − + =  (10) 

with the coefficient matrices n nA ×∈ℝ , n mB ×∈ℝ , 
p nC ×∈ℝ and m mR ×∈ℝ . We assume that:  

(A1) R  is positive definite,  
(A2) ( ),A B  is stabilizable 

(A3) ( ),A C  is detectable.  
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Let us also define, as usual, the associated Hamiltonian 
matrix: 

 
1

2 2
T

n n

T

A BR B
H

Q A

−
× −

= ∈ − − 
ℝ  (11) 

According to the assumptions (A2)-(A3), H  has no 
imaginary axis eigenvalues. The following result, due to 
(Roberts, 1980), shows the application of the matrix sign to 
the solution of ARE (10).  
Theorem 3: (A matrix sign based solution to the ARE)  

Let ( ) 11 12

21 22

S S
sign H

S S

 
=  
 

. Then X , the unique symmetric 

positive semi-definite stabilizing solution of ARE (10) is a 
solution of 

 12 11

22 21

n

n

S S I
X

S I S

+   
= −   +   

 (12) 

Proof:  Can be found for instance in (Roberts, 1980). 
 
Moreover, a subclass of the ARE problem given by (10) will 
also be considered in this paper. This problem, first 
introduced in (Jones, 1976) and extended in (Incertis Carro et 
al., 1977), concerns systems with real poles under the 
following constraints on the output matrix C :  

(A4) C  is invertible  

(A5) ( ).TC C A  is a symmetric matrix 

and will be denoted here (CARE). According to the results in 
(Incertis Carro et al., 1977), the solution to the CARE 
problem is given by 

 ( )( ) 11 21 2 1 1T T TX C CBR B C CA C CAC C
−

− − −= + −  (13) 

which obviously links the solution of this constrained 
problem to the positive definite square root matrix of  

( )1 2 1T TCBR B C CA C− −+ . Interested readers can refer to 

(Incertis Carro et al., 1977) for more details. 

Remark 2: The solution of the standard ARE problem 
implies the computation of the matrix sign of a 2 2n n×  
matrix. While for the CARE problem the solution is linked to 
the square matrix of only a n n×  matrix.       

3. THE PARAMETER-INDEPENDENT ARE AND CARE 
PROBLEMS 

In this section, a new method is proposed to solve the ARE 
and CARE problems with parameter-independent coefficients 
matrices. For this aim, let us first define a palindromic 
Laurent polynomial matrix as: 

 ( ) 1, ,L z P Q Pz Q Pz
∆ −= + +  (14) 

with ,z ∈ℂ n nP ×∈ℝ and n nQ ×∈ℝ .  

Lemma 2: (Iannazzo et al., 2011) 
The Laurent matrix polynomial (14) is invertible in an 

open annulus containing the unit circle if and only if the 
matrix 1M Q P−=  does not have real eigenvalues of modulus 

greater than or equal to ½. Moreover, this polynomial is 
invertible for any z ∈ℂ  such that 1r z r< < , with:  

 ( )( ) 11 222 4r M I I Mρ
− = − + − 

 
 (15) 

and the inverse ( ) 1
, ,

i i
ii

L z P Q F z
=+∞∆−

=−∞
=∑  is such that 0F  is 

given by: 

 ( )
1

2 12
0 4F I M Q

− −= −  (16) 

Proof: see Lemma 7 in (Iannazzo et al., 2011). 

3.1  New computation method for the matrix sign 

One of the contributions of this paper is to present a rational 
matrix approximation of the matrix sign by use of a new 
method of computing the constant coefficient matrix 0F  

given by (16).  
Theorem 4: (A new matrix sign characterization) 
Let n nZ ×∈ℝ  be a matrix with no imaginary axis eigenvalues 

such that ( )( )122 1n nr I Z Iρ
−

= + − < , then the matrix sign 

of Z  is given by:   

 

( ) ( )

( )( )

12

212
2

1

2

2 1
           2

2

n

l

n n nl
l

sign Z I Z Z

l
I I Z I

l

−

∞ −

=

= + ⋅

  
+ + −  

  
∑

 (17) 

Proof: Let us first consider ( ) ( )1 11 1
, ,
4 2

L z Z Z Z Z− − − + 
 

 

and the following change of variable:  

 1 1
,  , 0, 1z z z z r z r

z
− = + ∈ ≠ < <ɶ ℂ  (18) 

Note that if 1r <  then zɶ  exist. Hence, according to (14) 

( ) ( ) ( ) ( )1 1 1 1 11 1 1 1
, ,
4 2 4 2

L z Z Z Z Z Z Z z Z Z− − − − − − + = − + + 
 
ɶ ɶ  (19) 

Thus, the inverse of the Laurent polynomial matrix 

( ) ( ) ( )1 11 1
, ,
4 2

L z L z Z Z Z Z
∆ − − = − + 

 
ɶ ɶ  can be expressed as a 

proper transfer function with a state-space representation of 
the form 

 ( )( ) ( )1 1

L L n L LL z D C zI A B
− −= + −ɶ ɶ  (20) 

Using the well-known Laurent series expansion of (20) leads 
to 

 ( )( ) 1

0 0
1 1

1
k

k
k k

k k

L z F F z F F z
z

−∞ ∞− −

= =

 = + = + + 
 

∑ ∑ɶ ɶ ɶ ɶɶ ɶ  (21) 

where 0 LF D=ɶ  and , 0,1,k
k L L LF C A B k= =ɶ …  are the Markov 

parameters. Besides, according to Theorem 8 in (Iannazzo et 
al., 2011), for the following particular choice of the pair of 

matrices ( ),P Q : ( ) ( )1 11 1
 and 

4 2
P Z Z Q Z Z− −= − = + , the 
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constant coefficient matrix 0F  given by (16) is the matrix 

sign of Z that is 

 ( ) 2
0 0 2

1

l
l l

l

sign Z F F C F
∞

=

= = +∑ɶ ɶ  (22) 

Finally, noting that  ( ) ( )12 1 2L L n nA B I Z I
−

= = − + +  and 

( ) 12
0 2L L nC D F I Z Z

−
= = = +ɶ , it is easy to see that (17) 

holds.      
 
In the sequel the following matrix: 

( ) ( )( )21 12 2
2

1

2 1
2 . 2

2

q l

q n n nl
l

l
Z I Z Z I I Z I

l

− −

=

  = + + + −  
  

∑ (23) 

will denote the thq  rational matrix approximation of 

( )sign Z .  

Remark 3: Note that (17)  involves only one matrix inverse 

( ) 12I Z
−

+ . 

Remark 4: Note also that a scheme using a rational 
approximation in the initialization stages of the iteration and 
then switching to a N-S procedure in the final iterations will 
be particularly pertinent when computing the matrix sign of a 
parameter dependant matrix.  
Hereafter, a new algorithm for matrix sign computation is 
proposed. This algorithm needs the computation of only one 

matrix inverse ( ) 12I Z
−

+  at the initialization step.  

Algorithm 1: Given a matrix n nZ ×∈ℝ , with no imaginary 

axis eigenvalues, such that ( )( )122 1n nI Z Iρ
−

+ − <  and a 

tolerance ε  for testing convergence.  
1  0X Z= , 0k = , 0 1ε< << . 

2  while  2 1n kI X− ≥ ,  

3             1,   k kk k X Z= + = , ( kZ  is given by (23)) 

4  end 

5  while ( )1k k kX X X ε−− >  

6           ( )2
1

1
3

2k k n kX X I X+ = − , 1k k= +   

7  end 
8  ( ) ksign Z X= . 

Remark 5: Note that a scaling step can be added to 
Algorithm 1 and is omitted here for brevity. Moreover, a 
convergence test more suitable for N-S iterations can be used 
instead of the test given in line 6.  
 
Furthermore, it is important to note that a rational matrix 
approximation (23) with a small number q  is needed so that 

the condition 2 1n kI X− <  holds which allows switching to 

N-S iterations. This was observed on a large number of 
examples such as those described in Example 1 and Example 
2.  
Example 1: This example is borrowed from (Koç et al., 
1994) and uses some matrices proposed, for instance, in 
(Higham, 1991). Let TZ UDU= , where 

( ), ,3, ,D randsvd n kl kuκ= , (see (Higham, 2002) for details 

on “randsvd” function), is a ( ),kl ku  banded random matrix, 

with geometrically distributed singular values. U  is an 
arbitrary unitary matrix. We choose a condition number 

100κ =  and equal lower and upper bandwidth of 2,  4 and 8  

for matrix dimension 4,  8 and 16n = , respectively. A 

tolerance 1010ε −=  is considered. Algorithm 1 is tested in 
comparison to Newton’s method and Table 1 summarizes the 
obtained results. 

Table 1.  Results for Example 1 

 Algorithm 1 (§3) Newton alg. 

n 
Number q  of the 

rational approximation 
Number of 
N-S steps 

Number of 
Newton steps 

4 1 5 6 

8 2 5 7 
16 2 6 9 

 
Example 2: This example is from (Kenney et al., 1992a). Let 

( )1, , n n
nZ diag Tλ λ ×= + ∈… ℝ  with iλ  randomly and 

uniformly distributed in [ ]10,10−  and T  is strictly upper 

triangular with entries uniformly distributed in [ ]1,1− . 

Algorithm 1 is tested again in comparison to Newton’s 
method with 1010ε −= . Table 2 summarizes the obtained 
results. 

Table 2.  Results for Example 2 

 Algorithm 1 (§3) Newton alg. 

n 
Number q  of the 

rational approximation 
Number of 
N-S steps 

Number of 
Newton steps 

4 1 5 7 

8 1 6 8 
16 2 6 9 

 
All the numerical example tested in Example 1 and Example 

2 verify the condition ( )( )122 1n nI Z Iρ
−

+ − < . 

These examples show that Algorithm 1 lead to a solution, 
with an arbitrary accuracy, after approximately the same 
number of iterations as the Newton’s method using only one 
matrix inverse.  
Example 3: Consider the ARE problem of the form (10) with 
the following data: 

 [ ]
3 1 4 0

1 2 5 ,  0 , 1 2 0 ,  1

1 3 2 1

A B C R

   
   = − = = =   
   − −   

 

The associated Hamiltonian matrix H has no eigenvalues on 

the imaginary axis and verifies ( )( )12
6 62 1I H Iρ

−
+ − < . 

Applying Algorithm 1, the first rational approximation (given 
by (24) with 1q = )  of ( )sign H  is found to be  
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1

0.720 0.479 0.135 0.017 0.037 0.022

0.101 0.162 0.578 0.037 0.150 0.053

0.083 0.406 0.193 0.022 0.053 0.029

0.450 0.065 0.493 0.720 0.101 0.083

0.065 0.010 0.089 0.479 0.162 0.406

0.493 0.089 0.766 0.135 0.578 0.1

Z

− − −
− −

− −
=

− − − − −
− − −

− − − − 93

 
 
 
 
 
 
 
 
  

 

and verifies 2
6 1 2

0.989 1I Z− = < . 8 iterations of the N-S 

steps (line 5 of Algorithm 1) lead to 

( )

0.996 0.313 0.566 0.032 0.053 0.038

0.008 0.390 1.083 0.053 0.148 0.049

0.026 0.725 0.370 0.038 0.049 0.131

0.532 0.210 0.402 0.996 0.008 0.026

0.210 0.342 0.013 0.313 0.390 0.725

0.402 0.013 0.836 0.566 1

sign H

− − −
− − −
− − −

=
− − − −
− − − − −
− − − − − .083 0.370

 
 
 
 
 
 
 
 
  

 

with the convergence tolerance 1010ε −= . Finally, the 
approximate positive solution of the ARE (10) is found to be 

207.31 63.151 36.043

63.151 31.969 0.817

36.043 0.817 14.857

X

− 
 = − − 
 − 

ɶ . 

3.2  A new computation method for the square root matrix 

Following the lines of §III.A, a new rational approximation of 
the matrix square root of a given matrix Z  is presented 
hereafter.  

Theorem 5: (A new matrix square root characterization) 
Let n nZ ×∈ℝ  be a matrix with no nonpositive real eigenvalue 

such that ( )( )1
2 1n nZ I Z Iρ −+ − < , then a matrix square root 

of Z  is given by:   

( )( ) ( )
21 11 2

2
1

2 1
2 2 .

2

q l

n n n nl
l

l
Z I Z I Z I Z I Z

l
− −

=

  
= + + − +  

  
∑ (24) 

Proof: Similarity to the proof of Theorem 3 and using the 

Laurent polynomial  ( ) ( )1 11 1
, ,
4 2n nL z I Z I Z− − − + 

 
ɶ  and the 

following matrices ( ) ( )11 1 2L L n nA C I Z I
−−= = + −  and 

( ) 112L L nB D I Z
−−= = + .  

Furthermore, the following matrix will denotes, in the sequel, 
the thq  rational approximation of 1 2Z  

( )( ) ( )
21 1

2
1

2 1
2 2 .

2

q l
sr
q n n n nl

l

l
Z I Z I Z I Z I Z

l
− −

=

  
= + + − +  

  
∑ (25) 

Algorithm 2: Given a matrix n nZ ×∈ℝ  with no nonpositive 

real eigenvalue such that ( )( )1
2 1n nZ I Z Iρ −+ − <  and a 

tolerance ε  for testing convergence.  

1   0X Z= , 0 nW I= , 0k = , 0 1ε< << . 

2    while 
0

1
0

k n

k n

X I

X I

−  ≥ − 
 

3        1k k= + , sr
k kX Z= ,   ( sr

kZ  is given by (25)) 

4    end 

5    while ( )1k k kX X X ε−− >  

6  
( )

( )

1

1

1
3

2
1

3
2

k k n k k

k n k k k

X X I W X

W I W X W

+

+

 = −

 = −


, 1
0k kW X X −= ,  1k k= +       

7   end 
8  1 2

kZ X= . 

Example 4: Consider the CARE problem with the following 
data 

2 1 5 0 1 1 0

1 5 3 ,  0 , 0 1 0 ,  1

2 1 1 1 0 0 1

A B C R

−     
     = − = = =     
     −     

 (26) 

It is easy to see that this example verifies the assumptions 
(A3)-(A5). Applying Algorithm 2, the first rational 
approximation (given by (24) with 1q = )  of 

( )1 21 2 1T TCBR B C CA C− −+  is found to be 

1

2.484 0.131 0.247

0.131 2.587 0.348

0.247 0.348 2.262

srZ

 
 = − 
 − 

 

 with 1 3 2
0.773 1srZ I− = < . Thence, the condition to switch 

to the N-S iterations is verified. After 8 N-S steps we obtain: 

8

3.654 0.261 0.763

0.261 4.837 1.594

0.763 1.594 3.447

X

 
 = − 
 − 

 with the following 

convergence tolerance 1010ε −= . Then, we found the 
approximate solution of the CARE problem given by:  

( ) 11
8

1850.5 3686.2 119.57

3686.2 7378.9 258.72

119.57 258.72 19.937

TX C X CAC C
−−

− 
 = − = − 
 − − 

ɶ . 

4.  THE PARAMETER-DEPENDENT ARE AND CARE 
PROBLEMS 

In this section, the coefficient matrices of the ARE and the 
CARE problems are supposed to belong to the following 
class of parameter dependent matrices: 

 ( ) ( ) n n
nZ Z Iθ θ ×⊗ ∈≜ ℝ  (27) 

with   n nwZ
γ×∈ ℝ , 1   

T wγ

γθ θ θ = ⊗ ⊗ ∈ ⋯ ℝ  and 

[ ]1 11   , 1,
Tg h w

k k k k k kθ θ θ θ θ γ− − = ∈ ∀ ∈ ⋯ ⋯ ℝ .  

In the sequel, ( )Z θ  is supposed to be non singular. Basic 

arithmetic over the class of parameter-dependent matrices 
introduced here follows directly according to the proposed 
definition (27) and is summarized in the following lemma.  

Lemma 3: Given ( ) ( ) n n
nZ Z Iθ θ ×= ⊗ ∈ℝ , 

( ) ( ) n n
nV V Iθ θ ×= ⊗ ∈ℝ , a partition of Z  given by  

1 ,wZ Z Z =  ⋯  [ ]1,
n n

i wZ ×
∈ ∈ℝ  and 1

T

γθ θ θ = ⊗ ⊗ ⋯  
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then the sum ( ) ( )Z Vθ θ+ , the product ( ) ( )Z Vθ θ  and the 

power of ( )Z θ  can be represented by: 

 ( ) ( ) ( )( )nZ V Z V Iθ θ θ+ = + ⊗  (28) 

 ( ) ( ) ( ) ( )( )nm
Z V Z I V Iγθ θ θ θ⋅ = ⊗ ⊗ ⊗  (29) 

 ( ) ( )
1

1

( ) j

l
l

l nw
j

Z Z I Z Iθ θ
−

=

 
= ⊗ ⊗ 

 
∏  (30) 

with l
l

θ θ θ θ⊗ ⊗ ⊗≜ …�		
		� .  

Remark 6: Equations (28), (29) and (30) lead to simple 
computations on some constant matrices.  
However, the inverse of ( )Z θ , that is 

( ) ( )( ) ( )1 1

det adjZ Z
Z

θ θ
θ

− = , can be written under the form 

(27) at the cost of the introduction of an additional parameter 

representing ( )( )1 det Z θ  since the adjoint matrix ( )adjZ θ  

is of the form (27) and can easily be obtained. 
 
The last Remark implies the use of a multiplication rich 
iteration scheme for finding the matrix sign (or matrix square 
root) of ( )Z θ . Indeed, such scheme can avoid the 

introduction of additional parameters as suggested for the 

inverse matrix ( ) 1
Z θ −

.  

Moreover, for standard ARE problem, the assumptions (A1)-

(A3) and the condition ( )( ) 12
2 1n nI H Iρ θ

− + − < 
 

, where 

( )H θ  is the Hamiltonian matrix, are supposed to hold in a 

2
l  norm ball of radius δ  centred on 0θ .  

 
Similarly, for the CARE problem the assumptions (A1)-(A5) 

and the condition ( ) ( )( )( )1
2 1n nZ I Z Iρ θ θ −

+ − < , where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1T T
Z C B R B C C A Cθ θ θ θ θ θ θ θ θ− −= +

are supposed to hold in a 
2
l  norm ball of radius δ  centred on 

0θ . 

Example 5: Consider the ARE problem of the form (10) with 
the following parameter-dependent coefficient matrices 

( ) ( ) [ ]
2 03 1 2

,  ,  1 ,  1
11 3

A B C R
θ θθ θ θ

θ
 − −  = = = − =   − −   

 

with 0 0θ =  and 1.5δ = . 

Hence, the associated Hamiltonian matrix is given by 

( )

2

2

2

3 1 2 0 0

1 3 0 1

3 1

1 2 1 3

H

θ θ
θθ

θ θ θ
θ θ θ

 − −
 − − − =
 − −
 

− −  

 

We then apply Algorithm 1, using the arithmetic described in 
Lemma 3 with fixed, a priori, number 1q =  and number of 

N-S steps 6N = . Fig. 1 shows that the condition  

( )( )2

4 1
2

1I H θ− <  holds for all [ ],θ δ δ∈ −  where ( )1H θ  

is the first rational approximation given by (23).  

-1.5 -1 -0.5 0 0.5 1 1.5

0.4

0.5

0.6

0.7

0.8

0.9

1
condition line 4 algorithm 1

 
Fig. 1. The condition “line 4 of 

Algorithm 1” for the first rational 

matrix approximation of ( )( )sign H θ . 

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-15 matrix sign error

 
Fig. 2. The error ( ) ( )

2NS Sθ θ−ɶ . 

 

Let ( )S θɶ  be the approximate matrix sign of ( )H θ  obtained 

by the method presented above, while ( )N iS θ  is the matrix 

sign found by the Newton iterations (3) for a given gridding 
of θ  in the interval [ ],δ δ− . Fig. 2 shows the error 

( ) ( ) [ ]
2

,  ,i N i iS Sθ θ θ δ δ− ∈ −ɶ . 

Finally, we found an approximate ( )X θɶ  that satisfies the 

ARE (10) with a residual error norm of only 

[ ] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

1 14

max

  5.69.10

T

TT

A X X A

X BR B X C C

θ δ δ θ θ θ θ

θ θ θ θ

∈ −

− −

+

− + ≈

ɶ ɶ

ɶ ɶ
 

Example 6: Consider the CARE problem with the following 
parameter-dependent coefficient matrices 

( ) ( )2

4 3 1 3 1 0 1 0 1

2 1 3 ,  0 , 0 1 0 ,  1

4 2 1 7 2 1 0 0 1

A B C R

θ θ θ
θ θ θ θ

θ θ θ

+ − +     
     = + + = = =
     
     − − + − −     

 
with 0 0θ =  and 1.5δ = .  

 
We then apply Algorithm 2 to find the square root matrix of  

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )

2 11

2 2 2

222 2 3 2

2 3 2 2

4 2 6 2 6 2 12 4 1

2 6 2 1 1 4 2 10 3

12 4 1 2 10 3 26 18 6

TTZ C BR B C C A Cθ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

−−= + =

 + + − − + + +
 
 = − − + + + + + − − −
 
 + + − − − + +
 

 (31) 

Fig. 3 and Fig. 4 summarize the results obtained using 1q =  

and 8N =  N-S steps. In particular, Fig. 3 shows that 

( )1 3 2
1srZ Iθ − <  holds for [ ],θ δ δ∈ −  where ( )1

srZ θ  is the 

first rational matrix approximation given by (25). 
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condition line 4 algorithm 2

 
Fig. 3. The condition “line 4 of 

Algorithm 2” for the first rational 
matrix approximation of the square 

root matrix. 
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Fig. 4. The error ( ) ( )

2

r r
NS Sθ θ− . 

 

Following the lines of Example 5, Fig. 4 shows the error 

( ) ( ) [ ]
2

,  ,sr sr
i N i iS Sθ θ θ δ δ− ∈ −ɶ  where ( )srS θɶ  is the 

approximate matrix square root of (31) obtained by 
Algorithm 2 and ( )sr

N iS θ  is the matrix square root found by a 

Newton-type scheme for a given gridding of θ  in the interval 

[ ],δ δ− . Finally, we found an approximate ( )X θɶ  that 

satisfies the CARE with a residual error norm of only 

[ ] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

1 7

max

2.5.10

T

TT

A X X A

X BR B X C C

θ δ δ θ θ θ θ

θ θ θ θ

∈ −

− −

+

− + ≈

ɶ ɶ

ɶ ɶ
 

6. CONCLUSION 

In this paper, two iterative algorithms, that have the 
advantage of involving mainly additions and multiplications, 
were described for the computation of the matrix sign and 
square root functions. A new rational matrix approximation 
of these matrix functions, based on palindromic quadratic 
polynomial matrices and Laurent series-expansion of LTI 
systems, is presented. The proposed algorithms use the 
proposed rational matrix approximation in the initialization 
stages and a Newton-Shultz procedure in the final iterations. 
These algorithms are tailored for computing the matrix sign 
or square root functions for a class of parameter-dependent 
matrices with negative and positive power series with respect 
to parameters. Finally, some promising results were obtained 
when applying these algorithms to solve the parameter-
dependent standard and constrained ARE problems. 
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