
Multiobjective Cuckoo Search Applied to
Radial Basis Function Neural Networks

Training for System Identification

Helon Vicente Hultmann Ayala ∗

Leandro dos Santos Coelho∗, ∗∗

∗ Industrial and Systems Engineering Graduate Program (PPGEPS)
PUCPR, Curitiba, Brazil.

∗∗ Electrical Engineering Graduate Program (PPGEE)
UFPR, Curitiba, Brazil.

e-mails: {helon.ayala; leandro.coelho}@pucpr.br

Abstract: In the present work we introduce a system identification framework where no a priori
information on the system to be identified is available. Focusing in the specific case of radial
basis functions neural networks models, we insert the choice of the model complexity and its
inputs in the optimization procedure together with the model parameters, aiming at accuracy,
model validity and regularization in a multiobjective approach. The multicriteria problem is
solved by means of the multiobjective cuckoo search, which is based on an archiving technique
and the crowding distance metric. Simulation results are promising when the methodology is
applied to identify a robot arm given solely input and output data.

Keywords: System Identification; Multiobjective optimization; Cuckoo Search; Multiobjective
Cuckoo Search; Neural Networks; Radial Basis Functions; Robotics.

1. INTRODUCTION

Motivated by their relatively simple architecture and
property of universal approximation [Park and Sandberg,
1991], Radial Basis Function Neural Networks (RBFNNs)
have been applied to a wide range of problems such as
time-series forecast [Shen et al., 2011], identification of
nonlinear systems [Gan et al., 2012, Ko, 2012] and control
of dynamical systems [Coelho et al., 2010].

Generally the adjusted parameters of a RBFNNs are the
number of neurons in the hidden layer, the position of
the centers and widths of the Radial Basis Functions
(RBF) and the output weights. Setting the complexity of
a RBFNNs to solve an arbitrary approximation problem,
though a fundamental question, is still an unsettled issue.
Having defined the number of neurons on the hidden layer,
the training strategy most widely used is divided in a
two-stage procedure, namely (i) location of the centers
through unsupervised learning and (ii) supervised learning
to define the output weights. Step (i) may be performed
by randomly picking points from the training set [Broom-
head and Lowe, 1988] or by clustering data [Moody and
Darken, 1989]. Stage (ii) may be formulated as a regression
problem and thus solved by a least-mean-square such as
the Penrose-Moore pseudoinverse. Though the two-stage
procedure is relatively simple to implement, a RBFNNs
assumes its most general form when all the centers po-
sitions, widths and output weights are obtained through
supervised learning [Haykin, 2009].

Several different supervised training procedures have been
proposed for RBFNNs. While some adjust solely a fixed

number of parameters, others propose rules to increase
or delete hidden nodes. In [Barreto et al., 2006] the au-
thors propose a hybrid algorithm with least squares and
genetic algorithms, for improving respectively local and
global search for the RBFNNs parameters. Based on the
neuron activity, in [Qiao and Han, 2012] the architecture
of a RBFNNs is defined jointly with the estimation of the
parameters. The orthogonal least square algorithm is used
combined with the Bayesian information criterion, in the
work of [Zhou et al., 2011], to select an appropriate number
of neurons in the RBFNNs hidden layer. In [Gan et al.,
2012], the authors propose for time series modeling and
systems identification a hybrid methodology for improv-
ing the global-local search potential in RBFNNs training
by mixing evolutionary with gradient based algorithms,
where the former is run by a number of iterations and
the later refines the solution at the end. Particle swarm
optimization is used to perform supervised fuzzy clustering
of the centers during RBFNNs design in [Tsekouras and
Tsimikas, 2013].

On the other hand, in many cases as in dynamic system
identification for process control, not always the inputs of
the model are known a priori. On this particular, the work
of [Gomm and Yu, 2000] proposes a methodology to select
the lags on the input and outputs of the system in the case
of NN models, by the identification of local linear models in
the operation range space. In [Loghmanian et al., 2012] was
proposed the optimization, through the Non-Dominated
Sorting Genetic Algorithm version II, of both the accuracy
of the multi-layer perceptron NN and its model structure.
Based on the accuracy of (N)ARX polynomial models and
their model validity, in [Chen et al., 2007] the authors

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 2539



introduce a new fitness function optimized through genetic
algorithms based on the model validity tests which defines
not only the parameters of the models, but also the set of
regressors of both input and output of the system.

Metaheuristic optimization techniques such as genetic al-
gorithms, particle swarm optimization, ant colony opti-
mization and firefly algorithm are interesting approaches
to proceed the training of a NN as an optimization prob-
lem, as seen in some of the previously cited examples.
Among them, the Cuckoo Search (CS) proposed by Yang
and Deb [2010] has recently shown good results when
compared to other techniques [Civicioglu and Besdok,
2013]. It is based in the brood parasitism behavior of
cuckoos (which lay their eggs in communal nests in order to
improve their chance of reproduction) together with their
flight representation by Lévy distribution based random
walks. As a relatively new metaheuristic technique, it has
not been widely explored on the task of multiobjective op-
timization except on a few works [Coelho et al., 2013, Yang
and Deb, 2013, Syberfeldt, 2014]. In the present work, we
extend the original CS algorithm to Multiobjective Cuckoo
Search (MOCS) through the use of an external archive
and the crowding distance factor [Deb et al., 2000], as in
[Coelho et al., 2013].

As mentioned before, the inputs of a model in the case
of systems identification may not be available a priori.
Moreover, the complexity of the RBFNNs is generally
set manually in a tedious trial and error procedure. In
the present work, we establish a training procedure which
obtains all the neural network parameters and architecture
– e.g. the inputs of the RBFNNs, the number of neurons
in the hidden layer, the centers, widths of the RBFs and
the output weights of the RBFNNs. To do so, we present
an encoding scheme which includes in the optimization
procedure the definition of the parameters and the archi-
tecture choice of the RBFNNs, as well as its inputs based
on the system’s input and output regressors. The resulting
multiobjective optimization problem is solved by MOCS,
showing good results when applied to real data from a
robotic arm, encouraging future research endeavors. The
main contribution of the present work is thus the definition
of RBFNNs models for system identification based on the
accuracy, model validity and regularization through an
multiobjective problem formulation solved by MOCS.

The remainder of this paper is organized as follows. The
Multiobjective Cuckoo Search procedure is explained in
Section 2. In Section 3 we introduce the mathematical for-
mulation of the RBFNNs models. The methodology pro-
posed for nonlinear system identification through MOCS
and RBFNNs models is detailed in Section 4. The sim-
ulation results when applying the methodology to the
identification of a robot arm are given in Section 5. The
conclusions and future research directions are stated in
Section 6.

2. MULTIOBJECTIVE OPTIMIZATION
FUNDAMENTALS AND CUCKOO SEARCH

In the present section, we introduce the MOCS algorithm.
Section 2.1 state basic concepts used in the paper regard-
ing Multiobjective Optimization (MO). Then, in Section

2.2, the original CS algorithm is presented. The multiob-
jective adaptation for CS is introduced in Section 2.3.

2.1 MO Fundamentals

A general unconstrained MO problem containing a number
of objectives to be minimized without loss of generality
may be formulated as the minimization of fq(x), q =

1, 2, . . . , Q where 1 x = [x(1), x(2), . . . , x(nx)]T denote the
vector of nx decision variables bounded in the interval
xL(i) ≤ x(i) ≤ xU(i)

,∀i = {1, 2, . . . , n} [Deb, 2001].

In the case of multiobjective optimization, all Q objec-
tive functions should be optimized concomitantly. Solu-
tions therefore cannot be compared is terms of optimality
solely by examining one objective function. The concept
of multiobjective optimality is introduced on the basis of
dominance. Say one want to compare a solution xa with
a solution xb. According to the concept of dominance, a
solution xa dominates a solution xb, denoted by xa ≺ xb, iff
fq(xa) ≤ fq(xb),∀q ∈ {1, 2, . . . , Q}. Possibly the objective
functions are conflicting, what means that diminishing
one increases another. The set of Pareto solutions (non-
dominated solutions) may also be termed as Pareto front.
The set of solutions which represent the optimal for a
multiobjective problem is said as the true Pareto set or
true Pareto front.

There are in general two main goals when designing multi-
objective optimization algorithms to deliver an estimated
Pareto front [Deb, 2001]: (i) approximate the true Pareto
front as close as possible and (ii) diversify the approxi-
mated Pareto front. Approximating the true Pareto front
is related to convergence. Diversifying the approximated
Pareto front provides the decision maker a set of solutions
which represents trade-off among the objective functions.

The result of a multiobjective optimization procedure is
an approximate set of nondominated solutions. Once the
problem may require the designer to choose one solution
among the Pareto set, it is possible to define metrics to
proceed this choice such that the solution represents a
compromise among the solutions. In this paper we utilize
the minimum harmonic mean of the normalized objective
functions in order to choose the best compromise solution
among the approximated Pareto set.

2.2 Cuckoo Search

Cuckoo Search (CS) has been recently proposed by Yang
and Deb [2010] and has shown good results when com-
pared to other nature inspired metaheuristic techniques
for the resolution of optimization problems such as particle
swarm optimization, differential evolution and artificial
bee colony [Civicioglu and Besdok, 2013].

Cuckoos have a peculiar reproduction strategy – some
cuckoo’s species produce eggs and put in communal
nests, while possibly removing other species’s eggs. Other
cuckoo’s species lay eggs in the nests of other host birds
– even from other species –, performing brood parasitism.
Whenever a host bird detects that an egg does not belong
1 In general the n-th component of a generic vector v is denoted as
v(n).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2540



to it, it will remove those eggs from its nest or abandon
the nest in order to look for a new site for it.

On the other hand, whenever looking for food animals
search the environment in a random fashion. It is possible
to approximate the path tracked by an animal by a random
walk, for the following step depends on the current location
and the probability of moving in a certain direction.
Which direction will be followed can be set according
to a probability that may be modeled mathematically.
Studies have shown that the behavior of the flight of some
animals and insects has some correspondence with the
Lévy probability distribution [Yang and Deb, 2010].

The aforementioned behaviors have given researchers the
idea to propose CS, a bio-inspired heuristic optimization
technique. It is constituted of three simple steps [Yang
and Deb, 2010]: (i) each cuckoo lays one egg at each time
and puts it in a nest chosen randomly; (ii) the nest with
the best eggs (solutions) proceeds to the next iteration;
and (iii) the quantity of host nets is set beforehand and a
host bird can discover the egg of an intruder with a given
probability pa ∈ [0, 1] – if the host bird finds an alien egg,
it will leave its nest and build a new one in a completely
new location.

Let xi(t) denote the i-th possible solution at t-th iteration.
Then

xi(t+ 1) = xi(t)⊕ α · Lévy(λ) (1)
states the equation of the Lévy flight, where the operator
⊕ denotes entry-wise multiplications, α > 0 represents the
step size of the search [Yang and Deb, 2010]. The Lévy
flights are essentially random walks with aleatory steps
taken from a Lévy distribution

Lévy ∼ u = t−λ, 1 < λ ≤ 3. (2)
Being so, the flight of a cuckoo intrinsically represents a
random walk process which follows a distribution accord-
ing to a power-law with heavy tail [Yang and Deb, 2010].

The project parameters of the CS algorithm are n (number
of cuckoos, the size of the solutions which are performed
the algorithm operators at each iteration), pa (probability
of a given cuckoo leaving the nest to build one elsewhere)
and α (the step size of the Lévy flight).

2.3 Multiobjective Cuckoo Search

As reported previously in the literature, the CS algorithm
– originally designed to cope with single objective opti-
mization problems – may be adapted to a more general
framework in order to solve multiobjective problems and
deliver a good approximation of the Pareto front [Coelho
et al., 2013, Yang and Deb, 2013].

In the present work, we adopt an archiving strategy as in
[Coelho et al., 2013] to adapt the original CS algorithm to
solve multiobjective optimization problems. After getting
the cuckoos by Lévy flights, the new solution is evaluated
and if it dominates the old one the cuckoo’s position is
updated in a rather greedy procedure. After getting the
cuckoos, the archive is updated and the nondominated
solutions are kept. The randomized search is performed
by leaving the worst nests with probability pa and the
nondominated check is performed once again in the new
positions. The best cuckoo is chosen by sorting the archive

with the Crowding Distance Factor (CDF) [Deb et al.,
2000] so as to guarantee that the Pareto front approxi-
mated is also diversified and the solutions exploring not
densely populated regions of the objective space are given
preference. The MOCS has thus one more project param-
eter with respect to CS: na, which represents the size of
the archive which contains the nondominated solutions.

3. RADIAL BASIS FUNCTION NEURAL NETWORKS

The current section gives the mathematical formulation of
RBFNNs. They are typically constituted of three layers,
namely the input, hidden and output layers. The input
layer connects sensorially the network with the environ-
ment with source nodes to the hidden layer. The neurons in
the the hidden layer have radial basis activation functions.
This layer is responsible for the mapping from a nonlinear
to a linear space. In the output layer, it is performed the
linear weighted sum of the activations obtained in the
hidden layer.

Mathematically a RBFNNs can be expressed in the fol-
lowing terms

ŷ(t) =

M∑
m=1

w(m)φ(r(t), cm, σm), (3)

where M ∈ N+ is the number of neurons in the hidden
layer, ŷ(t) ∈ R and r(t) ∈ Rnr are respectively the
network predicted output and the input vector at a given
instant t; cm ∈ Rnr and σm ∈ R+ are respectively the
center and the width of the m-th hidden node of the
neural network. The output weights are given by the vector
w ∈ RM . The function φ(·) is restricted to the radial basis
function class. Examples of radial basis functions are the
thin-plate-spline, multiquadratic, inverse multiquadratic
and Gaussian functions. The activation function used more
frequently in most applications (and considered in the
present paper) is the Gaussian RBF

φ(r, c, σ) = exp
(
−||r − c||2

2σ2

)
. (4)

Note that we restrict to the single output case. It is
possible, however, to design a set of neural networks as
in (3) to extend to the multiple output case.

All three layers of RBFNNs have different roles. The input
layer is responsible for connecting the network with the
environment and is composed of source nodes. The second
layer, which is the only hidden layer of the RBFNNs,
applies a nonlinear transformation from the input to the
hidden space. This nonlinear transformation is followed by
a linear one, from the hidden to the output space [Haykin,
2009].

4. NONLINEAR SYSTEM IDENTIFICATION
METHODOLOGY

The methodology for nonlinear system identification
through multiobjective optimization for RBFNNs models
is detailed in the present section. The procedure of defining
a model and its parameters is stated as a multiobjective
problem, where the error, regularization and model vali-
dations coefficients are optimized.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2541



Fig. 1. Individual encoding scheme. Note that the first NAR+NX +Nn elements of the individual are binary, while the
rest are real numbers. The binary elements indicate the presence of the lagged outputs, inputs and neurons in the
correspondent model.

Let us define some useful notation used in the current
development. The one step ahead prediction error (or
residual) is denoted as

ε(t) = y(t)− ŷ(t). (5)
The normalized error for the one step ahead prediction is
then given by [Chen et al., 2007]

e =

(∑N
i=1 ε(t)

2∑N
i=1 y(t)

2

)1/2

, (6)

where N is the total number of samples of input and
output data. The correlation function coefficients between
two sequences {a} and {b} is given by [Billings et al., 1992]

φab(τ) =

∑N−τ
t=1 [a(t)− ā]

[
b(t+ τ)− b̄

][∑N
t=1[a(t)− ā]2

∑N
t=1[b(t)− b̄]2

]1/2 . (7)

where the upper bar denotes the mean value of the the
sequence and −1 ≤ φab(τ) ≤ 1. We define the mean of
the sum of the squared correlation function coefficients
between two sequences {a} and {b} as

ρab =

∑τmax

τ=−τmax

[
φab(τ)

2
]

2τmax + 1
, (8)

where τmax is the maximum number of lags admitted in
(7). The multiple correlation coefficients are defined as
[Schaible et al., 1997]

R2 = 1−
∑

ε(t)2∑
(y(t)− ȳ)2

, (9)

For the training and validation phases we denote the
multiple correlation coefficient respectively as R2

t and R2
v.

The design of a RBFNNs architecture involves the defini-
tion of the number of hidden neurons and the input signals.
This kind of neural network may be trained through the
definition of the linear weights w(m), the radial basis func-
tions centers cm and spreads σm. The RBFNNs assumes
it most general form if its parameters are defined in a
supervised way [Haykin, 2009]. In the present paper we for-
mulate the supervised training procedure of the RBFNNs
as a multiobjective optimization procedure, in order to
define both the RBFNNs parameters and architecture. The
vector of decision variables of the optimization procedure
encodes both the architecture (inputs and number of neu-
rons present in the hidden layer of the RBFNNs) and
the project parameters. Figure 1 illustrates the solution
encoding adopted. In this figure, NAR and NX are respec-
tively the maximum number of lags in the output and

inputs, while Nn represents the maximum number of neu-
rons allowed in the RBFNNs architecture. The first NAR

elements of the solution vector represents the presence (1)
or absence (0) of the correspondent lagged output y(t)
in the input of the RBFNNs. Similarly, the following NX

elements give the presence/absence of the given delayed
input u(t). The next Nn elements denote the presence
or absence of each candidate neuron in the network. The
following parameters are real and represent the centers and
spreads of each active neuron of the RBFNNs.

Following the representation given in Fig. 1, all the pa-
rameters for the RBFNNs architecture and parameters are
given, except for the output weights w(m). These param-
eters may be simply defined by a least-squares procedure
as the Penrose-Moore pseudoinverse [Haykin, 2009].

In the work of Chen et al. [2007], the authors propose
the use of correlation coefficients in the procedure for
obtaining the parameters of NARX models. As noted in
[Billings et al., 1992], the following five conditions should
hold to check the validity of a neural network model: (i)
φεε(τ) = δ(τ), (ii) φuε(τ) = 0,∀τ , (iii) φ(u2)′ε(τ) = 0,∀τ ,
(iv) φ(u2)′ε2(τ) = 0,∀τ and (v) φε(εu)(τ) = 0, τ ≥ 0, with
(u2)′(k) = u2(k) − ū2 and (εu)(k) = ε(k + 1)u(k + 1).
Being so, in similar lines as in [Chen et al., 2007], the
first objective function to be minimized during the training
procedure is defined as
f1(x) = e+ ρεε + ρuε + ρ(u2)′ε + ρ(u2)′ε2 + ρε(εu). (10)

The first term of the objective function aims at minimizing
the error, while the rest focuses on the adequacy of the
model through correlation tests.

The second objective function will guarantee that the
model not only fits the data well, but also generalizes the
dynamic system aiming at regularization:

f2(x) =
1

M

M∑
m=1

(w(m))2. (11)

While using this objective function, the candidate RBFNNs
which have smaller output weights will be given preference.
That tend to lead to RBFNNs which avoid overfitting for
having smoother outputs.

4.1 Penalty procedure

During the search procedure the solution shown in the
scheme in Fig. 1 may present undesired response. We
penalize solutions which are not feasible from the point

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2542



10−1 100
10−1

101

103

105

f1

f 2

Fig. 2. Pareto optimal solutions (black stars) obtained at
each of the 30 runs and nondominated solutions from
this set (blue stars). The best compromise solution is
shown with a red circle, while the minimum for each
objective function is denoted with green circles.

0 0.5 1 1.5 2

·104

−4

−2

0

2

4

t

E
rr

or

−1 0 1
0

1,000

2,000

3,000

4,000

Error

O
cc

ur
en

ce

Fig. 3. Best compromise solution error (upper) and error
histogram (lower) for both training and validation
phases.

of view of the architecture, that is, solutions that present
no neurons in the hidden layer or no regressors in the
output and input. RBFNNs obtained whose performance
present values for the multiple correlation coefficient in the
training phase smaller than 0.9 are also penalized [Schaible
et al., 1997].

5. SIMULATION RESULTS

The present section shows the results obtained when
solving the multiobjective problem formulated with the
objective functions as in (10) and (11) with the individual
encoding scheme illustrated in Fig. 1 by MOCS introduced
in the subsection 2.3.

We test the methodology introduced in Section 4 with
real data acquired from an experimental industrial robot
[Wernholt and Gunnarsson, 2006]. In this paper, the
authors propose a methodology for nonlinear grey-box
identification, in order to obtain the parameters of the
arm including flexibility in the gearbox and in the arm

Table 1. Solutions found by MOCS and its
results: number of neurons in the hidden layer,
neural network inputs and multiple correla-
tion coefficients in the training and validation

phases.

Solution M RBFNNs input R2
t R2

v

xf1 6 r(t) =


y(t− 1)
y(t− 2)
y(t− 3)
y(t− 4)
u(t− 1)

 0.9995 0.9994

xf2 5 r(t) =

[
y(t− 1)
y(t− 3)
u(t− 5)

]
0.9566 0.9313

xc 6 r(t) =


y(t− 1)
y(t− 3)
u(t− 1)
u(t− 2)
u(t− 3)
u(t− 4)

 0.9989 0.9989

structure and friction in the system. The focus in the
present work, however, is to obtain a black-box model
for the system, assuming that no a priori information
about its dynamics is available. The system output y(t)
is the velocity at the end effector, while the input u(t) is
the torque at the joint motor. The dataset used contains
19,838 samples, divided into training and validation phases
(50% split).

The project parameters related to the RBFNNs architec-
ture utilized were Nn = 10, NAR = 4 and NX = 5.
With respect to MOCS, the project parameters were set
to n = 50, pa = 0.25, α = 0.01 and na = 50. We used
τmax = 20 to calculate the correlation coefficients. The
first two parameters were set using the guidelines provided
in [Yang and Deb, 2013]. The parameter na should not be
set arbitrarily high in order to maintain solely representa-
tive solutions in the archive. The stopping criteria is 500
iterations of the algorithm. The multiobjective optimiza-
tion problem is solved by MOCS for the minimization of
the objective functions f1 and f2 in 30 independent runs
with different initial conditions.

Figure 2 illustrates with black stars all solutions found by
running MOCS 30 times with different initial conditions.
In this plot, the resulting nondominated solutions when
comparing the results of all 30 runs are represented by
blue stars. From this set, the objective functions for xf1
(minimum f1(x)) and xf2 (minimum f2(x))are shown by
green circles and the xc (best compromise solution) is
represented by a red circle. The results concerning the
solution xc are shown in Fig. 3, which gives the plot of the
error and its histogram (for both training and validation
phases). Table 1 shows the number of neurons (M), lagged
inputs and outputs selected as the RBFNNs input (r(t))
and the multiple correlation coefficients R2

t and R2
v.

The resulting Pareto front given in Fig. 2 shows that
the optimization procedure was able to find a diverse
nondominated set with 115 solutions by running 30 times.
Comparing all 30 runs, there was 77.17 solutions in av-
erage in the final Pareto front, with a maximum of 118
and a minimum of 38 nondominated solutions. The best
compromise solution RBFNNs results detailed in Table 1

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2543



show the network accuracy and capacity of generalization,
illustrated by the values of R2

t and R2
v. We can also see

the prediction errors and their good statistical properties
from Fig. 3.

6. CONCLUSION

The present paper evaluated a methodology for incor-
porating both the complexity and input selection for
RBFNNs models in its training procedure. Towards this
end, we proposed a solution encoding scheme to formulate
the RBFNNs training procedure as a multiobjective op-
timization problem and solved it by MOCS. The MOCS
algorithm has been shown effective to solve the problem.
It is important to mention that the methodology assumes
that no a priori information about the system dynamics
(input and output regressors and model complexity) is
available.

Results showed the validity of the proposed methodology
and encourage further research, which will aim at (i) ap-
plication to more complex and multivariable systems; (ii)
extension of the formulation to time-series forecasting; (iii)
comparison with other metaheuristics; (iv) generalization
of the proposed encoding scheme to other types of neural
networks and to other classes of models, e.g nonlinear
autoregressive moving-average with exogenous inputs.

ACKNOWLEDGEMENTS

This study was partially supported by the Brazilian
National Council of Scientific and Technological De-
velopment (CNPq) under Grants 479764/2013-1 and
307150/2012-7/PQ and by CAPES (Brazilian research
agency) through a PROSUP scholarship.

REFERENCES

A. M. S. Barreto, H. J. C. Barbosa, and N. F. F.
Ebecken. GOLS—genetic orthogonal least squares al-
gorithm for training RBF networks. Neurocomputing,
69(16):2041–2064, 2006.

S. A. Billings, H. B. Jamaluddin, and S. Chen. Proper-
ties of neural networks with applications to modelling
non-linear dynamical systems. Int. J. Control, 55(1):
193–224, 1992.

D. Broomhead and D. Lowe. Multivariable functional
interpolation and adaptive networks. Complex Systems,
2:321–355, 1988.

Q. Chen, K. Worden, P. Peng, and A.Y.T. Leung. Genetic
algorithm with an improved fitness function for (N)ARX
modelling. Mech. Syst. Signal Pr., 21(2):994–1007, 2007.

P. Civicioglu and E. Besdok. A conceptual comparison
of the Cuckoo-search, particle swarm optimization, dif-
ferential evolution and artificial bee colony algorithms.
Artif. Intell. Rev., 39(4):315–346, 2013.

L. S. Coelho, M. W. Pessôa, R. S. Rodrigues, and
A. A. R. Coelho. Model-free adaptive control design
using evolutionary-neural compensator. Expert Syst.
Appl., 37(1):499–508, 2010.

L. S. Coelho, F. A. Guerra, N. J. Batistela, and J. V.
Leite. Multiobjective cuckoo search algorithm based
on Duffing’s oscillator applied to Jiles-Atherton vector
hysteresis parameters estimation. IEEE T. Magn., 49
(5):1745–1748, 2013.

K. Deb. Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley & Sons, Inc., New York, NY,
USA, 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast elitist multi-objective genetic algorithm: NSGA-II.
IEEE T. Evolut. Comput., 6(2):182–197, 2000.

M. Gan, H. Peng, and L. Chen. A global–local opti-
mization approach to parameter estimation of RBF-type
models. Inform. Sciences, 197:144–160, 2012.

J. B. Gomm and D. L. Yu. Order and delay selection for
neural network modelling by identification of linearized
models. Int. J. Syst. Sci., 31(10):1273–1283, 2000.

S. S. Haykin. Neural Networks and Learning Machines.
Prentice Hall, 2009.

C.-N. Ko. Identification of non-linear systems using radial
basis function neural networks with time-varying learn-
ing algorithm. IET Signal Process., 6(2):91–98, 2012.

S. M. R. Loghmanian, H. Jamaluddin, R. Ahmad, R. Yu-
sof, and M. Khalid. Structure optimization of neu-
ral network for dynamic system modeling using multi-
objective genetic algorithm. Neural Comput. Appl., 21
(6):1281–1295, 2012.

J. Moody and C. J. Darken. Fast learning in networks of
locally-tuned processing units. Neural Comput., 1(2):
281–294, 1989.

J. Park and I. W. Sandberg. Universal approximation
using Radial-Basis-Function networks. Neural Comput.,
3(2):246–257, 1991.

J.-F. Qiao and H.-G. Han. Identification and model-
ing of nonlinear dynamical systems using a novel self-
organizing RBF-based approach. Automatica, 48(8):
1729–1734, 2012.

B. Schaible, H. Xie, and Y.-C. Lee. Fuzzy logic models
for ranking process effects. IEEE T. Fuzzy Syst., 5(4):
545–556, 1997.

W. Shen, X. Guo, C. Wu, and D. Wu. Forecasting stock
indices using radial basis function neural networks opti-
mized by artificial fish swarm algorithm. Knowl.-Based
Syst., 24(3):378–385, 2011.

A. Syberfeldt. Multi-objective optimization of a real-world
manufacturing process using cuckoo search. In X.-S.
Yang, editor, Cuckoo Search and Firefly Algorithm,
volume 516 of Studies in Computational Intelligence,
pages 179–193. Springer, 2014.

G. E. Tsekouras and J. Tsimikas. On training RBF
neural networks using input–output fuzzy clustering and
particle swarm optimization. Fuzzy Sets and Systems,
221:65–89, 2013.

E. Wernholt and S. Gunnarsson. Nonlinear identification
of a physically parameterized robot model. In 14th IFAC
Symposium on System Identification, pages 143–148,
Newcastle, Australia, 2006.

X.-S. Yang and S. Deb. Engineering optimisation by
cuckoo search. Int. J. Math. Model. Numer. Optim.,
1(4):330–343, 2010.

X.-S. Yang and S. Deb. Multiobjective cuckoo search
for design optimization. Comput. Oper. Res., 40(6):
1616–1624, 2013.

P. Zhou, D. Li, H. Wu, and F. Cheng. The automatic
model selection and variable kernel width for RBF
neural networks. Neurocomputing, 74(17):3628–3637,
2011.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2544


