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Abstract: This paper presents some results regarding location of transfer function zeros in
general network control systems with dynamics of arbitrary order. The numerator polynomial
of the transfer function is derived as a function of single agent dynamics and a Laplacian matrix.
The results already known in literature are extended from single integrator and bidirectional
formations to general dynamics and general interconnection structures. The location of zeros is
related to poles of a slightly modified structure. Therefore, in some cases the zeros must follow
the same root-locus-like rules as the poles do and they interlace.

1. INTRODUCTION

Networked control systems have become very intensive
field of research. Numerous results for control of highway
platoons, robot formations or squads of helicopters were
published. It has a close relation to consensus, in which
convergence to common value is desired. Formation control
adds additional requirements of exogenous control input.
Then, tracking of a desired value or formation leader’s
position becomes important. In this paper we consider
transfer functions in general network control systems or
formation control. The terms networked control systems
and formation control are used interchangeably.

Transfer functions can be used in analysis of performance
or norms of the networked system. One example is the
paper by Li et al. (2011) where H∞ norm of the system
is derived using transfer functions. A platoon transfer
function is used in a proof of harmonic instability of asym-
metric vehicular platoon in the paper Herman et al. (2014).
Even non-rational transfer function proves to be useful in
reflection absorbing, as shown in Martinec et al. (2013).
Other interesting results related to norms of formations
are those of Zelazo and Mesbahi (2011). They indicate that
H2 norm of the overall system does not depend directly on
the algebraic connectivity, while H∞ norm does. Algebraic
connectivity is related to the second smallest eigenvalue of
Laplacian as shown in Olfati-Saber et al. (2007).

In any formation control, stability is a crucial issue. For the
ease of analysis, only linear and identical models are often
considered in the formations. It was shown in the paper
by Fax and Murray (2004) that the overall formation of
identical vehicles is stable if and only if it is stable for
all eigenvalues of Laplacian matrix. Nyquist criterion was
used to test stability of SISO systems for all eigenvalues
of Laplacian. It is also shown in Herman et al. (2013) that
the eigenvalues of Laplacian matrix act as a gain in the
feedback loop of individual vehicle model. If the exchange
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of information between any two vehicles is symmetric, then
the poles of whole formation are determined to lie on
a root-locus-like plot. Numerous results are available for
stabilization of consensus networks. One approach, which
is used in Fradkov and Junussov (2011); Zhang et al.
(2011), is based on changing the gains when the graph
topology changes.

Input-output behavior of a linear system is given by the
poles and zeros of the transfer function matrix. While the
location of poles of formation model is now well under-
stood, much lower attention was paid to the location of
zeros. Transfer functions and mainly results on location
of zeros in consensus based algorithms were derived in
the paper by Briegel et al. (2011). Only single integra-
tor model of one vehicle and symmetric communication
structure were considered. Conditions on relative order
of the transfer function and requirements for minimal-
phase system are given. Their results are extended in
our paper to arbitrary open loop dynamics and arbitrary
communication topology.

We study the location of zeros in a system where one agent
acts as a controlling node (it has some known input) and
the other node serves as an output. The object of interest
is a transfer function from the controlling node to the
observing node.

This paper is structured as follows. In the next section we
present some necessary results from the graph theory. The
third section presents the models used and block diago-
nalizes the system. In the fourth section the numerator of
transfer function is derived and its relationship the graph
Laplacian is shown. Fifth section discusses an example of
a transfer function in an undirected graph. Finally, the
paper is concluded and we shed some light on the future
work.

Notation: We denote matrices with capital letters and
particular element in matrix A is denoted as aij . Vectors
are denoted with lowercase letters, their elements as gi
and constants by Greek letters. A canonical basis vector
is ei = [0, . . . , 1, . . . , 0]T with 1 on the ith position.
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2. GRAPH THEORY

The formation interconnection (sharing of information)
can be viewed as a directed graph. The graph G has
a vertex set V(G) and an arc set E(G). The arc ε(νi, νj)
is oriented and means that the jth vehicle receives its
information from the ith vehicle (the tail of the arc). A
directed path pi:j from i to j of length l(pi:j) is a sequence
of vertices and arcs ν1, ε1, ν2, ε2, . . . νl+1, where each vertex
and arc can be used only once. The length of the shortest
path between i and j is called the distance di:j of vertices.
A cycle is a path with the first and last vertices identical.

An adjacency matrix is defined as A = (aij). Its entries
aij are either zero if there is no arc between νi and νj or
a positive number called weight if the arc is present. We
also define the weight of the path as w(pi:j) and it equals
w(pi:j) =

∏
k,m∈pi:j akm. It is the product of weights of

all arcs in the path. Similarly, we can define the weight of
a subset G′

of a graph as

w(G
′
) =

∏
ε(k,m)∈E(G′ )

akm. (1)

A directed tree is a connected subset of a graph without
cycles. A diverging directed tree always has a path from
the particular node called root to every other node in the
tree. There is no path going to the root in the diverging
tree and each vertex in a tree has in-degree one. A forest
is a set of mutually disjoint trees. A spanning forest is a
forest on all vertices of the graph. We denote (following

the notation in Chebotarev and Agaev (2002)) F i→jk a set
of all spanning forests with k arcs, which contains a tree
with node j which diverge from the root i. The weight of
this set is

w(F i→jk ) =
∑

w(F̄ i→jk ), (2)

where the sum is taken over all forests F̄ i→jk in the set.

Let us denote as D = d(νi) the diagonal matrix of sums
of weights of the arcs incident to the vertex i. Then the
Laplacian matrix of a directed graph is defined as

L = D −A. (3)

The Laplacian has the following properties

(1) the vector 1 of all ones is always a right eigenvector of
L with a corresponding eigenvalue 0, i. e. L1 = 0. The
reason for this is that the sum in rows equals zero by
definition of L.

(2) the real parts of all eigenvalues λi are nonnegative.
Lv = λiv and <{λ} ≥ 0.

Since the graph is generally directed, Laplacian matrix
does not have to be symmetric and then the eigenvalues
λi can be complex.

3. SYSTEM MODEL AND DIAGONALIZATION

We assume a formation consisting of N vehicles or agents.
All are modelled as a SISO system, where a dynamic
controller is used. Each vehicle is governed locally, so no
central controller is used. The vehicle model is given as
a transfer function

G(s) =
b(s)

a(s)
. (4)

The output of the ith agent is usually position and is
denoted as xi. The agent model is fed from an output of
the controller, which is again given in a transfer function
form

R(s) =
q(s)

p(s)
. (5)

As the plant and controller are connected in series, the
open-loop model is given as

M(s) = G(s)R(s) =
b(s)q(s)

a(s)p(s)
. (6)

The order of denominator of open loop is n, the order of
numerator m. The open loop model can be written in a
state space form with xi ∈ Rn×1 as a state variable as

ẋi = Axi +Bui (7)

xi = Cxi. (8)

The dimensions of the matrices are A ∈ Rn×n, B ∈ Rn×1,
C ∈ R1×n.

The goal of the formation is to keep preset distances to the
neighboring vehicles. The neighbor of a vehicle i is defined
as a vehicle j, from which vehicle i can obtain information
about the output, that is, there exists an arc ε(νi, νj) in
the graph. The vehicle should drive the relative spacing
error to zero. This input to the ith vehicle is defined as

ẽi =
∑

j∈N (i)

(xi − xj − δrefi,j), (9)

whereN (i) denotes the set of neighbors of ith vehicle. This
can be written in a more compact form as

ẽ = Lx+ u (10)

with ẽ = [ẽ1, . . . , ẽN ]T , x = [x1, . . . , xN ]T and u =
[
∑
j∈N (1) δref1,j , . . . ,

∑
j∈N (N) δrefN,j ]

T .

3.1 Formation description

As the input to each vehicle is a function of the states of
its neighbors, we combine (10) and (7) to obtain

ẋ = (IN ⊗A)x− (L⊗BC)x− (IN ⊗B)u (11)

x = (IN ⊗ C)x, (12)

where x = [xT1 , . . . , x
T
N ]T is a stacked vector of states of

individual vehicles and u = [u1, . . . , uN ]T . A Kronecker
product is denoted as ⊗. The input ui can be a sum of
reference distances as above or any other value.

To obtain the poles, a diagonalization approach is pro-
posed in the paper by Fax and Murray (2004). In the
paper Schur decomposition is used, while here we use the
transformation to a Jordan form. The state transform is
given by

x̂ = (V ⊗ In)−1x (13)

with L = V JV −1. The matrix V = [v1, . . . , vN ] consists of
column eigenvectors or generalized eigenvectors vi. Certain
element of V is denoted as vij . Matrix J is a Jordan form
of L. After this transformation, a block diagonal system is
obtained

˙̂x = [IN ⊗A− J ⊗BC]x̂+ (V −1 ⊗B)u (14)

x = (V ⊗ C)x̂. (15)

Let us have a closer look on a particular diagonal block.
If it corresponds to a Jordan block of size one, then it has
a form

˙̂xi = [A− λBC]x̂i +B(eiV
−1u). (16)
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Fig. 1. One diagonal block for the case of Jordan block of
size 2. The eigenvalue λi acts as a gain in the feed-
back. Only one closed loop is present if the diagonal
subsystem corresponds only to Jordan block of size
one.

The input to the ith block will be denoted ūi = eiV
−1u.

The equation (16) describes an output feedback system
with gain λi, so the diagonal block can be written in
a transfer function form as

Ti(s) =
b(s)q(s)

a(s)p(s) + λib(s)q(s)
. (17)

If, on the other hand, the block in (16) corresponds to
a Jordan block of size 2, then it can be written

˙̂xi = (A− λiBC)x̂i +BCx̂i+1 +B(eiV
−1u) (18)

˙̂xi+1 = (A− λiBC)x̂i+1 +B(ei+1V
−1u) (19)

This easily generalizes to larger Jordan blocks. Clearly, this
is a series connection of two identical blocks. The structure
is shown in Fig. 1. This figure already shows the case with
input at one controlling node and the output at the other
one.

The output of the node is given in (15), which can be
written as

xi(s) =

N∑
j=1

vijTj(s)ūj(s). (20)

3.2 Observing and controlling node

In this paper a transfer function between two selected
nodes in the graph is considered. We study the propagation
of signals from the input of a controlling vehicle, denoted
C, to the output of an observing vehicle, denoted O.
Therefore, there is only one input and one output in
the formation. The input to whole formation is given
as u = [0, . . . , 0, uC , 0, . . . , 0]T . Then the input to the
diagonal blocks in (17) equals

ūi = eTi V
−1eCuC = giuC (21)

with gi = eTi V
−1eC . Thus, the input uC enters to all

diagonal blocks through the gains gi. The output xO of
the observing node then using (20) reads

xO(s) =

[
N∑
i=1

vOigiTi(s)

]
uC = TCO(s)uC . (22)

4. ZEROS OF THE GENERAL TRANSFER
FUNCTIONS

This section is devoted to determining zeros of transfer
functions in general network control systems. The poles
of the transfer function are determined by poles of the
diagonal blocks and are easy to calculate. On the other
hand, as the dynamic behavior of any formation is given
by poles as well as zeros, we also need to find the locations
of zeros of the transfer function in the formation. This
section extends the results of Briegel et al. (2011) from
single integrator dynamics to dynamics of arbitrary high
order. If not explicitly stated, all further results are valid
for both undirected and directed case.

4.1 Numerator of the transfer function

Let us denote the numerator of the open loop in (6) as
φ(s) and denominator as ψ(s). Then the transfer function
can be obtained from (22) as

TCO(s) =
N(s)

D(s)
=

N∑
i=1

givOi
b(s)q(s)

a(s)p(s) + λib(s)q(s)
(23)

=

∑N
i=1 givOiφ(s)

∏N
j=1,j 6=i [ψ(s) + λjφ(s)]∏N

i=1 [ψ(s) + λiφ(s)]
.

The product in the numerator N(s) can be written as
(argument (s) is omitted)

N∏
j=1,j 6=i

[ψ + λjφ] = (24)

ψN−1 +

[
ψN−2φ

N∑
j=1,j 6=i

λj

]
+

[
ψN−3φ2

N∑
j=1,k=1,k 6=i 6=j

λjλk

]

+ . . .+

[
ψ1φN−2

N∑
j=1,j 6=i

N∏
k=1,k 6=i 6=j

λk

]
+

[
φN−1

N∏
j=1,j 6=i

λj

]
.

From this formula it is hard to infer any properties, so
is must be reformulated. First we will state the following
technical lemma.

Lemma 1. The sums of products of coefficients givO,i and
eigenvalues are related to graph Laplacian as

N∑
i=1

givOiλ
k
i = (Lk)OC (25)

Proof. The coefficients givOi can be written using (21) as
N∑
i=1

givO,iλ
k
i = (eTOV )Jk(V −1eC)

= eTOL
keC = (Lk)OC (26)

This holds also for Jordan blocks larger than one in J . 2

For further development we will need also the character-
istic polynomial of −L, the negative of Laplacian. The
polynomial is given as

det(sIN + L) = sN + cN−1s
N−1 + . . .+ c1s+ c0. (27)
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The coefficient c0 = 0 since there is always a zero eigen-
value of −L. If the zero eigenvalue is simple, the coefficient
c1 is equal to the product of all nonzero eigenvalues of −L
and cN−1 is sum of all its eigenvalues. The other terms ci
are sums of n-products of eigenvalues.

Now let us consider the term in the numerator N(s) in (23)

corresponding to ψN−1(s)φ(s). It equals ψN−1(s)φ(s)
∑N
i=1 givOi.

The sum using Lemma 1 equals
N∑
i=1

givOi =

{
1 for O = C
0 for O 6= C

. (28)

Second, the terms with ψN−2(s)φ2(s) are

ψN−2(s)φ2(s)

N∑
i=1

givOi

N∑
j=1,j 6=i

λj

= ψN−2(s)φ2(s)

N∑
i=1

givOi(cN−1 − λi) (29)

= ψN−2(s)φ2(s)
(
cN−1L

0
OC − L1

OC

)
.

Similarly, all power terms ψm(s)φn(s) are functions of
characteristic polynomial and a power of Laplacian. Last
term is the one with φN (s) given as

φN (s)

N∑
i=

givOi

N∏
j=1,j 6=i

λj

= φN (s)
[
c1L

0
O,C − c2L1

OC + . . .+ LN−1
OC

]
(30)

Let us denote the constants hi as

h0 = L0
OC (31)

h1 = cN−1L
0
OC − L1

OC (32)

h2 = cN−2L
0
OC − cN−1L

1
OC + L2

OC (33)
...

hN−1 = c1L
0
OC − c2L1

OC + . . .+ LN−1
OC . (34)

Finally, the development can be summarized as follows:
the numerator N(s) in (23) equals

N(s) = φ(s)

(
h0ψ(s)N−1 + h1ψ

N−2(s)φ(s)

+h2ψ
N−3(s)φ2(s) + . . .+ hN−1φ

N−1(s)

)
.(35)

4.2 Relative degree

To obtain the relative degree of the transfer function, we
use the Lemma 3.1 from paper by Briegel et al. (2011).
We provide here a different proof, as the original proof
is valid only for commuting symmetric matrices and for
unweighted graphs only.

Lemma 2. Let L be the Laplacian matrix of the graph.
Then for l ≤ di:j ,

(−Ll)ij =

{
0, for l < di:j
p, for l = di:j

, (36)

where p is the sum of weights of the shortest paths between
nodes i, j and di:j denotes the distance of the nodes i and
j.

Proof. We will use Proposition 8 from the paper by
Chebotarev and Agaev (2002). There it is shown that

(−L)m =

m∑
k=0

α
′

kQm−k. (37)

Matrices Qm−k are matrices of in-forests of G with m −
k arcs. The (i, j)th element qm−kij of Qm−k denotes the

weight w(F i→jm−k) of the set of all in-forests F i→jm−k withm−k
arcs containing the node j and diverging from the root i.
Thus, the minimal number of arcs for such forest to exist
is the distance d(pj:i). So, for m < d(pj:i), (i, j)th element
of all Qm−k is zero and therefore (−L)mij is also zero. For

m = d(pj:i) it follows that (−Ll)ij is the sum of weights
of all shortest paths. 2

Theorem 3. Let ro be the relative degree of an open loop
of one node (ro = n − m). Then the relative degree r of
transfer function TCO(s) can be calculated as follows

r = (dC:O + 1)ro, (38)

Proof. According to Lemma 2, the elements on positions
[O,C] in all powers of L lower than d = dC:O are zero.
Therefore, all d leading terms in polynomial (35) are also
zero. The numerator in (23) then has a form

N(s) = φ1+d(s)
(
pψN−1−d(s) + hd+1ψ

N−2−d(s)φ(s)

+ . . .+ hN−1φ
N−1−d(s)

)
= φ1+d(s)P∆(s) (39)

Since the polynomial P∆(s) has order (N−1−d)n, φ1+d(s)
has order (1 + d)m and the order of the denominator of
the transfer function (23) is nN , the relative degree can
be calculated as

r = Nn− (N −1−d)n− (1 +d)m = (1 +d)(n−m), (40)

2

As the numerator of the open loop is present for d + 1
times in (39), we have the following corollary.

Corollary 4. The transfer function TCO(s) has d+ 1 mul-
tiple zeros at the locations of the zeros of the open loop,
i. e. roots of b(s)q(s) = 0.

4.3 Zeros which are not in the numerator of open loop

Except for the zeros of the open loop (6) there are
also other zeros present in TCO(s). They are located in
polynomial P∆(s), which is defined in (39) as

P∆(s) = pψN−1−d(s) + hd+1ψ
N−2−d(s)φ(s)

+ . . .+ hN−1φ
N−1−d(s). (41)

This can be factored into a product

P∆(s) = p

N−1−d∏
i=1

(
a(s)p(s) + γib(s)q(s)

)
, (42)

where −γi are the roots of the polynomial

Q(s) = psN−1−d + hd+1s
N−2−d + . . .+ hN−1. (43)

The equality (42) can be viewed as a product of char-
acteristic polynomials of closed loops with feedback gain
γi, i = 1, . . . , N−1−d. It is analogous to how poles of the
transfer function were obtained in (17). The development
can be summarized in the main theorem of the paper.

Theorem 5. The transfer function TCO(s) can be written
as

TCO(s) =
p[b(s)q(s)]1+d

∏N−1−d
i=1

(
a(s)p(s) + γib(s)q(s)

)
∏N
i=1

(
a(s)p(s) + λib(s)q(s)

) .

(44)
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The locations of zeros were therefore related to the open-
loop model and Laplacian matrix only. Our results are
similar to the results for poles in Fax and Murray (2004).
Clearly, if some mode is unobservable or uncontrollable, its
characteristic polynomial must appear both in numerator
and denominator.

4.4 Extensions from single integrator case

Based on the following proposition, we can easily extend
many known results from single integrator dynamics to
arbitrary agent dynamics.

Proposition 6. The polynomial Q(s) defined in (43) is
equal to the (O,C) cofactor of the matrix (sI + L), i. e.

Q(s) = adj(sIN + L)(OC) (45)

The proof is given in Corollary 4 in the paper by Cheb-
otarev and Agaev (2002). The coefficients there are identi-
cal to those in (31)-(34). In that paper it is shown that the
coefficients hi are equal to weight of the set of in-forests
FC→Oi with i arcs, where the node C is the root of a tree
and the node O lies in a tree diverging from the root. More
on this can be found in Matrix-Forest Theorem in Agaev
and Chebotarev (2000).

As a consequence, the roots of Q(s) are identical to the
zeros in the numerator of transfer functions from C to
O in a model with single integrator dynamics. Therefore,
all results regarding locations of zeros discussed in Briegel
et al. (2011) are valid here. On the other hand, for higher
order dynamics γi is not a location for zero, but the gain
in the closed loop in (42).

Let us denote L̄k(i:j) a matrix, which is obtained from L by

deleting rows and columns corresponding to the vertices
on the kth path from vertex i to j.

Lemma 7. If the controlling and observing nodes are iden-
tical, C = O, the roots of polynomial Q are equal to the
eigenvalues of L̄1

(C:C).

Proof. Following the approach in Theorem 3.8 in Briegel
et al. (2011), the numerator polynomial of the transfer
function is given as eTCadj(sIN +L)eC . This is equal to the
(C,C) cofactor of L, that is characteristic equation with
the form (sIN−1 + L̄1

(C:C)). Roots of this characteristic

equation are roots of Q(s). 2

For undirected graphs, we have the following corollary.

Corollary 8. The poles and zeros of the transfer function
TC=O(s) in undirected graph interlace each other on the
root-locus-like curve, i. e. their order is (by increasing gain
of the root-locus-like plot) pn, zn−1, pn−1, . . . , z1, p1.

Proof. The interlacing theorem 4.3.15 from Horn and
Johnson (1990) holds here since the matrix for zeros of
transfer functions was obtained by deleting principal rows
and columns. Therefore the roots γ interlace with λ. Both
must be real and as they act as gains in the closed-loop,
we can use a root-locus-like explanation of their locations
(see Herman et al. (2013)). The gains are interlacing, so
also the locations of poles and zeros will be. 2

Lemma 9. The multiplication factor p in the numerator
is given as the sum of weights of shortest paths from the
controlling node to the observing node.

Proof. This follows from theorem 3.4 in Briegel et al.
(2011) and application of Proposition 6.

We remark that, unlike the case of undirected interaction
discussed in the paper by Briegel et al. (2011), the transfer
function can have a zero at the origin, provided the
zero eigenvalue of the denominator is unobservable or
uncontrollable from the other node.

4.5 Relations of minors and deleting rows

Now we state two theorems relating minors of Laplacian
matrix for certain selection of the controlling and observ-
ing nodes to the deletion of principal rows and columns of
−L.

Theorem 10. If there is only one path between controlling
node and observing node, the roots of the polynomial Q(s)
are obtained as eigenvalues of −L̄1

(C:O), which is obtained

from −L by deleting the columns and rows corresponding
to the vertices on the path. That is

Q(s) = w(pC:O) det
(
sIN−d−1 + L̄1

(C:O)

)
. (46)

The second theorem is partly an extension of the previous
one:

Theorem 11. If there are multiple paths from the control-
ling to observing node, then the numerator characteristic
polynomial Q(s) is a sum of characteristic polynomials of
−L̄i corresponding to all of the paths, i. e.

Q(s) =

P (G)C,O∑
i=1

wi(pC:O) det(sI + L̄i(C:O)), (47)

where P (G)C,O denotes the number of paths from C to O.

The importance of these two theorems can be seen espe-
cially when the communication graph is undirected. Their
proofs are not shown due to the lack of space.

Corollary 12. If L is a symmetric matrix and conditions
for Theorem 10 hold, the zeros interlace with poles on the
root-locus-like plot.

The proof is similar to the proof of Corollary 8.

5. EXAMPLE

Consider a symmetric graph with five nodes shown in Fig.
2. The open-loop model is

M(s) =
s+ 1

s2
. (48)

Let us choose as the controlling node C = 1 and observing
node O = 3. The transfer function is

T13(s) =
(s+ 1)3

∏2
i=1(s2 + γis+ γi)∏5

i=1(s2 + λis+ λi)
. (49)

Clearly, the terms in both numerator and denominator
products have the structure of a(s)p(s) + λb(s)q(s), as
indicated by (44). Moreover, since the distance between
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1 2 3

4

5

Fig. 2. Undirected graph used in the example

Fig. 3. Poles (crosses) and zeros (circles) of the graph in
Fig. 2. The poles and zeros lie on the root-locus-like
plot (dashed line).

nodes 1 and 3 is 2, there is also (s + 1)2+1 in the
numerator, as follows from Lemma 4. The gains λi =
[4.17, 3.00, 2.31, 0.51, 0] can also be obtained as eigenvalues
of Laplacian matrix of the graph

L =


1 −1 0 0 0
−1 2 −1 0 0
0 −1 3 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2

 . (50)

The gains γ = [3.00, 1] in the numerator can be obtained as
negative of roots of polynomial Q(s), given in (43), which
in this case has a form

Q(s) = s2 + 4s+ 3. (51)

Since there is only one path between C and O, we can use
the Theorem 10 to calculate the characteristic polynomial
in the numerator. It equals the determinant of a matrix
L̄(1,2,3), obtained from L by deleting rows and columns
with indices 1, 2, 3. The polynomial is given as

Q(s) = det

(
sI2 +

[
2 −1
−1 2

])
= s2 + 4s+ 3. (52)

As the both L and L̄ are symmetric matrices, their
eigenvalues are real and interlace. The poles and zeros
must therefore interlace on the root-locus like plot, as
shown in Fig. 3. We remark that such transfer function
is uncontrollable and unobservable, since there is a pole-
zero cancellation of the poles s2 + 3s+ 3.

6. CONCLUSION

In this paper we considered transfer functions between
two nodes in a formation or in general in network control
systems. Both denominator and numerator polynomials
are derived in a form of product of closed loops with non-
unit feedback gain. These gains are in the denominator
polynomial identical to the eigenvalues of the Laplacian
matrix.

The gains in the numerator of the transfer function are
related to the Laplacian matrix as well, but the relation
is more complicated. Beside closed-loop-like polynomials,
there is also open-loop numerator present in the transfer
function between two nodes. Interlacing of poles and zeros
was proved for undirected graphs with only one path
between controlling and observing node.

As a future work, the main challenge remains to prove
whether or not the zeros are minimal-phase if all the poles
are stable. From simulations it seems they are and perhaps
theorems 10 and 11 can be used in the proof.
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