
Model-based testing of PLC software: test
of plants’ reliability by using fault injection

on component level

Susanne Rösch ∗ Dmitry Tikhonov ∗ Daniel Schütz ∗

Birgit Vogel-Heuser ∗

∗ Technische Universität München, Institute of Automation and
Information Systems, 85748 Garching bei München, Germany (e-mail:

{roesch; tikhonov; schuetz; vogel-heuser}@ ais.mw.tum.de).

Abstract: In this paper, the current situation of how PLC software is tested in industry is
analyzed and the challenges on new testing approaches are identified using real industry code
and a survey conducted within industry. The different possible and most relevant faults that may
occur and must be dealt with are identified and requirements for testing approaches concerning
component failures are derived. Further on, an approach to generate tests for error handling
routines, which test the reliability of plants by injecting the corresponding faults is presented.
The test cases are generated from timing sequence diagrams in combination with failure mode
and effects analysis. In order to inject the faults at relevant points during the execution of the
control software, IEC 61131-3 code is analyzed for the derivation of the test cases.

Keywords: plant automation, test generation, model-based development, programmable logic
controllers, reliability, software engineering, manufacturing systems, IEC 61131-3

1. INTRODUCTION

Today’s Programmable logic controller (PLC) application
software development in plant engineering poses increasing
challenges as more and more functionality of plants is
realized through software (Reimann (2013)). At the same
time, high requirements on robustness and reliability of
these plants must be met and verified. A plant’s robustness
and reliability are especially a result from its correct
reaction to unexpected events. This means that a plant
reacts to the unexpected with a suitable strategy, which
must be implemented in error handling routines. These
routines must be implemented correctly and at the correct
places in the PLC software. In order to ensure the correct
functionality of these software error handling routines,
special strategies to test them must be developed, as
they are not automatically executed during the normal
execution of the software, when no faults occur. In order to
test these reactions of plants to the unexpected, i.e. faults
occurring within the system or its environment, a testing
approach using fault injection (FI), and hence, testing the
error handling routines is presented in this paper. For
the FI process, common faults that may occur within a
plant are feigned while its reaction is monitored to verify
the correct execution of the designated error handling
routine within the application. To prove the reliability
of safety critical plants, conformance tests, which test
the conformance of systems’ to their specification, i.e.

? The IGF-project 16906 N of the research association electrical
engineering of the ZVEI e.V. was sponsored via the AiF as part
of the program to support cooperative industrial research (IGF),
with funds from the Federal Ministry of Economics and Technology
(BMWi) following an Order by the German Federal Parliament.

if they are correctly executed on the target platform
(Provost et al. (2011)), are necessary. In this paper the
subject of conformance testing is not focused but rather
only the error handling routines implemented within the
application controlling the plant are focused. The paper
is structured as follows: In the next section, requirements
on a testing approach in the domain of plant automation
are analyzed and the most relevant faults that must be
dealt with are identified based on a survey and interviews
conducted within industry and an analysis of industry
PLC code. Subsequently, related work is presented. The
concept to generate test cases that use FIs to test the error
handling routines within the software of the plant as well
as the results from a first prototypical implementation are
illustrated using a small laboratory plant in section 4 and
5. The paper is concluded by a summary and an outlook
on future work.

2. REQUIREMENTS ANALYSIS BASED ON SURVEY
AND INTERVIEWS IN INDUSTRY

In order to analyze and evaluate the requirements on a
test case generation approach three actions were taken.
Firstly, a survey was conducted with 8 software engineer-
ing experts from 7 different companies in the field of plant
automation. Secondly, following the survey, an expert dis-
cussion and interviews with the participants of the survey
were lead. Finally, real industry code was analyzed to
refine the identified requirements. The survey targeted, on
the one hand, current industry practice of testing plants
to derive which requirements must be met to integrate
a new approach smoothly into current development pro-
cesses. On the other hand, the relevance of different aspects
(0%: low relevance, 100%: very high relevance) such as

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 3509



the occurrence of different types of faults was asked. The
four main requirements (R1 - R4 ) that were identified are
explained in the following.

In current practice, not much time is explicitly reserved for
testing (25%-30% of the time in the software development
process) and simulation models cannot be used most of
the time. It was rated that a maximum of 20% of the
development time is acceptable for implementing such a
model. This is not realistic in plant automation as plants
are often customized. Suitable models for these individual
plants are complex to realize and the customers do not pay
for the development of such a model. In conclusion it must
be possible to test against the real plant as well as different
prototypes or partial solutions (relevance 91%) which are
available during the different development stages as well
as against simulation (R1).

Several questions of the survey targeted at identifying
suitable specifications that are commonly available before
software implementation and therefore for test case gen-
eration in the development process. The results showed
a small variety of specifications such as requirements ta-
bles, timing diagrams (TDs), high-level state charts, tex-
tual pseudo-code and failure mode and effects analysis
(FMEA). Several of these specifications are applied before
the implementation of the software since each specifica-
tion is suited best for a specific engineering domain and
different aspects of a plant. TDs and state charts are used
to specify the expected behavior during normal (mainly
automatic mode) operation. In the expert discussion it was
rated that TDs are used most of the time to model complex
behavior of the plant. Different forms of TDs do currently
exist. In order to make test case generation possible, the
requirements on the TD specification were refined based on
the analysis of PLC code from four different of the above
mentioned companies.

The TD used to specify behavior for a test generation
approach in plant automation needs to include elements
for depicting time constraints, value lifelines which cor-
respond and represent the states of the components and
messages between the different components. Value lifelines
are especially needed as they can represent the I/Os which
are linked to the software and represent the current state
of a plant from the software point of view. Another impor-
tant aspect is that continuous value lifelines are needed,
because many values within the software, e.g. the pressure
in a cylinder, follow continuous courses.

In order to allow automatic generation, the diagram needs
to be formalized. The different operating modes, e.g. auto-
matic, manual, step chain mode, etc. in plant automation
are another aspect that must be dealt with when testing
as some alarms and interlockings are necessary and spec-
ified in one mode while they are not allowed in another.
In conclusion the test case generation shall be done by
extraction of information from TDs, which are formalized
and include value lifelines which represent the state of the
components and their interactions (R2a).

The analysis of control code and subsequent interviews
with the software developers on how error handling rou-
tines are implemented in current practice revealed that
each error, fault or failure must be acknowledged or
recorded by a specified message. The expected behavior,

e.g. going into a safe state when faults occur, is not speci-
fied for each single fault, but it is determined by the fault
class predefined by the developers. One fault class, e.g., is
that the fault is only reported by a warning, other faults
belonging to a different fault class must be handled by
shutting the plant down immediately.

As there is little time and many tests during commission-
ing cannot be conducted without surveillance of the plant,
the scalability of future testing approaches is a crucial
success factor. As the object-oriented paradigm which has
been introduced with the 3rd edition of the IEC 61131-
3 standard might improve the testing effort and reduce
the number of test cases that have to be conducted is not
yet fully introduced in industry, other means of choosing
the test cases are proposed in this paper. As a resulting
requirement it is postulated that fault classes and the
means to prioritize test cases are to be included in the
specification (R2b).

To determine which faults are common and therefore need
to be focused on and tested in plant automation, the
participants were asked to name typical and critical faults
in the survey. The faults named were: component failures
(relevance 60%), process faults (56%), mechanical faults
(54%), software faults (46%) and faulty operator behavior
(44%). Some of the faults were further refined in the follow-
ing discussions, e.g. process faults include collision, wrong
timing, etc.; mechanical faults include abrasion, wearout,
etc.; software faults include division by 0, memory access,
etc. As each of these faults has different causes, each
of them must be analyzed individually and dealt with
accordingly. In this paper we focus on component failures,
which are tested by injecting faults which represent them.
Therefore FI on component level must be explicitly incor-
porated in the approach (R3).

Another aspect that was discussed was the visualization of
test cases. A comprehensible visualization and the option
to modify generated test cases (R4) was emphasized by
the industry experts in order to support test engineers
in understanding the generated test cases and to enable
maintainability and proper documentation.

3. RELATED WORK

In this section, firstly related work is discussed regarding
the specification of TDs which are to be used according to
R2a as the basis for test case generation. Following this,
other approaches for systematic test generation in plant
automation and FI are discussed.

3.1 Formalization of TDs

Several works such as Vyatkin and Bouzon (2008) and
Katzke and Vogel-Heuser (2007) have formalized TDs us-
ing some form of timed automata. TDs are formalized
using net condition/event systems (NCES) by Vyatkin and
Bouzon (2008). By implementing such a transformation, a
formal verification of the specified behavior is done and
it can be checked if the specified behavior of the TDs
matches one or more given paths within function blocks.
However, in the TD specification used, the focus lies on
the verification of condition operators specified between
the state changes of the lifelines. Interactions between the

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3510



lifelines are not modeled (R2a). Formal verification is also
focused on by Preusse and Hanisch (2008). Computation
Tree Logic formulas are automatically derived from the
formally specified symbolic TD. These are verified using
model-checking techniques against NCES models as well.
The symbolic TD represents sequences of states where
simultaneous transitions can be explicitly expressed. Real-
time conditions have been excluded in this work. In the
formal specification of real-time symbolic TDs, this ele-
ment has been added by Feyerabend and Josko (1997), in
order to express those constraints formally. Interactions
and continuous value changes can not be modeled in the
symbolic TD specifications (R2a).

On the other hand there is the Unified Modeling Language
for process automation (UML-PA) (Katzke and Vogel-
Heuser (2007)), which adapts and defines the TD and
sequence diagram (SD) into the timing sequence diagram
(TSD) especially for the domain of plant automation.
Using the UML-PA TSD, life lines, state life lines, which
represent the state of an object, and messages as specified
in the UML SD between the different lifelines can be
modeled. By using the port element even interfaces may
be depicted. In the UML-PA, using state lifelines, only
discrete time intervals are considered, and the I/O image
cannot be represented as it is given in by the process. The
TSD is formalized based on a representation of state charts
with an extension by Timers. The states refer to the state
of a lifeline in the TSD, events define operations and refer
to the messages in the TSD, sets of transitions correspond
to a flank (i.e. change of value on a lifeline), and the initial
state and the final state correspond to the initial values
in the TSD (Katzke and Vogel-Heuser (2007)). As the
UML-PA TSD fulfills many but not all of the requirements
concerning R2a, an adaption of this diagram is used in the
approach presented in this paper.

3.2 Systematic test case generation

In the fields of model based testing and systematic gen-
eration of test cases from specifications a lot of research
has been conducted in recent years. Krause et al. (2008)
automatically generate test cases from formalized UML
state charts based one a transformation to Extended Safe
Place/ Transition Nets. In doing this they can automat-
ically generate test cases reaching full path coverage as
well as apply formal verification strategies from petri net
theory. A visual representation of the test cases is done
using the Testing and Test Control Notation (TTCN-3)
(Baker et al. (2004)). UML diagrams are used in the work
of Kumar et al. (2011) and Hametner et al. (2010) as well.
In Kumar et al. (2011) test cases are derived from UML
state charts and represented in the TTCN-3 notation. The
set of test cases is reduced by an all transition coverage.
The approach could be proven to work for simple com-
munication systems, but an extension for testing PLCs is
another goal of the research group. Hametner et al. (2010)
identify the UML models which are best suited to extract
test cases. One diagram which is identified as suitable
to directly derive test cases, is the TD of the UML. A
first example shows how to derive test cases from state
charts and SDs. A formalization of UML diagrams has
also been conducted by Basile et al. (2009), which may
be used for test case generation or verification. Hussain

and Frey (2006) propose the derivation of test cases from
UML diagrams as well. The generation of test cases is done
through path analysis of behavioral diagrams especially for
applications of IEC 61499.

All of the approaches described in this section do neither
take FI, which needs to be explicitly regarded to execute
the tests on the real plant (R1, R3 ), into consideration.
Nor were the requirements for these approaches taken from
plant automation industry examples.

3.3 FI in reactive systems

FI approaches can be divided into hardware-implemented
FI, where faults are for example injected by forcing pins,
software-implemented FI, where faults of the system are
emulated by the software or FI in models (Svenningsson
et al. (2010)). While FI is rarely done in the field of plant
automation it is already established in the automotive
domain. Svenningsson et al. (2010) and Schlingloff and
Vulinovic (2005) present approaches, where the behavior
of the system in reaction to various different kinds of faults
can be tested using Simulink models. This approach is also
suitable for emulating component failures but it is focused
on the simulation environment and not developed in order
to meet PLC platform requirements (R1 ). In a previous
work of this research group a model-implemented FI ap-
proach for plant automation has been implemented using
a UML state chart simulation environment (Kormann
and Vogel-Heuser (2011)). The FI depends on reaching
a predefined state of the simulation, and thus a software-
implemented FI is not possible (R1 ).

4. CONCEPT FOR TESTING ERROR ROUTINES

In this section firstly the application example that shall
illustrate the concept in the following is introduced. Fur-
ther on, an overview on the concept is given and afterwards
the test case generation process is explained in detail with
special emphasis on what information is extracted from
which source.

4.1 Application Example

The concept is explained and evaluated using a laboratory
plant which sorts and stamps work pieces (WPs) (Legat
et al. (2013)). The plant is composed of several modules.
The stamping module is modeled in detail to illustrate
the approach in this paper (Fig. 2, right). The module has
a slider which accepts WPs and a stamp cylinder which
stamps the WPs at a defined pressure. The stamp cylinder
includes three sensors: two end position sensors StampUp
and StampLowered, and a pressure sensor. The slider
includes three sensors as well: one to detect WPs (sensor
Filled) and two end position sensors of the cylinder. The
end position sensor PosStamp indicates, that the WPs is
at the position of the stamp and thus can be stamped,
PosCrane indicates whether the slider is in the position to
receive or give away WPs to the next interacting module.
An overview of the implementation of the module is shown
in Fig. 2 on the bottom left in the IEC 61131-3 function
block diagram (FBD) language.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3511



Fig. 1. Overall concept for test case generation

4.2 Concept overview

The overall concept for generating test cases to test error
handling routines is shown in Fig. 1 with the requirements
defined in section 2 connected to them. The expected
behavior during normal operation of the system under
test (SUT) and the behavior in reaction to an occurrence
of faults from each fault class is specified using adapted
TSDs. Possible failures are derived by assuming that each
deviation from the normal behavior is a fault and needs to
be handled by an error handling routine. This information,
i.e. deviation of the normal behavior, is transferred into an
adapted FMEA. Then the fault class is specified, which is
added as an additional column in the FMEA. It determines
which behavior that was specified in the fault class TSDs is
expected in the error handling routine that is to be tested.

The only information then missing is which execution
path corresponds to the behavior defined in the TSD. The
Precondition defined in the TSD is extracted and added
as the initial condition to the test case. By extracting and
analyzing a control flow graph (CFG) of the PLC program
the path which corresponds to the Precondition and the
Postcondition can be identified. When the Precondition
is fulfilled during the execution of the program, the test
case for the defined component failure is started. By
modeling the normal behavior and the behavior in reaction
to an occurrence of faults from different fault classes in
combination with the information from the FMEA and
the generated test cases, a holistic model of possible faults
and their related test cases is achieved. In the following
the test generation process is explained in detail.

4.3 Extraction of information from TSDs

The modules of the laboratory plant were modeled accord-
ing to an adapted UML-PA TSD notation as shown in
Fig. 2 on the right. The model is mapped to the software
structure of the PLC program as shown in Fig. 2. The
module has two variables to communicate with other mod-
ules: WorkpieceReady, which signals the readiness of a WP
to take it up by another module, and StationEmpty, which
signals the readiness to receive a new WP. To represent the
global variables which are mainly the sensor variables of

the module and additionally the operating mode, lifelines
are used. The lifelines depicted are connected to one or
more sensors the stamping module owns through their
value lifelines (e.g. Fig. 2, left, Slider Position is defined
by two end position sensors: PosStamp and PosCrane).
From the value lifeline in Fig. 2 it can be seen, that the
value change is continuous, as the change does not happen
discretely in the real process as well.

The messages between the different value lifelines signify
operations with their corresponding actuator variables
that initiate or must follow certain signals or values
representing the state of the component. In this diagram
as soon as a WP is delivered (Fig. 2, right, value lifeline
Filled) it must be transported to the stamping position
(PosStamp) within 0.5 seconds. Afterwards, the stamping
process may take between 1 to 3 seconds. The TSD in Fig.
2 depicts the expected behavior of the system if no faults
occur.

As can be seen in Fig. 2, different components are in-
volved in the stamping process, and therefore have to
be tested. The reactions, i.e. changes of value lifelines,
to other changes on value lifelines are expected in a
certain sequence and after a certain time within the se-
quence, which is expressed by the time constraints. Two of
these reactions are highlighted by the lines Precondition
and Postcondition in Fig. 2 on the right. The operation
Stamp(...) is initiated as soon as the Precondition is met,
which corresponds to the values representing the state that
the module holds at this point in time. Then, firstly, the
value change of Stamp Position and secondly, the value
change of Stamp Pressure is expected. In this example they
are marked by the line Postcondition in Fig. 2. For each
of these value transitions one test is generated. The test
checks what happens when the Postcondition is not met,
which means that one of the expected value transitions
does not happen in the specified time (see also extracted
information from TSD in Fig. 3). In other words, the PLC
will not be able to observe the expected value and needs to
react accordingly with an error handling routine. In this
case one test checks whether a missing value change after
0.5 seconds of Stamp Position is detected and an error han-
dling routine executed, one test checks whether a missing
value change of Stamp Pressure is detected. If a message
(i.e. operation) with a sender and a related receiver are
included in the time sequence, they are extracted as the
initiator for the timing condition in the test case. This
is the case in the depicted example, where Stamp(...) is
the initiator for the time condition of 0.5 seconds. If no
message is included, as for example the expected value
change after 3 seconds of the stamping process, the timing
condition is started as soon as the previous value change
is detected. The operating mode is included as a lifeline in
the TSD (see Fig. 2) and therefore is used in addition to
define the Precondition (R2a). Theoretically a test could
be generated for the other lifelines as well, i.e. a fault
injection feigning a value change where no value change
should occur. This is neglected right now and will be
evaluated in future work.

4.4 Extraction of information from FMEA

As the expected reactions of a system and thus the Pre-
conditions and the expected Postconditions for a test case

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3512



Fig. 2. Left: Sketch and software in FBD language of stamping module. Right: TSD of the stamping module

can be extracted from the TSD now, the only information
missing is the priority of these test cases, the fault class to
determine the expected behavior during the execution of
the error handling routine and the alarm message to report
the according fault. This is done using an adapted FMEA
analysis to identify the most risky components (R2b).
The information from the TSDs is extracted into the first
column of the adapted FMEA analysis (Fig. 3) and is
planned to be extracted automatically in the future. In the
companies that were analyzed the FMEA is usually filled
out by the electrical and mechanical engineers manually.
This is done in the FMEA which is proposed here as
well, because these engineers have the knowledge on the
likeliness of the specified component failures but it is also
used by the software engineers to test their software. In
the FMEA, the column “S” signifies the severity of the
failure, “O” stands for the occurrence of the failure and
“D” rates how likely it is that the failure is detected. The
calculated product of these three figures represents the
risk priority number (RPN) of the failure and therefore
corresponds to the priority of the test case. The other
columns are explanatory and can be used as a means
for documentation and discussion between the different
domains later on. A reduced FMEA showing the most
important aspects in Fig. 3, depicts the scenario of the op-
eration Stamp(AnalogPressure:=6000), and the following
reaction of the stamp which fails to move out (value lifeline
StampLowered) and therefore does not meet the expected
behavior specified in Fig. 2. Another column is added to
specify the fault class of the fault (alarm message in brack-
ets) and therefore determines the expected reaction of the
plant if this fault occurs. For the test case generation the
RPN and the fault class are extracted in order to prioritize
the test cases and assign the TSD where the reaction of
the stamping module in reaction to the specified fault
class is specified. Additionally, the alarm message which
is expected for the according fault is extracted. Another
possible source to extract this information are alarm lists,
if they are assigned correctly to the corresponding faults.

Fig. 3. Excerpt of the FMEA of the stamping module

4.5 Extraction of information from IEC 61131-3 source

The ideal goal is that each feasible execution scenario
of the control program, where the failure of the selected
sensor may have a direct impact on the program behavior,
is tested in order to achieve full test coverage. If the model
of the TSD is complete, the TSD represents one of these
paths. For the generation of the test cases a CFG of the
source code of the stamp module is created extracting an
abstract syntax tree beforehand as also implemented by
Prähofer et al. (2012) and Biallas et al. (2012) for the
purpose of static analysis. Using control and data flow
analysis techniques the CFG path that corresponds to the
test case is extracted from the model (in this example:
StampLowered after PosStamp, see also Fig. 3). In the
example two CFG paths were found that correspond to
the TSD scenario. In order to test both scenarios an
additional variable defining the respective control path is
added to the Precondition of these to test cases. Another
scenario of an initialization where the stamp is lowered,
which was specified in another TSD and only varies in
one value on the lifeline compared to the one in Fig. 2
corresponds to another path that needs to be tested for
the failure of StampLowered and completes the test set for
StampLowered.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3513



Fig. 4. Test set specification for FI for StampLowered

4.6 Generation and visualization of test cases

The test cases need to be visualized to support the test
engineers in understanding and adapting them (R4 ). The
SD of the UML is especially suited for this task because
it shows the relevant test components and their respective
black-box behavior, i.e. expected inputs and outputs as
a message, and has also been established in the U2TP
and the TTCN-3 as a means to depict test cases. The
UML SD has been adapted and formalized to meet the
requirements of PLC runtime systems in order to make
them executable in previous works by Kormann et al.
(2012) (R1 ). In this section the structure of the generated
test cases in the SDs is discussed. Each test case contains
three test components. For the test case shown in this
paper (shown in Fig. 4) the three test components are:
the StampingPlantControl which represents the system
under test (SUT), the Testsystem which runs the test
script and initiates the FI and the StampingPlant itself.
Each test case consists of the following three parts (shown
in Fig. 4, compartments marked on the right): 1) a
“Start & Init” part TC1 START INIT() which checks
whether its Precondition is fulfilled and, as soon as the
condition is met, initializes the test case; 2) a part, which
starts the FI and verifies whether the observed software
behavior is identical to the behavior specified and checks
the termination criterion; 3) a completion part which logs,
resets and prepares the plant for the next test case.

The Preconditions from the specification correspond to the
states of the plant and are used for the generation of the
“Start & Init” parts of the test cases. After the fulfillment
of the Precondition, the FI is initiated and the test of the
behavior of the system is started (observation of the global
variables: alarm message gStampCylError and gStampStop
specified in TSD Fault Class 1, which is not shown here).
The termination criteria which is the duration in which a
reaction of the end position sensor is expected and which
may not exceed 0.5 seconds, and the maximum duration of
the execution of the test case of 30 seconds are tested (Fig.
4). Once a test case has been completed, the results are
logged, all modules of the sorting plant are stopped and re-
initialization of the entire system is performed (completion
part Fig. 4).

5. IMPLEMENTATION AND EVALUATION

The approach was evaluated for a scenario that uses the
application example illustrated in section 4. The PLC

Fig. 5. Test set for FI StampLowered : test cases for
different CFG paths

program of the plant was implemented in structured
text (ST), as we have, up to now, implemented the
extraction of the control flow for this language only. The
information from the TSD and the FMEA was extracted
manually solely from the information provided by the
model specification of the developed model (R2 ) into the
SD (R4 ) shown in Fig. 4 and then transferred manually
accordingly into a test code on the CODESYS platform. In
the example presented, a passive approach to execute the
test cases was chosen. This means that the fault is injected
as soon as the Precondition is met during the execution
in the automatic mode of the plant (part 1 of the test
cases). The Preconditions are checked in each cycle before
the actual application is executed (Fig. 5, R1 ). After the
Precondition for a test case is detected, the FI is initiated
and the reaction of the plant is monitored (part 2 of the
test cases). After completing the second part of the test
case the result is logged and the system is stopped and then
restarted (part 3 of the test cases). The executed test case
is marked as tested and its Precondition will no longer be
checked by the test driver. These steps are repeated until
all test cases from the generated test set are marked as
tested.

In the test run all Preconditions for the three generated
test cases were found and all test cases were executed.
During the execution of test case 1 the injected sensor
failure of the end position sensor StampLowered was not
detected within 0.5 seconds and the test case ended with
the result FAIL. The CFG path was tracked back to the
initialization run of the system. After analyzing the source
code, which is responsible for the initialization run, the
lack of error detection was found and the appropriate error
handling routine could be added. During the execution
of test cases 2 and 3 the injected sensor failure was
detected and the test cases ended with the result PASS.
The scenario showed that a software-implemented fault
injection can be realized for PLC platforms and thus
missing error handling routines of component failures (R3 )
can be identified in this way.

6. CONCLUSION AND FUTURE WORK

In this paper the requirements on a test case generation
approach based on an industry research and analysis of
industry code in the field of plant automation were stated.
A model-based approach to test error handling routines
implemented for component failures and the according

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3514



reaction of the PLC software was further on suggested
using TSDs and FMEA analysis as a basis. It could be
shown that such an approach is successful using a small
laboratory plant, where sensor failures were injected and
the reaction of the plant could be recorded. The FMEA
introduces the means to make this approach scalable for
plant manufacturers as possible component failures may
be prioritized according to their respective risk priority
number. Another advantage of the FMEA is that it can
be used in order to document test coverage of faults and
the robustness of a plant. The generated test cases are
visualized by SDs. By using this specification the test en-
gineers are supported in understanding and manipulating
the executed test cases. By modeling different aspects of
the plant behavior in TSDs and riks of faults in the FMEA
and the combination of the generated SD test cases, a
holistic model of possible faults with their related test
cases which are already prioritized is achieved.

Still a lot of work remains to be done as already hinted at
in section 2 and 5. The extraction of the CFG from the
different languages of the IEC 61131-3 other than ST is one
important step. As the work of deriving the test cases in
this approach is done manually so far, the implementation
of the adapted UML-PA diagram with the according test
case generation algorithm is another important step. As
the SD plugin is implemented in order to actively start
testing sequences and for unit testing right now, it is
also going to have to be adapted in conformation to our
testing approach to constantly check for the Preconditions
and start test sequences when they are met. To achieve
this, it is planned to introduce an overlying test function
in the code generated from the SDs which checks the
execution for several Preconditions and as soon as one of
the defined Preconditions is reached, the specific test case
is started. In future work it will also be aimed at testing
more complex scenarios such as multiple failures which
lead to different alarms when combined. To analyze effects
of several failures in combination a fault tree analysis is
going to be analyzed. As mentioned in section 2 different
faults such as faulty operator behavior, etc. also still have
to be analyzed and strategies to test systems’ reaction on
their occurrence devised. In order to do this, models and
notations have to be analyzed on their expressiveness in
respect to the different fault categories. If a suitable model
is found test cases may be derived from them in order to
inject these kinds of faults.

REFERENCES

Baker, P., Dai, Z.R., Grabowski, J., Haugen, O., Lucio, S.,
Samuelsson, E., and Williams, C.E. (2004). The UML
2.0 testing profile. Proc. of the Conf. on Qual. Eng. in
Softw. Techn., 181–189.

Basile, F., Chiacchio, P., and Grosso, D.D. (2009). A two-
stage modelling architecture for distributed control of
real-time industrial systems: Application of UML and
Petri Net. Computer Standard & Interfaces, 31(3), 528
– 538.

Biallas, S., Brauer, J., and Kowalewski, S. (2012). Ar-
cade.PLC: A verification platform for programmable
logic controllers. In IEEE/ACM Int. Conf. on Auto-
mated Softw. Eng. (ASE), 338–341.

Feyerabend, K. and Josko, B. (1997). A visual for-
malism for real time requirement specifications. In

Transformation-Based Reactive Systems Development,
156–168. Springer.

Hametner, R., Winkler, D., Östreicher, T., Biffl, S., and
Zoitl, A. (2010). The adaptation of test-driven software
processes to industrial automation engineering. In IEEE
Int. Conf. on Ind. Inf. (INDIN), 921–927.

Hussain, T. and Frey, G. (2006). UML-based development
process for IEC 61499 with automatic test-case genera-
tion. In IEEE Conf. on Emerg. Techn. and Fact. Autom.
(ETFA), 1277–1284.

Katzke, U. and Vogel-Heuser, B. (2007). Combining UML
with IEC 61131-3 languages to preserve the usability
of graphical notations in the software development of
complex automation systems. 10, 90–94.

Kormann, B., Tikhonov, D., and Vogel-Heuser, B. (2012).
Automated PLC Software Testing Using Adapted UML
Sequence Diagrams. IFAC Symp. of Inf. Contr. Probl.
in Manufacturing, 14, 1615–1621.

Kormann, B. and Vogel-Heuser, B. (2011). Automated
test case generation approach for PLC control software
exception handling using fault injection. In IEEE Ind.
Electronics Society, IECON, 365–372. IEEE.

Krause, J., Herrmann, A., and Diedrich, C. (2008). Test
case generation from formal system specifications based
on UML State Machines. atp international, 1, 47–54.

Kumar, B., Czybik, B., and Jasperneite, J. (2011). Model
based TTCN-3 testing of industrial automation systems
- First results. In IEEE Conf. on Emerg. Techn. and
Fact. Autom. (ETFA), 1–4.

Legat, C., Folmer, J., and Vogel-Heuser, B. (2013). Evo-
lution in industrial plant automation: A case study. In
IEEE Ind. Electronics Society, IECON.

Prähofer, H., Angerer, F., Ramler, R., Lacheiner, H.,
and Grillenberger, F. (2012). Opportunities and chal-
lenges of static code analysis of IEC 61131-3 programs.
In IEEE Conf. on Emerg. Techn. and Fact. Autom.
(ETFA), 1–8.

Preusse, S. and Hanisch, H.M. (2008). Specification and
verification of technical plant behavior with symbolic
timing diagrams. In 3rd Int. Design and Test Workshop
(IDT), 313–318.

Provost, J., Roussel, J.M., and Faure, J.M. (2011). Trans-
lating Grafcet specifications into Mealy machines for
conformance test purposes. Control Eng. Practice
(CEP), 19(9), 947–957.

Reimann, G. (2013). Trendstudie: IT und Automation
in den Produkten des Maschinenbau bis 2015. URL
http://www5.vdma.org/.

Schlingloff, H. and Vulinovic, S. (2005). Model based de-
pendability evaluation for automotive control functions.
In Modeling and simulation for public safety.

Svenningsson, R., Vinter, J., Eriksson, H., and Törngren,
M. (2010). MODIFI: a MODel-implemented fault injec-
tion tool. In Computer Safety, Reliability, and Security,
210–222. Springer.

Vyatkin, V. and Bouzon, G. (2008). Using visual specifica-
tions in verification of industrial automation controllers.
EURASIP Journ. on Embedded Systems.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3515


