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Abstract: We propose a new method for the small-signal stability analysis of power systems
based on the spectral decomposition of a square H2 norm of the transfer function. Compared
with the dynamics of H2 and H∞ norms of the transfer functions, the analysis of the behavior
of individual eigen-components allows the earlier identification of the pre-fault condition
occurrence. Since each eigen-component is associated with a particular eigenvector, the potential
sources of instability can easily be localized and tracked in real time. An important class of
systems operating under the pre-fault conditions near the boundary of stability is considered.
We demonstrate that in such cases several ill-stable modes can increase the system energy up
to a critical level much earlier due to their synergetic effect. In particular, an ill-stable low-
frequency mode can act as a catalyst increasing the energy in the system. An illustrative test
for the stability analysis of a real small power grid at Russky Island is provided.

Keywords: power systems; Lyapunov direct method; small-signal stability analysis;
sub-Gramian approach

1. INTRODUCTION

The small-signal stability analysis continues to be among
major problems of the control theory (Lyapunov (1947);
Andreyev (1976); Kwakernaak, Sivan (1991); Polyak,
Shcherbakov (2002); Boyd et al. (1994)). It is of supreme
theoretical and practical interest in electrical engineering,
aerospace technology and power industry (Vostrikov et
al. (2006)). For example, the simplified model of complex
power grid can be composed of large number of the oscilla-
tory systems, representing elastically connected generator
groups (Kundur (1994)). The oscillatory systems have the
resonance frequencies, corresponding to electromechanical
oscillations of generator groups. The interaction between
the ill-stable oscillatory modes in some circuits leads to
the development of instabilities (Martins (1997)). The
loss of a power grid stability leads to a voltage collapse
and cascading failures (CIEE (2010)). In most cases of
grid stability analysis, the linearized grid models for the
normal and pre-fault conditions are used (Pavella et al.
(2000)). In this paper we consider the ill-stable continuous
linear dynamical systems, i.e. the stable systems with one
or more eigenvalues having small negative real parts (CIEE
(2010)). The classical approach to the stability analysis
of power system is to investigate a system of equations,
representing the dynamic behavior of this system as a
whole. This general approach adequate and efficient for the
stability analysis of small and medium-size power systems
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meets with difficulties being applied to the large-scale
power systems. The modified Arnoldi method (Arnoldi
(1951); Kundur et al. (1990)) and the matrix sign function
technique (Misrikhanov, Ryabchenko (2008)) are the ef-
ficient algorithms for computing the ill-stable eigenvalues.
Another approach employs the computation of the domi-
nant pole spectrum of a power system (Martins (1997)).

In this paper we propose a new method for the small-
signal stability analysis of the power systems based on the
spectral decomposition of a square H2 norm of the transfer
function. We analyze the dynamic behavior of individual
eigen-components. The proposed method can be consid-
ered as a special case of a more general approach of Grami-
ans and sub-Gramians (Yadykin (2010); Yadykin, Galyaev
(2013)) for solving the matrix differential and algebraic
Lyapunov equations, based on the spectral decomposition
of the Lyapunov integral, the Laplace transform and the
expansion of the matrix resolvent of the dynamical system.
However, the calculation of the Faddeev matrices required
for obtaining sub-Gramians is a very ill-defined operation
for the large matrices. Therefore, the scalar quadratic
forms formed by the coefficients of a transfer function
numerator are more convenient for calculation and analysis
than the quadratic forms of the Faddeev matrices. Hence,
the proposed method is more practical for the stability
analysis of the large-scale dynamical systems. As a special
case we analyze the behavior of power systems near their
stability boundary and derive the asymptotic expressions
for the eigen-components of a square H2 norm of the trans-
fer function. Finally in our paper we illustrate how the
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proposed method can be applied to the stability analysis
of a real small power grid at Russky Island (Grobovoy et
al. (2013)).

2. PROBLEM STATEMENT

Let us consider a mathematical model of the power sys-
tem defined by a nonlinear algebro-differential system of
equations

ẋ (t) = f (x, u, t) , x (t0) = 0 ,

M (x, t)x (t) = N (x, t)u (t) .
(1)

The linearized model of this system about the equilibrium
point can be represented as a linear algebro-differential
system of equations

ẋ (t) = A1x (t) +Bu (t) , x (t0) = 0 ,

Mx (t) = Nu (t) .
(2)

For a nonsingular matrix N this system can be written as

ẋ (t) = Ax (t) , x (t0) = 0 ,

A = A1 +BN−1M.
(3)

Let us consider a fully controllable and observable contin-
uous linear time-invariant system with one input and one
output defined by real matrices A[n×n], B[n×1], C[1×n]

ẋ = Ax+Bu, x (0) = 0 ,

y = Cx, x ∈ Rn, u ∈ R1, y ∈ R1.
(4)

The finite and infinite controllability Gramians of this
system in the time domain are defined (Talbot (1959);
Hanzon, Peeters (1996)) as

PC (t) =

∫ t

0

eAτBBT eA
T τdτ ,

PC (∞) =

∫ ∞
0

eAτBBT eA
T τdτ .

(5)

Direct substitution reveals that these Gramians are the
solutions of the differential and algebraic Lyapunov equa-
tions (Antoulas (2005))

dP (t)

dt
= AP (t) + P (t)AT +BBT , P (0) = 0[n×n] , (6)

AP (∞) + P (∞)AT +BBT = 0 . (7)

A degree of system (4) stability can be defined as

d =| max
i
{Re(λi)} |, i = 1, 2, . . . , n , (8)

where λi are the system eigenvalues.

In this paper we consider two problems. The first problem
is to find the degree of stability (8) of the system (4) with a
Hurwitz matrix A. A straightforward calculation of eigen-
values for the matrix A could be a challenging problem for
high-order systems. We examine another approach, that
one of solving algebraic matrix Lyapunov equations

(A+ dI)
T
V + V (A+ dI) = −BBT (9)

with a positive real parameter d (Ahmetzyanov et al.
(2012)). It is well known that a system (4) has a degree
of stability exceeding d if and only if a positive definite
solution V of the system (9) exists for any positive definite
matrix BBT (Andreyev (1976)). Therefore the degree of

stability can be found by solving the system of equations
(9) at increasing d until its positive definite solution V
ceases to exist.

The second problem is to obtain a stability index suitable
for the power systems, which estimates the contribution of
the individual ill-stable eigenmodes to the risk of stability
loss. This contribution can be determined as a correspond-
ing term in the spectral expansion of the Frobenius norm
of the system transfer function. This representation allows
the identification of the most dangerous modes in terms
of the greatest contributions to the asymptotic variation
of the system energy over an infinite time interval. Such
modes will constitute the major part of the transfer func-
tion Frobenius norm. We are looking for the eigenmodes
decomposition based on a solution of the corresponding
differential or algebraic Lyapunov equation. Note that
finding of the degree of stability d can be considered as
a special case of this problem.

3. SPECTRAL DECOMPOSITION OF H2 NORMS OF
TRANSFER FUNCTIONS

In order to analyze the behavior of the ill-stable dynamical
system we obtain a spectral decomposition of the H2

norm of its transfer function by matrix A eigenmodes and
analyze the properties of this decomposition.

It is well known, that the matrix resolvent can be expanded
(Faddeev, Faddeeva (1963); Hanzon, Peeters (1996)) as

(Is−A)
−1

=

n−1∑
j=0

sjAj ×N−1 (s) , (10)

where N(s) = ans
n + · · · + a1s + a0 is the characteristic

polynomial of the matrix A and the matrices Aj[n×n]
are referred to as Faddeev matrices and can be found
(Kwakernaak, Sivan (1991)) in the following form:

Aj =

n∑
i=j+1

aiA
i−j−1 . (11)

Then the transfer function of the system can be written
as

W (s) =
y (s)

u (s)
= C(Is−A)

−1
B =

=
CAn−1Bs

n−1 + . . .+ CA1Bs+ CA0B

N (s)
=

=
bn−1s

n−1 + . . .+ b1s+ b0
N (s)

.

(12)

For convenience, we introduce the following notations:

W (s) ≡ bn−1M (s)

N (s)
, bT ≡ [bn−1 bn−2 . . . b1 b0] . (13)

The following theorem characterizes an eigenmode decom-
position of the square H2 norm of the system transfer
function in the frequency domain.

Theorem 1. Let us consider a fully controllable and
observable [stable] continuous linear dynamical system (4).
Let A be a real square matrix with multiple eigenvalues
sδ with multiplicities mδ,m1 + m2 + ... + mq = n. Then,
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the square H2 norm of the system transfer function (12)
is given by

‖W (s)‖22 =

q∑
δ=1

Gδ =

q∑
δ=1

mδ∑
k=1

(−1)mδ−k

(mδ − k)!(k − 1)!

n−1∑
i=0

n−1∑
j=0

[
dk−1

dsk−1

(
(s− sδ)mδsi

N(s)

)]
s=sδ

×

×
[
dmδ−k

dsmδ−k

(
sj

N(s)

)]
s=−sδ

× bibj .

(14)

Proof. Follows from the Theorem 1 in (Yadykin (2010)).

Corollary. For a complex square matrix A the square H2

norm of the system transfer function is given by a formula
similar to (14) with the replacement of bj by b∗j .

If the matrix A spectrum contains only simple eigenvalues
sk, then an expression (14) for the square H2 norm of
transfer function takes the following form:

‖W‖22 =

n∑
k=1

Gk,

Gk =

n−1∑
i=0

n−1∑
j=0

sik (−sk)
j

N ′(sk)N(−sk)
bibj ,

(15)

where N ′(s) is the derivative of N(s) and Gk represents an
eigen-part of the square H2 norm of the transfer function
corresponding to the particular eigenvalue sk.

Theorem 1 allows the square H2 norm of the transfer
function to be represented as a sum of the quadratic forms

‖W‖22 =

n∑
k=1

Gk =

n∑
k=1

b(sk)b(−sk)

N ′(sk)N(−sk)
,

where b(s) ≡ bn−1sn−1 + · · ·+ b1s+ b0 .

(16)

Each of this forms corresponds to a particular root of
the system characteristic equation. The coefficients of the
quadratic form corresponding to the eigenvalue sk are
given by a matrix

G̃k =

[
sik (−sk)

j

N ′(sk)N(−sk)

]
ij

, Gk = bT G̃kb . (17)

The basic properties of the eigen-parts Gk can be charac-
terized by the following theorem.

Theorem 2. Let us examine a fully controllable and
observable stable system (4) with a diagonalizable matrix
A. Then the eigen-parts (15) of the square H2 norm of the
transfer function have the following properties.

(i) If the matrix A is real, then both the eigen-parts Gk
corresponding to the real eigenvalues and the sum
of eigen-parts Gk1 + Gk1∗ corresponding to pairs of
complex conjugate eigenvalues are real. Therefore,
the square H2 norm of the transfer function can be
represented as a sum of real numbers:

‖W‖22 =

l∑
k=1

Gk +

m∑
k1=1

(Gk1 +Gk1∗) (18)

(ii) If the matrix A is Hurwitz, then the eigen-parts Gk
can be found as

Gk =− CA(k)BB
T
[
skI +AT

]−1
CT

A(k) ≡ Res ((Is−A)−1, sk) =

n−1∑
i=0

sikAi
N ′(sk)

(19)

Proof. Follows from the Theorem 3 in (Yadykin, Galyaev
(2013)).

The square H2 norm of the transfer function ‖W‖22 can
be interpreted as a measure of the output energy pro-
duced by a unit energy input. Then the absolute values
of eigen-parts |Gk| characterize the contribution of the
eigenmodes to the total variation of the system output en-
ergy. Therefore the eigenmode decomposition (15) allows
an identification of the most dangerous modes in terms
of the greatest contributions to the total output energy
of the system. Such modes will constitute the major part
of the sum. Conversely, those modes not making a sig-
nificant contribution can be regarded as posing no threat
to a system stability. Since each eigen-part is associated
with a particular eigenvector, the potential sources of the
instabilities can easily be localized and tracked over time.
The representation (15) has a particular importance for
analyzing the behavior of a power system operating near
its stability boundary.

4. ASYMPTOTIC BEHAVIOR OF TRANSFER
FUNCTIONS NEAR THE STABILITY BOUNDARY

Let us examine the asymptotic behavior of the eigen-parts
(15) when one or more eigenvalues approach the imaginary
axis from the left. We call these eigenvalues ill-stable.
Formally, ill-stable eigenvalues can be defined as eigen-
values with small negative real parts. The denominator
polynomial in (15) takes the following form:

N ′(sk) =
∏
i 6=k

(sk − si) ,

N(−sk) = −2sk
∏
i 6=k

(−sk − si) ,

N ′(sk)N(−sk) = −2sk
∏
i 6=k

(s2i − s2k), k = 1, 2, . . . , n.

(20)

For the nominator polynomial in (16) we obtain:

b(sk) =

n−1∏
j=1

(sk − βj) ,

b(−sk) =

n−1∏
j=1

(−sk − βj) ,

b(sk)b(−sk) =

n−1∏
j=1

(β2
j − s2k), k = 1, 2, . . . , n .

(21)

where βj is a j-th root of the nominator polynomial b(s)
of the transfer function (12).

Let us consider some specific cases when ill-stable eigen-
values approach the imaginary axis from the left.
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Case A. There is one real ill-stable eigenvalue sk = −α
with α → +0. All the other eigenvalues are fixed. From
(16, 20-21) we obtain:

‖W‖22 ∼ Gk ∼
b20

2α
∏
i 6=k s

2
i

→∞ (α→ +0) . (22)

The square H2 norm of the transfer function is directly
proportional to the constant term b20 of the nominator
polynomial and is inversely proportional to the absolute
value α of the ill-stable real eigenvalue.

Case B. There are two real ill-stable eigenvalues sk = −α1

and sl = −α2 with α1 → +0 and α2 → +0. All the other
eigenvalues are fixed. In this case we obtain:

‖W‖22 ∼ Gk+Gl ∼
b20

2α1α2(α1 + α2)
∏
i 6=k,l s

2
i

→∞

(α1, α2 → +0) .

(23)

The square H2 norm of the transfer function is inversely
proportional to the product of absolute values of ill-stable
eigenvalues and their absolute values sum. In contrast to
the previous case ‖W‖22 grows much faster due to the
synergetic effect of two real ill-stable modes.

Case C. There is a pair of ill-stable complex conjugate
eigenvalues sk = −α+jω and sk∗ = −α−jω with α→ +0.
All the other eigenvalues are fixed. In a similar way we
obtain

‖W‖22 ∼ Gk +Gk∗ ∼
b(jω) b(−jω)

4αω2
∏
i6=k,k∗(s2i + ω2)

→∞

(α→ +0) .

(24)

If the frequency ω also approaches zero value, then we
obtain the following asymptotic expression:

‖W‖22 ∼ Gk +Gk∗ ∼
b20

4α(ω2 + α2)
∏
i 6=k,k∗ s

2
i

→∞

(α, ω → +0) .

(25)

Therefore in the case of a pair of complex conjugate ill-
stable low-frequency eigenvalues, ‖W‖22 is asymptotically
inversely proportional to the product of these conjugate
eigenvalues and the absolute value of their real part.

Case D. There is one real ill-stable eigenvalue s1 = −α0

and one pair of ill-stable complex conjugate eigenvalues
s2 = −α+ jω and s3 = −α− jω with α0, α→ +0. All the
other eigenvalues are fixed. From (16) we obtain

‖W‖22 ∼ G1 +G2 +G3 ∼
1

2ω4

(
b20

α0

∏
i 6=1,2,3 s

2
i

+

+
b(jω)b(−jω)

2α
∏
i 6=1,2,3(s2i + ω2)

)
→∞ (α0, α→ +0).

(26)

If the frequency ω also approaches zero value, then we
obtain the following asymptotic expression:

‖W‖22 ∼ G1 +G2 +G3 ∼
b20∏

i 6=1,2,3 s
2
i

×

× α3
0 + α0(ω2 − 3α2) + 2α(α2 + ω2)

4αα0(α2 + ω2) ((α2
0 + ω2 − α2)2 + 4ω2α2)

(27)

(α0, α, ω → +0) .

Comparing this with the case A one can see that an
additional pair of complex conjugate ill-stable eigenvalues
significantly increases the contribution of a single ill-stable
real eigenvalue into ‖W‖22. In particular, low-frequency
ill-stable modes can heavily increase the H2 norm of the
transfer function.

The considered cases suggest several conclusions. The
eigen-parts (15) of the square norm ‖W‖22 corresponding
to the ill-stable modes have a similar asymptotic behavior.
They infinitely grow near the stability boundary of the
system. Our interpretation of this result is that the total
energy of a dynamical system, operating under the pre-
fault conditions, accumulates in the ill-stable modes. In
this case the decomposition (15) of ‖W‖22 allows the
identification of the most dangerous modes in terms of
their greatest contributions to the total energy of the
system. Such modes will constitute the major part of the
sum. Conversely, those modes not making a significant
contribution can be regarded as posing no threat to a
system stability.

If there are several ill-stable modes they can increase the
system energy up to a critical level much earlier due to
their synergetic effect. In particular, according to (24, 26)
a transfer function norm is inversely proportional to the
frequency or even to the frequency squared. The lower the
frequency of a given mode is, the stronger influence it has
on the system transfer function norm. Therefore the ill-
stable low-frequency modes can pose a special threat to
the system stability because they can act as a catalyst in-
creasing the energy in the system (Gaglioti et al. (2011)).

5. CASE STUDY

In order to illustrate how the proposed method can be ap-
plied to the stability analysis of power grids, we employ the
Simulink model of a mini-grid at Russky Island (Grobovoy
et al. (2013)). The one-line diagram of the power network
model is presented in Fig.1.

In the existing power network at Russky Island, 35 kV
rated voltage is used. The total length of the transmission
lines is 19.65 km. In this investigation, the distributing
network with the rated voltage of 10 kV and less are
represented by the loads at the level of 35 kV, but some are
combined with the nodes of the equivalent generators on
the rated voltage of 10 kV or 6.3 kV. The power network
model contains three two-winding power transformers,
one three-winding transformer, and one autotransformer.
Eight consumption loads represent the island electricity
demands. Total electricity consumption in the model un-
der investigation amounts to 45.65 MW. An electric power
is generated in the system by four combined heat and
power plants (CHPP). The CHPP-1 consists of five gas
turbine with rated power 7.33 MWA, CHPP-2 is comprised
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Fig. 1. One-line diagram power network: T1-T5, L1-L7,
TL1-TL7, G1-G4 are equivalent transformers, loads,
transmission lines and generators respectively

of two 2 MWA gas turbines, CHPP-3 consists of two gas
turbines with rated power 7.33 MWA, and CHPP-4 has in
its structure one 1.8 MWA gas turbine. For the purposes
of the present examination, four equivalent generators rep-
resent these power generation units (G1, G2, G3 and G4 in
Fig.1). Each of these is equipped by the excitation system
and speed control which are available in the MATLAB
software in the Simulink/SimPowerSystems package. The
well-known Rowen’s model (Yee et al. (2008)) for gas
turbine has been used. In out simulation, however, we used
only one control channel and neglected both channels of
the temperature control of the exhaust gases and acceler-
ation loop.

This grid is obviously too small and underpowered to have
a lack of static stability in a real life, but it is possible to
overload a computer model for the testing purposes. We
studied the limit of the system stability by simultaneously
increasing all of the loads and the active power of each
generator while keeping the ratios between these fixed.
We define the power increase coefficient as γ = P/P0,
where P and P0 are the total active power and the initial
total active power of the generators respectively. For each
γ we linearize the system at t = 100s and obtain a 64th
order linear model. For the transfer function calculations
we assume all elements of the matrices B and C equal ones.

Fig. 2. H2 and H∞ norms of the transfer function and
two largest eigen-parts as functions of power increase
coefficient γ

The behavior of theH2 andH∞ norms of the transfer func-
tion as well as the behavior of the two largest eigen-parts
(15) is shown in Fig.2 as functions of the power increase
coefficient γ. The thick solid line represents the eigen-part
corresponding to the inter-machine rotor angle oscillation
between the generators G1 and G4 (or G1-G4 mode). The
dotted line represents the eigen-part corresponding to the
4-inter-machine oscillatory mode (or 4-IM mode). For the
most of loads the 4-IM eigenvalue is the closest to Im
axis, but the G1-G4 mode becomes unstable for γ ≈ 7.25
and the norm of the corresponding eigen-part approaches
infinity. The H2 and H∞ norms of the transfer function
(shown in Fig.2 by the solid and dashed lines respectively)
approach infinity at γ ≈ 7.25 as well (Ahmetzyanov et al.
(2012)).

One can see that the analysis of the behavior of G1-
G4 eigen-part allows the identification of the pre-fault
conditions much earlier than the analysis of the H2 and
H∞ norms of the transfer function. The proposed eigen-
mode decomposition also allows us to localize accurately
the source of the potential instability (i.e., the rotor angle
oscillation between G1 and G4 generators). Another inter-
esting observation is that the eigen-part of the most dan-
gerous mode seems to be a good approximation of the H∞
norm of the transfer function. This observation (purely
experimental by the moment) seems to be reasonable since
both of them represent the worst-case gain of the system.

6. CONCLUSION

In this paper we propose a new method for the small-
signal stability analysis of power systems based on the
spectral decomposition of a square H2 norm of the transfer
function. We analyze the dynamic behavior of individual
eigen-components. Compared with the dynamics of the
full expression for the H2 and H∞ norms of the transfer
functions, the analysis of the behavior of the individual
eigen-parts allows the earlier identification of the pre-fault
condition occurrence. In addition, since each eigen-part
is associated with a certain characteristic state vector,
the potential sources of instability can easily be located
and tracked over time. The proposed method can be
considered as a special case of a more general approach
of Gramians and sub-Gramians proposed in (Yadykin
(2010); Yadykin et al. (2013)). However, it is more
convenient for the practical calculations and can be used
to study the stability of large-scale dynamical systems.

The proposed decomposition has a particular importance
for analyzing behavior of a power system operating near
its stability boundary. We explore the asymptotic behavior
of the ill-stable systems, when one or more eigenvalues
approach the imaginary axis from the left. In this case
the total energy of a dynamical system accumulates in
the ill-stable modes, and it is sufficient to know only the
corresponding eigenvalues, as they provide the principal
contributions to the total energy of the system. Analyzing
the asymptotic expressions, we observed that several ill-
stable modes can increase the system energy up to a
critical level much earlier due to their synergetic effect. In
particular, the ill-stable low-frequency modes can pose a
special threat to the system stability because they can act
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as a catalyst increasing the energy in the system. Finally
in our paper we illustrate how the proposed method can
be applied to the stability analysis of a real small power
grid at Russky Island.
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