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Abstract: There are two key issues for the kernel-based regularization method: the kernel structure
design and the hyper-parameter estimation. In this contribution, we introduce a new family of kernel
structures based on state space models. It has more flexible and more general structure, and includes
some of stable spline kernels and diagonal correlated kernels as special cases. We also tested a different
method for the hyper-parameter estimation by maximizing a profile marginal likelihood and examined
three methods dealing with the initialization. Monte Carlo simulations show that the tested kernels are on
the average a bit better than the tuned correlated kernel and the profile marginal likelihood maximization
and the pre-windowing method work well for hyper-parameter estimation and initialization.
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1. INTRODUCTION

Linear time invariant (LTI) system identification is a classic and
fundamental topic in the area of system identification, Ljung
(1999); Söderström and Stoica (1989); Pintelon and Schoukens
(2012). A new method to this topic is the kernel-based regular-
ization method (KRM) introduced in Pillonetto and De Nicolao
(2010) and further studied in Pillonetto et al. (2011); Chen et al.
(2012, 2014); Pillonetto et al. (2014). In contrast with the clas-
sical prediction error method (PEM) Ljung (1999), equipped
with the classical model structure selection technique, such as
AIC, BIC, etc., KRM embraces a more reliable way to deal with
the bias-variance tradeoff and can often yield more accurate and
robust model estimates for short and noisy data.

There are two key issues for KRM: the kernel structure design,
i.e., parameterization of the kernel by some parameters often
called hyper-parameters, and the hyper-parameter estimation.
So far two families of fundamental kernel structures have been
introduced: the stable spline (SS) kernel, Pillonetto and De
Nicolao (2010) and the diagonal correlated (DC) kernel, Chen
et al. (2012). The problem with SS and DC kernels is that these
kernels could be improved for systems with rapid oscillation
and/or complicated dynamics Pillonetto et al. (2011); Chen
et al. (2014). It is thus interesting and important to design ker-
nels with more flexible and more general structure that are suit-
able for LTI stable system identification. The hyper-parameter
estimation issue is often handled by first embedding the regular-
ization problem in a Bayesian framework and then invoking the
marginal likelihood maximization method. A tricky problem
for this method is how to deal with the unknown noise variance
of the measurement noise. In Pillonetto and De Nicolao (2010);
Pillonetto et al. (2011); Chen et al. (2012), a low-bias ARX
model or a FIR model is first estimated and then its sample
variance is used as an estimate and finally the hyper-parameter
estimate is yielded by maximizing the marginal likelihood with
the noise variance replaced by its estimate.

? The work has been supported by the ERC advanced grant LEARN, no
267381, funded by the European Research Council, the Linnaeus Center
CADICS, funded by the Swedish Research Council, VR.

In this contribution, we introduce a new family of fundamental
kernel structure based on stochastic state space models, which
is called state space model induced (SSMi) kernel. Under cer-
tain conditions on the state space model, the proposed ker-
nel structure ensures that its corresponding reproducing kernel
Hilbert space is a subspace of the space of absolutely integrable
functions over [0,∞) and thus is suitable for LTI stable system
identification. This kind of SSMi kernels are thus named SSMi
stable (SSMiS) kernel. Note that the concept of stable kernel
is introduced in Pillonetto and De Nicolao (2010) and further
elaborated in Dinuzzo (2012). The SSMiS kernel includes some
of SS and DC kernels as special cases. For illustration, a couple
preliminary instances of SSMiS kernel are examined here. Be-
sides, we tested a different method for the hyper-parameter esti-
mation. We first maximize the marginal likelihood with respect
to the noise variance so that we can express the optimal noise
variance as a function of the hyper-parameters and the given
data. We then get the estimate of the hyper-parameters by max-
imizing the profile marginal likelihood, which is obtained by
replacing the unknown noise variance with its optimal value in
the marginal likelihood. We also examined three methods deal-
ing with the initialization: non-windowing, pre-windowing and
estimating the transient as an additional regularized FIR model.
Monte Carlo simulations show that the tested SSMiS kernels
are on the average a bit better than the TC (tuned correlated)
kernel Chen et al. (2012) and moreover, the profile marginal
likelihood maximization and the pre-windowing method work
well for hyper-parameter estimation and initialization.

2. REGULARIZED SYSTEM IDENTIFICATION AND
EXISTING KERNELS

Consider a discrete time LTI stable causal system
y(t) = G0(q)u(t)+ v(t), t = 0, · · · ,N−1. (1)

where t is the time index, q is the shift operator and qu(t) =
u(t + 1), and y(t),u(t) ∈ R and v(t) ∈ R are the measurement
output, the input and the noise at time t, respectively. For
simplicity, v(t) is assumed to be white 1 . The transfer function
1 The case where v(t) is colored can be handled in a straightforward way for
this kernel-based regularization method, see Pillonetto et al. (2014).
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G0(q) is characterized by G0(q) = ∑
∞
k=1 g0

kq−k, where the co-
efficients g0

k ,k = 1, · · · ,∞ form the impulse response of G0(q).
Our goal is to get an estimate Ĝ(q) of G0(q) with the collected
data y(t),u(t), t = 0, · · · ,N−1.

2.1 Regularized impulse response estimation

Since the impulse response of LTI stable systems decays expo-
nentially, it is often enough to truncate G0(q) = ∑

∞
k=1 g0

kq−k at
a certain order n and consider a finite impulse response (FIR)
model

G(q,θ) =
n

∑
k=1

gkq−k, θ = [g1 g2 · · · gn]
T
. (2)

Estimating the FIR model (2) by using least squares method is
well-known but not often used in practice due to the possibly
large variance for large n. As shown in Chen et al. (2012), a
suitably designed regularization can be added to curb the large
variance and get a FIR model estimate with much smaller mean
square error (MSE), leading to the kernel-based regularization
method. More specifically, using the FIR model (2), the model
of system (1) is described by

y(t) =
n

∑
k=1

g(k)u(t− k)+ v(t), t = 0, · · · ,N−1, (3)

which can be rewritten as: YN = ΦT
Nθ +VN , where the ith row

of YN ,VN ∈ RM with M = N−n and ΦT
N ∈ RM×n are y(n−1+

i),v(n−1+ i), and [u(n+ i−2) · · · u(i−1)], respectively. The
regularized least squares method to estimate θ is

θ̂
R
N = argmin

θ
‖YN−Φ

T
Nθ‖2

2 +σ
2
θ

T Z−1
θ (4a)

= ZΦN(Φ
T
NZΦN +σ

2IM)−1YN , (4b)

where IM is the M dimensional identity matrix, σ2 is the noise
variance of v(t), Z ∈Rn×n and Z� 0 is the regularization matrix
and also often called kernel matrix, and θ̂ R

N is the regularized
least squares estimate of the impulse response θ .

The quality of θ̂ R
N depends on Z, Chen et al. (2012). Thus Z

has to be designed carefully. It is assumed to take the form of
Z = cZ̄ with Z̄ ∈ Rn×n and its (i, j)th element defined as

Z̄i, j = K(i, j), i, j = 1, · · · ,n (5)
where c> 0 is a scaling factor and K : {1, · · · ,n}×{1, · · · ,n}→
R is called a kernel structure.

2.2 Existing fundamental kernel structures

There exist two families of fundamental kernel structures (sim-
ply called kernels) suitable for impulse response estimation:

Stable spline (SS) kernels [Pillonetto and De Nicolao (2010)]
The SS kernels are constructed based on spline kernels Wahba
(1990), which are widely used when the unknown function and
some of its derivatives are known or assumed to be continuous
with bounded energy. The lth order spline kernel is defined as

K̄l(t,s) =
∫ 1

0
Gl(s,τ)Gl(t,τ)dτ (6)

where 0 ≤ t,s≤ 1, Gl(r,τ) = (r− τ)l−1/(l−1)! for r ≥ τ and
Gl(r,τ) = 0 otherwise. The corresponding lth order SS kernel is
then defined as Kss

l (t,s) = K̄l(e−β t ,e−β s) for t,s≥ 0 and β > 0.
The role of e−β t and e−β t is on the one hand to guarantee that
Kss

l (t,s) is well-defined and on the other hand to ensure the

stability of Kss
l (t,s), which will be discussed in details later in

Section 3. In particular, for l = 1,2,

Kss
1 (t,s) = min(e−β t ,e−β s), (7a)

Kss
2 (t,s) = e−β (t+s) min(e−β t ,e−β s)/2−min(e−3β t ,e−3β s)/6. (7b)

By constraining t,s = 1, · · · ,n, the stable spline kernels (7) can
be used for discrete time system identification.

Diagonal correlated (DC) kernels [Chen et al. (2012)] Un-
der the assumption that the true system G0(q) in (1) can be
described as an nth order FIR model, the optimal kernel ZOpt

in the sense of minimizing the MSE 2 of θ̂ R
N takes the form of

ZOpt = θ0θ T
0 , where θ0 is the true impulse response. Although

ZOpt cannot be used in practice, making use of the structure
of ZOpt and the prior knowledge that the impulse response of
LTI stable systems decays exponentially gives some ideas about
how to parameterize the kernel, leading to the DC kernel

Kdc(i, j) = ρ
|i− j|

λ
(i+ j)/2 (8a)

where i, j = 1, · · · ,n, 0 ≤ λ ≤ 1, |ρ| ≤ 1, λ controls the decay
rate of the impulse response and ρ controls the correlation
between the impulse response coefficients. When ρ = λ 1/2, the
DC kernel becomes the tuned-correlated (TC) kernel

Ktc(i, j) = min(λ i,λ j) (8b)

Interestingly, if we choose λ = e−β , the TC kernel is same as
the first order SS kernel (7) with t,s = 1, · · · ,n. If ρ is restricted
to be positive, the DC kernel becomes the positive DC kernel

K pdc(i, j) = ρ
|i− j|

λ
(i+ j)/2, ρ > 0 (8c)

Remark 2.1. Besides the two families of fundamental kernels,
there also exists a family of composite kernels, the so-called
multiple kernel, which is introduced in Chen et al. (2014) for
both model estimation and structure detection. The multiple
kernel is a conic combination of some suitably chosen fixed
kernels, which can be instances of SS, DC and the rank-1
kernels in Chen et al. (2013). Multiple kernels can yield better
model estimates than fundamental kernels for systems with
complicated dynamics, e.g. with several widely spread time
constants, and have a couple of features, leading to accurate
and efficient algorithms, and applications in various structure
detection problems in system identification, see Chen et al.
(2014) for details. It should be noted that the idea to use
multiple kernel is also briefly mentioned in Dinuzzo (2012),
see Chen et al. (2014) for comparisons.

3. STATE-SPACE MODEL INDUCED KERNELS

The problem with SS and DC kernels is that these kernels could
be improved for systems with rapid oscillation and/or compli-
cated dynamics Pillonetto et al. (2011); Chen et al. (2014). It
is thus interesting and important to design kernels with more
flexible and more general structure that are suitable for impulse
response estimation. To address this issue, we introduce the so-
called state space model induced (SSMi) kernels.

Consider the following state space model
dx = Axdt +B(t)dW, x(0)∼N (0,O), t ≥ 0, (9a)
g =Cx (9b)

which contains an Itô stochastic differential equation (SDE)
(9a) and an algebraic output equation (9b). Here, x ∈ Rp,W ∈
2 More discussions about the MSE of the kernel-based regularization method
can be found in Carli et al. (2012); Aravkin et al. (2012).
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Rm,g ∈ R are the state, disturbance and output, respectively,
and A ∈ Rp×p,C ∈ R1×p 3 and B(t) : R≥0 → Rp×m. While x,g
and W are all functions of time t, it is customary to omit
their dependence on t when writing the state space model
(9). Throughout the paper, assume that B(t) is measurable and
bounded for t ≥ 0, x(0) is independent of the disturbance W (t),
which is a Wiener process (also called Brownian motion in
Physics). Recall that an Rm-valued stochastic process W (t) is
called a Wiener process if

• W (0) = 0 a.s.;
• W (t)−W (s) ∼ N (0,(t − s)Im) for all t ≥ s ≥ 0, where

N (0,(t − s)Im) is the m-dimensional Gaussian distribu-
tion with mean zero and covariance matrix (t− s)Im;
• W (t) has independent increment property, i.e., for all time

instants 0 < t1 < t2 < · · · < tl , W (t1), W (t2)−W (t1), · · · ,
W (tl)−W (tl−1) are independent.

Lemma 3.1. Consider the state space model (9). The following
results hold:

1) The SDE (9a) has a unique solution x(t), which is continu-
ous in t, adapted to the filtration generated by x0 and W (s)
with 0≤ s≤ t, and satisfies E

∫ t
0 ||x(s)||22ds < ∞.

2) The output g(t) is a zero mean Gaussian process with
covariance function (also often called kernel)
K(t,s) = Eg(t)g(s) =C

{
exp(At)Oexp(As)T

+
∫ min{t,s}

0
exp(A(t−δ ))B(δ )B(δ )T exp(A(s−δ ))T dδ }CT

(10)
which is referred to as the SSMi kernel.

Remark 3.1. In (9), if we let

A =

[
0(l−1)×1 Il−1

0 01×(l−1)

]
, B(t) =

[
0(l−1)×1

1

]
,

C =
[
1 01×(l−1)

]
, O = 0,

then g(t) is in particular the so-called l − 1 fold integrated
Wiener process Shepp (1966) and moreover, its covariance
function (10) is nothing but the lth order spline kernel (6).
Noting Section 2.2 and the fact that integrated Wiener processes
associated with spline kernels have state space model represen-
tations, it is natural and interesting to ask whether there exist
state space model representations for the stochastic processes
associated with the SS and DC kernel structures. We will come
back to this question in the following sections.

3.1 Stable kernels

Our goal is to construct kernels suitable for impulse response
estimation of LTI stable systems. To achieve this goal, we need
some concepts and tools from the theory of reproducing kernel
Hilbert space (RKHS), see Aronszajn (1950) for details and
also Dinuzzo (2012); Bottegal and Pillonetto (2013).
Definition 3.1. An RKHS over R≥0 is a Hilbert space of func-
tions g : R≥0→ R such that
∀t ≥ 0, ∃0 < dt < ∞ s.t. |g(t)| ≤ dt‖g‖H ,∀g ∈H

where ||g||H = 〈g,g〉H is the induced norm with 〈·, ·〉H being
the inner product over R associated with H .
Definition 3.2. A function K : R≥0 × R≥0 → R is called a
positive semidefinite kernel if K(s, t) = K(t,s) for any t,s ≥ 0
and if for any l ∈ N,
3 The output matrix C can of course contain multiple rows, which is critical
for multiple output system identification to be studied in the near future.

l

∑
i=1

l

∑
j=1

did jK(ti, t j)≥ 0,∀tk ≥ 0,dk ∈ R, k = 1, · · · , l. (11)

If, in addition, the first inequality holds in (11) only when
dk = 0,k = 1, · · · , l, then K is called a positive kernel. Given
a positive semidefinite kernel K and t ≥ 0, the kernel section Kt
of K located at t is defined as Kt(s) = K(t,s), for s≥ 0.
Theorem 3.1. (Moore-Aronszajn Theorem). To every RKHS H
there corresponds a unique positive semidefinite kernel K,
called the reproducing kernel, such that

g(t) = 〈g,Kt〉H , ∀t ≥ 0,g ∈H (12)
Conversely, given a positive semidefinite kernel K, there exists
a unique RKHS of functions g : R≥0→ R, whose reproducing
kernel is K.

In what follows, we regard the functions g : R≥0 → R as
impulse responses of LTI stable systems. As well-known, an
LTI system is stable if and only if∫

∞

0
|g(t)|dt < ∞, (13)

or in other words, g ∈L 1, where L 1 is the space of functions
g : R≥0 → R that satisfy (13). Moore-Aronszajn Theorem af-
firms the connection between RKHS and positive semidefinite
kernels. So instead of searching for the functions g ∈ L 1 di-
rectly, we can try to search or design a kernel K such that its
corresponding RKHS HK ⊂L 1. In this regard, the following
lemma (Dinuzzo, 2012, Lemma 2), which is an immediate
corollary of (Carmeli et al., 2006, Propostion 4.4) is very useful.
Lemma 3.2. (Carmeli et al. (2006), Dinuzzo (2012)). For a
given positive semidefinite kernel K, its corresponding RKHS
HK ⊂L 1 if and only if∫

∞

0

∣∣∣∣∫ ∞

0
K(t,s)h(t)dt

∣∣∣∣ds < ∞, ∀h ∈L ∞, (14)

where L ∞ is the space of functions h : R≥0→R such that there
exists a positive number 0 < ε < ∞, with |h(t)|< ε for all t ≥ 0.

Now we go back to the state space model (9) and consider the
kernel (10). For simplicity, define

P(t,s) =
∫ min{t,s}

0
exp(A(t−δ ))B(δ )B(δ )T exp(A(s−δ ))T dδ .

Then by Lemma 3.2, conditions on A and B(t) in (9) can be
given such that its corresponding RKHS is a subspace of L 1.
Proposition 3.1. Consider the state space model (9) with stable
A, i.e., A has all eigenvalues with strictly negative real parts. The
output g(t) is a zero mean Gaussian process with kernel K(t,s)
as defined in (10). Then its corresponding RKHS HK ⊂L 1 if
and only if A and B(t) are such that∫

∞

0

∣∣∣∣∫ ∞

0
C
{

exp(At)Oexp(As)T +P(t,s)
}

CT h(t)dt
∣∣∣∣ds < ∞, ∀h ∈L ∞ (15)

Corollary 3.1. Consider the state space model (9) with stable
A. The output g(t) is a zero mean Gaussian process with kernel
K(t,s) as defined in (10). Then the following results hold:

1) Its corresponding RKHS HK ⊂L 1 if A and B(t) are such
that ∫

∞

0

∫
∞

0

∣∣CP(t,s)CT ∣∣dtds < ∞ (16)

2) If CP(t,s)CT ≥ 0 for any t,s≥ 0, its corresponding RKHS
HK ⊂L 1 if and only if A and B(t) are such that
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∫
∞

0

∫
∞

0
CP(t,s)CT dtds < ∞ (17)

3) If x ∈ R, its corresponding RKHS HK ⊂L 1 if and only
if A and B(t) are such that∫

∞

0

∫
∞

0
P(t,s)dtds < ∞ (18)

It can happen that HK * L 1 for a given kernel K, but HK ∩
L 1 may not be empty. The problem of using such kernels for
impulse response estimation is that it is tricky to deal with the
functions of HK that do not belong to L 1. In contrast, it is more
convenient to work only on kernels K, whose corresponding
RKHS HK ⊂L 1. This kind of kernels are referred to as SSMi
stable (SSMiS) kernels below. Note that the concept of stable
kernel is introduced in Pillonetto and De Nicolao (2010) and
further elaborated in Dinuzzo (2012).

3.2 Some preliminary 1st order SSMiS kernels

Proposition 3.2. Consider the state space model (9) with x∈R.
Then the following results hold:

1) Let A=−β , B(t)= exp(−αt), and O= γ with α,β ,γ > 0.
Then g(t) is a zero mean Gaussian process with stable
kernel

K(t,s) =C2
γe−β (t+s)+C2 1

2(β −α)
e−β (t+s)(e2(β−α)min{t,s}−1)

(19a)

When β = 2α = γ−1 = C2, the kernel (19a) becomes
K(t,s) = min{e−β t ,e−β s}, which is the 1st order SS ker-
nel (7a), and TC kernel (8b) with λ = e−β and t,s =
1, · · · ,n. When α,β −α > 0 and 2(β −α) = γ−1 = C2,
the kernel (19a) becomes the positive DC kernel (8c) with
λ = e−2α and ρ = e−(β−α) and t,s = 1, · · · ,n.

2) Let A =−β , B(t) = 0, C = 1 and O = 1 with β > 0. Then
g(t) is a zero mean Gaussian process with stable kernel
K(t,s) = e−β (t+s), which is the exponential kernel studied
in Dinuzzo (2012).

3) Let A =−β , B(t) = exp(−β t)/(t +1), C = 1, O = γ with
β ,γ > 0. Then g(t) is a zero mean Gaussian process with
stable kernel

K(t,s) = γe−β (t+s)+ e−β (t+s)(1− 1
min{t,s}+1

) (19b)

Remark 3.2. The 1st order SSMiS kernels are constructed
based on 1st order state space model (9), where the system
without the stochastic disturbance has a negative real pole. In-
tuitively, this may not be favorable for identification of systems
with strong oscillations. In this case, it is straightforward to
introduce a 2nd order SSMiS kernel where the system in (9)
without the stochastic disturbance has a pair of complex con-
jugate poles with negative real parts. Consider the state space

model (9) with x ∈ R2. Let A =

[
0 1

−α
2−β

2 −2α

]
, B(t) =

[0 exp(−γt)]T , C = [1 0] and O = 0 with α,β ,γ > 0. Then
g(t) is a zero mean Gaussian process with stable kernel

K(t,s) =
1

4β 2(α− γ)
e−α(t+s) cosβ (t− s)(e2(α−γ)min{t,s}−1)

− 1

2β 2
√

4β 2 +4(α− γ)2
e−α(t+s) (20)

× [e2(α−γ)min{t,s} sin(2β min{t,s}+θ −β (t + s))− sin(θ −β (t + s))]

Our preliminary simulation results show that the kernel (20) can
give more accurate and robust model estimates than the existing
SS and DC kernels for systems with strong oscillations. Due to

limitation of space, we are unable to give the details here and
will include the complete discussions in an independent paper.

4. HYPER-PARAMETER ESTIMATION BY PROFILE
MARGINAL LIKELIHOOD MAXIMIZATION

In this section, we study the hyper-parameter estimation prob-
lem for a given kernel K. Denote the hyper-parameter used to
parameterize K by η . Here, η is composed of β for (7), λ ,ρ for
(8), and α,β ,γ for (19). Then the kernel matrix Z in (4a) can
be written as Z = cZ̄(η) where from (5), the (i, j)th element of
Z̄(η) is K(i, j). There exist several ways to estimate c,η . Cur-
rently, the most widely used one is to embed the regularization
term θ T Z−1θ in (4a) in a Bayesian framework and estimate c,η
by maximizing the marginal likelihood.

To be specific, assume v(t) in (1) is Gaussian distributed and
θ ∼ N (0,cZ̄(η)). Then the maximum a posteriori (MAP)
estimation problem argmaxθ p(θ |YN) is equivalent to (4a).
Note that p(YN |c,η) = N (0,ΦT

NcZ̄(η)ΦN + σ2IM), then the
marginal likelihood maximization method argmaxc,η p(YN |c,η)
to estimate c,η is equivalent to

argmin
c,η

Y T
N (ΦT

NcZ̄(η)ΦN +σ
2IM)−1YN + log |ΦT

NcZ̄(η)ΦN +σ
2IM |. (21)

A tricky problem for (21) is how to handle the unknown σ2.
In Pillonetto and De Nicolao (2010); Chen et al. (2012), a low-
bias ARX model or a FIR model is first estimated and then its
sample variance σ̂2 is used as an estimate of σ2 and finally η

is estimated according to (21) with σ2 replaced by σ̂2.

Here we treat σ2 as an additional “hyper-parameter” and esti-
mate it together with η by maximizing the marginal likelihood,
MacKay (1992). Instead of directly estimating it, we define
c̄ = c/σ2. The cost function of (21) is written as l(c̄,η ,σ2) =
Y T

N (ΦT
N c̄Z̄(η)ΦN + IM)−1YN/σ2 + log |ΦT

N c̄Z̄(η)ΦN + IM|+
M logσ2, which is minimized with respect to σ2 at

σ
2∗ = Y T

N (ΦT
N c̄Z̄(η)ΦN + IM)−1YN/M (22)

Replacing σ2 with σ2∗ in l(c̄,η ,σ2) yields,

lprofile(c̄,η) = M logY T
N (ΦT

N c̄Z̄(η)ΦN + IM)−1YN

+ log |ΦT
N c̄Z̄(η)ΦN + IM|+M−M logM (23)

which is essentially the so-called profile log-likelihood or con-
centrated log-likelihood, Venzon and Moolgavkar (1988); Mur-
phy and Van der Vaart (2000). The hyper-parameters c̄,η are
then estimated by minimizing (23), i.e.,

c̃, η̃ = argmin
c̄,η

lprofile(c̄,η) (24)

With c̃, η̃ , the regularized least squares estimate (4b) is θ̂ R =
(ΦNΦT

N +(c̃K̄(η̃))−1)ΦNYN .

5. INITIALIZATION

As seen from (3), for t = 0, · · · ,n−1, the output y(t) depends on
the unknown initial values u(t−n), · · · ,u(−1). In our previous
works Chen et al. (2012, 2014) and also in Section 2.1, for
simplicity, we chose not to use the first n outputs y(t), t =
0, · · · ,n− 1 and start from y(n). This way of handling the
unknown initial conditions is called “non-windowing”, see e.g.
Ljung (1999). When the data length N is small (compared to the
FIR model order n), the non-windowing method may not work
well. In what follows, two other methods are considered.
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5.1 Pre-windowing

For t = 0, · · · ,n− 1, this method simply replaces the unknown
initial values u(t − n), · · · ,u(−1) by zeros. In this case, the
quantities M, YN ,ΦN and VN in Sections 2.1 and 4 should be
redefined as follows: M = N, YN ,VN ∈ RN with the ith element
of YN and VN being y(i) and v(i) respectively, and ΦT

N ∈ RN×n

with the ith row [u(i−1) · · · u(i−n)].

5.2 Estimating the transient as an additional regularized FIR
with impulsive input

System (1) can be realized in state space form:
x(t +1) = Adx(t)+Bdu(t),

y(t) =Cdx(t)+ v(t), t ≥ 0,
(25)

which yields y(t) = CdAt
dx(0) +∑

t−1
k=0 CdAt−1−k

d Bdu(k) + v(t).
For t = 1, · · · ,N, y(t) depends on the unknown initial condition
x(0). Then it is easy to see that the system

z(t +1) = Adz(t)+Bdu(t)+Ad(x(0)− z(0))δ (t),
y(t) =Cdz(t)+Cd(x(0)− z(0))δ (t)+ v(t), t ≥ 0,

(26)

where δ (t) = 1 for t = 0 and δ (t) = 0 for t 6= 0, has the same
output y(t) as (25). On the one hand, the role of z(0) is to
represent our guess on the unknown x(0), which may not be
right. On the other hand, the transient CdAd(x(0)− z(0)) in y(t)
due to the guess error of the initial value x(0)− z(0) can then
be captured by an impulse response from an additional input
which is an impulse δ (t); see also Ljung (2004).

Motivated by the above observations, system (1) is written as
y(t) = G0(q)u(t)+G∗(q)δ (t)+ v(t), t = 1, · · · ,N (27)

where G∗(q) is the transient dynamics due to the guess error
of the initial value x(0)− z(0). When computing G0(q)u(t), we
need to know u(t) for t < 0, which is chosen by the users and
actually reflects the users’ guess z(0) on the unknown x(0).

Again high order FIR models are used to model G0(q) and
G∗(q): G(q,θ1) for G0(q) and G(q,θ2) for G∗(q), where θ1
and θ2 are the FIR coefficient vectors of G(q,θ1) and G(q,θ2),
respectively. Now consider (4a). Define θ T =

[
θ

T
1 θ

T
2
]
∈ R2n.

Then the quantities M, YN ,ΦN and VN in Sections 2.1 and
4 should be redefined as follows: M = N, YN ,VN ∈ RN with
the ith element of YN and VN being y(i) and v(i) respectively,
and ΦT

N ∈ RN×2n with the ith row [u(i−1) · · · u(i−n) νi]
where for i ≤ n all elements of νT

i ∈ Rn are zero except
the ith one and for i > n, νi = 0. In this paper, the kernel
matrix Z in (4a) is assumed, for simplicity, to have a block
diagonal structure, i.e., Z = diag(Z1,Z2) (the regularization
term θ T Zθ = θ T

1 Z1θ1+θ T
2 Z2θ2, where the parameterization of

Zi, i= 1,2 should be done as what described in Sections 2.2 and
3. Solving the hyper-parameter estimation problem in Section
4 and then the regularized least squares problem in Section 2.1
yields the regularized FIR model estimate θ̂ R

1,N of θ1 and the
corresponding FIR model estimate G(q, θ̂ R

1,N) for G0(q).

6. NUMERICAL SIMULATION

6.1 Test data-bank

To examine the proposed stable kernels and also the proposed
methods for hyper-parameter estimation and initialization, we
regenerate the data-bank in Chen et al. (2012) and revisit the
data bank in Chen et al. (2014):

• D1: 1000 fast systems, data sets with N = 210, SNR=10
• D2: 1000 fast systems, data sets with N = 210, SNR=1
• D3: 2500 fast systems, data sets with N = 500, SNR=10
• D4: 2500 slow systems, data sets with N = 500, SNR=10
• D5: 2500 fast systems, data sets with N = 375, SNR=1
• D6: 2500 slow systems, data sets with N = 375, SNR=1

All systems are randomly generated 30th order stable discrete-
time systems. The fast systems have all poles inside the circle
with center at the origin and radius 0.95 and the slow systems
have at least one pole outside this circle. The signal to noise
ratio (SNR) is defined as the ratio of the variance of the noise-
free output over the variance of the white Gaussian noise.
In all cases the input is Gaussian random signal with unit
variance. Here D1 and D2 are the data collections in Chen
et al. (2014). D2 to D6 are regenerated and correspond to data
collections S1D1, S1D2, S2D1 and S2D2 in Chen et al. (2012),
respectively. The difference is that all data in the regenerated D2
to D6 are collected after getting rid of initial conditions effect.
More details can be found in Chen et al. (2012, 2014).
6.2 Simulation setup

For data collections D1 and D2, we estimate FIR model (2) with
n = 100 and for D3 to D6, we estimate (2) with n = 125.

For illustrations, we examine the following three stable kernels:

• (8b) with η = λ and is denoted by ’TC’;
• (19a) with η = β and β = 2α = 2/γ =C2, and is denoted

by ’SSMiS1’;
• (19b) with η = β and γ = 0 and is denoted by ’SSMiS2’.

Two methods for the hyper-parameter estimation are examined
here: the marginal likelihood maximization (21) and the profile
marginal likelihood maximization (24). The implementation
details can be found in Chen and Ljung (2013).

Three kinds of initialization scheme are compared here:

• Non-windowing method: it is denoted by ’NW’.
• Pre-windowing method: it is denoted by ’PW’;
• Estimation of the unknown transient by a regularized FIR

with an impulsive input: it is denoted by ’EST’.

For all estimated FIR models, the model fit is defined as

W = 100

1−

[
∑

n
k=1 |g0

k − ĝk|2

∑
n
k=1 |g0

k − ḡ0|2

]1/2
 , ḡ0 =

1
n

n

∑
k=1

g0
k

where for k = 1, · · · ,n, g0
k and ĝk represent the true and the

regularized impulse response estimate, respectively.

6.3 Simulation results

The average model fits are reported in the following two tables.

Marginal likelihood maximization

D1 D2 D3 D4 D5 D6 OD
TC + NW 81.5 56.9 90.3 72.2 66.3 42.5 68.3
TC + PW 85.2 68.4 91.1 76.0 68.9 54.8 74.1
TC + EST 84.4 65.4 91.1 75.7 68.1 49.3 72.3

SSMiS1 + NW 81.6 56.4 90.3 72.3 66.8 44.3 68.6
SSMiS1 + PW 85.1 68.4 91.1 76.0 69.3 54.2 74.0
SSMiS1 + EST 84.4 65.5 91.1 75.9 68.7 50.5 72.7
SSMiS2 + NW 83.8 60.4 91.6 74.7 65.9 45.7 70.3
SSMiS2 + PW 86.8 71.0 92.2 78.2 67.8 51.7 74.6
SSMiS2 + EST 86.9 69.2 92.5 78.3 67.9 47.3 73.7

OKM 84.4 64.6 91.3 75.5 67.7 48.9 72.1
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Profile marginal likelihood maximization

D1 D2 D3 D4 D5 D6 OD
TC + NW 82.5 60.3 90.3 72.2 64.9 41.7 68.6
TC + PW 85.3 68.5 91.1 76.0 67.9 51.7 73.4
TC + EST 86.1 68.5 91.2 75.9 67.2 48.9 73.0

SSMiS1 + NW 82.5 60.1 90.3 72.3 66.4 43.8 69.2
SSMiS1 + PW 85.3 68.5 91.1 76.0 69.2 53.8 74.0
SSMiS1 + EST 86.2 68.4 91.2 76.0 68.2 49.7 73.3
SSMiS2 + NW 84.6 62.8 91.6 74.6 63.9 40.4 69.7
SSMiS2 + PW 86.9 71.0 92.2 78.2 66.5 49.4 74.0
SSMiS2 + EST 88.2 71.3 92.5 78.3 67.4 46.1 74.0

OKM 85.3 66.6 91.3 75.5 66.8 47.3 72.2

In the above tables, the column “OD” shows the average model
fits over the 6 data collections and the row “OKM” shows
the average model fits over all tested kernels and methods for
initialization, and the largest average model fit for each column
in the table is written in bold.

6.4 Findings

We have the following empirical findings. First, SSMiS1 and
SSMiS2 kernels perform on the average a bit better than TC
kernel. SSMiS2 kernel is the best kernel over all data collec-
tions except for slow systems (D5 and D6), for which TC and
SSMiS1 kernels are better choices. Second, the two methods
pre-windowing and estimation of the transient yield much bet-
ter performance than the non-windowing method for all data
collections. In particular, the pre-windowing method is a better
choice on the average. Third, In contrast with the marginal like-
lihood method, the profile marginal likelihood maximization
method works better for fast systems and very short data (D1
and D2), works comparably for fast systems and long data (D3
and D4), works worse for slow systems and moderately short
data (D5 and D6). However, the worse performance in the last
case may be because of too low FIR model order.

7. CONCLUSION AND FUTURE WORKS

In this contribution, we introduced a new fundamental kernel
structure induced by stochastic state space models and its sev-
eral preliminary 1st order and 2nd order instances. An out-
standing topic in regularized system identification is whether
it is beneficial to make use of the correlation between different
dynamics associated with different inputs or outputs for multi-
input and/or multi-output system identification. The reason why
this topic has not been resolved so far is to a large extent
because there is no cheap way (in terms of the number of hyper-
parameters) to design the correlation between the different
dynamics so that the positive semi-definiteness of the overall
kernel is guaranteed. This obstacle is however swept away, with
the state space model induced stable kernel proposed in this
contribution. Indeed, it is straightforward to choose A,B(t) and
C with multiple rows, so that the corresponding kernel is not
only positive semi-definite but also stable, provided that the
conditions of Proposition 3.1 and Corollary 3.1 are satisfied.
Now it remains to answer if there exist suitable A,B(t) and
C such that making use of the correlation between different
dynamics is beneficial, which is under investigation. Another
topic is to study regularized marginally stable or even unstable
system identification by a careful design of A,B(t) and C.
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