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Abstract: High Voltage Direct Current (HVDC) lines allow large quantities of power to be
transferred between two points in an electrical power system. A Multi-Terminal HVDC (MTDC)
grid consists of a meshed network of HVDC lines, and this allows energy reserves to be shared
between a number of AC areas in an efficient manner. Secondary Frequency Control (SFC)
algorithms return the frequencies in areas connected by AC or DC lines to their original setpoints
after Primary Frequency Controllers have been called following a contingency. Where multiple
TSOs are responsible for different parts of a MTDC grid it may not be possible to implement
SFC from a centralised location. Thus, in this paper a simple gain based distributed Model
Predictive Control strategy is proposed for Secondary Frequency Control of MTDC grids which
allows TSOs to cooperatively perform SFC without the need for centralised coordination.

Keywords: Multi-terminal HVDC; Distributed MPC; Secondary Frequency Control.

1. INTRODUCTION

In line with the framework outlined in the 20-20-20 EU
initiative (EWEA, 2009), the future common European
electricity market will evolve so as to cater for the pro-
jected high volume of intermittent renewable energy re-
sources expected across the European grid. The sharing
of these stochastic renewable energy sources over large
areas will also have the effect of mitigating some of the
issues associated with having large penetrations of re-
newables in the generation mix. The development of a
European interconnected grid or “Supergrid” has received
widespread attention as a means of achieving this goal.
This will facilitate access to variable renewable sources,
such as wind from the North of Europe and solar from
the South of Europe and North Africa, which then can
be aggregated across the entire European grid allowing
higher penetrations of low carbon energy overall without
threatening the stability of the system (Van Hertem and
Ghandhari, 2010).

High Voltage Direct Current (HVDC) transmission facil-
itates the transfer of large quantities of electrical power
over long distances by utilising DC power transmission
(Kundur, 1994). Most HVDC lines are point-to-point lines
that transfer energy between only two AC areas, with
a converter on each side. Modern Voltage Source Con-
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verter (VSC) based HVDC technologies allow a number
of HVDC lines to be connected to a single DC grid ter-
minal (de Courreges d’Ustou, 2012). Thus Multi-Terminal
HVDC (MTDC) grids can be constructed, which consist of
a meshed HVDC grid with a number of connections to AC
grids. Consequently this facilitates the sharing of energy
reserves over large areas for the purposes of enhancing
stability in an efficient manner across the various AC
areas. Thus there has been much interest in developing
coordinated control methods which allow power injections
to and from the DC grid to support frequency in connected
AC areas.

A number of Primary Frequency Control (PFC) algo-
rithms, which operate on the milliseconds to seconds scale,
have been proposed for sharing primary reserves over
MTDC grids. Several of these have involved using direct
communication between areas (Dai et al., 2010; Chaudhuri
and Chaudhuri, 2013; Machowski et al., 2013). However,
these algorithms can be non-robust to communication de-
lays or failures, as shown in Dai et al. (2010), and hence
a number of methods that do not rely on communication
between areas have been proposed. These operate by ma-
nipulating the DC voltages on the grid in a decentralised
fashion in order to regulate the power flows into or out
of AC areas and the MTDC grid (Dai et al., 2012; Silva
et al., 2012; Chaudhuri et al., 2013; Egea-Alvarez et al.,
2013). As is the case with decentralised PFC in AC areas,
it is necessary to provide Secondary Frequency Control
(SFC), which acts on the seconds to minutes scale, so as
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to satisfy long-term frequency regulation goals across areas
connected to MTDC grids.

A decentralised PI-based SFC strategy was proposed in
Dai (2011), and a PID-based extension of this method
was optimised centrally in de Courreges d’Ustou (2012). In
de Courreges d’Ustou (2012) it is shown that by optimising
the controller gains the performance of the system can be
significantly improved. However, there is an underlying
assumption here that it is possible to optimise these
controller parameters from a central location with access
to the state-space of the entire grid. Transmission System
Operators (TSOs) are responsible for the balancing of the
electricity supply to match demand across power grids.
Different sections of large power systems, such as the
European grid, are controlled by separate TSOs. As it is
the responsibility of these TSOs to ensure stable power
system control in the areas under their jurisdiction, it is
unlikely that they would be willing to give authority to
a third party to determine their controller gains. Also, it
would be necessary for legal frameworks to be in place
such that different TSOs’ state-space information could be
made available to the centralised coordinator. Distributed
optimal control solutions can circumvent these issues by
allowing TSOs to remain autonomous, while remaining
capable of coordinating their actions with other TSOs via
a negotiation process.

Model Predictive Control (MPC) (Maciejowski, 2002) al-
gorithms enable the optimal control of a system based
on the use of state-space predictions, and in recent years,
there has been extensive research in the field of distributed
MPC. Here a number of controllers, called control agents,
are responsible for the control of separate interconnected
subsystems in a system, and through inter-agent com-
munication, it is possible for them to collectively achieve
performance that approximates that of a centralised MPC
controller (Christofides et al., 2013).

In this paper, it is demonstrated how a simple gain based
distributed MPC controller can be used for SFC over
a MTDC grid. It will be seen that through inter-area
communication it is possible for the controllers to achieve
similar performance to that of a centralised MPC for SFC,
without the need for centralised coordination. Thus the
issues outlined previously with regard to centralised coor-
dination of TSOs for SFC could be could be circumvented.

The remainder of the paper is structured as follows. In
Section 2, modelling and decentralised PFC of a MTDC
system are described. Then Sections 3 and 4 introduce
centralised and distributed MPC, respectively. Section 5,
derives the state-space model needed for the centralised
and distributed MPC implementations. Simulations and
results are presented in Section 6, and conclusions and
future work are discussed in Section 7.

2. MODELLING AND FREQUENCY CONTROL FOR
MULTI-TERMINAL HVDC GRIDS

2.1 Modelling

A MTDC grid is composed of a DC grid and N AC areas,
each with a converter which serves as an interface for
transferring power to and from the DC grid, as in Fig. 1
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Fig. 1. A multi-terminal DC grid connecting N = 5 AC
areas via converters (Sarlette et al., 2012).

(Sarlette et al., 2012). Each AC area i, for i = 1, 2, . . . , N ,
has a state vector (fi, Pmi) ∈ ℜ2, and is governed by the
following dynamic equations:

Ji
d

dt
fi(t) =

Pmi(t)− Pli(t)− P dc
i (t)

4π2fi(t)
−Dgi(fi(t)−f̄i), (1)

τi
d

dt
Pmi(t) = P 0

mi(t)− Pmi(t)−
Pnom,i

σi

fi(t)− f̄i

f̄i
, (2)

Pli(t) = P 0
li(t)(1 +Dli(fi(t)− f̄i)), (3)

where Ji is the moment of inertia of aggregated area i (kg
m2), fi(t) is the frequency (Hz), Pmi(t) is the mechanical
power (W), Pli(t) is the load disturbance considering
frequency effects (W), P dc

i (t) is the DC power AC area i is
injecting into the DC grid (W), Dgi is the damping factor
(W s2), f̄i is the nominal frequency (Hz), τi is the time
constant for power adjustment (s), P 0

mi(t) is the reference
mechanical power which is manipulated using SFC (W),
σi is the generator droop (dimensionless), P 0

li(t) is the
nominal load disturbance at bus i (W), and Dli is the
sensitivity of Pli(t) to deviations of the frequency from
the nominal frequency (s) (Kundur, 1994).

The dynamics of the HVDC converters are not significant
at the time scales considered in this work and so it is
assumed that these values are taken at their steady state
values. The power injected into the HVDC grid is equal to
that leaving the grid, i.e.,

P dc
1 (t) + . . .+ P dc

N (t) = 0. (4)

A negative P dc
i (t) indicates area i is receiving P dc

i W from
the HVDC grid, and a positive P dc

i (t) indicates area i is
injecting P dc

i W into the HVDC grid. Denoting V dc
i (t) as

the DC voltage of area i, it follows that,

P dc
i (t) =

N
∑

j=1

V dc
i (t)(V dc

i (t)− V dc
j (t))

Rij

, (5)

where Rij = Rji is the resistance in the HVDC line
connecting areas i and j, and Rij = ∞ if areas i and j
are not connected by a DC line.

2.2 Primary Frequency Control

A communication-free decentralised PFC law was pro-
posed for the sharing of primary reserves amongst AC

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11142



areas over the HVDC network in Sarlette et al. (2012).
This is given as follows

vi = γixfi, (6)

where the DC input voltage deviation at area i, vi(t) =
V dc
i (t) − V̄ dc

i , where V̄ dc
i is the operating point of V dc

i

at equilibrium, the state xfi is given by xfi = fi(t) − f̄i,
and γi is agent i’s DC voltage PFC gain. This control
law effectively shares resources amongst AC areas and the
conditions for stable control under this law are given in
(Sarlette et al., 2012). While this PFC acts on the mil-
liseconds to seconds time scale to counteract disturbances
in the AC areas, it does not return the AC areas to their
original setpoints, and hence a secondary level controller
is needed to manipulate P 0

mi(t) over longer time scales
(typically seconds to minutes) in order to achieve this
objective.

2.3 Secondary Frequency Control

The objective of SFC in area i is to maintain the frequency
and net interchange power with connected areas at their
scheduled values, f̄i and P̄ dc

i , respectively. Assuming a
discrete-time controller for SFC, at sample step k SFC
seeks to minimise the following objective function for area
i, Ψi(k), defined here as

Ψi(k) = Qfix
2
fi(k + 1) +Qziz

2
i (k + 1), (7)

where zi = P dc
i (t)−P̄ dc

i , andQfi andQzi are weights which
determine the relative importance of minimising xfi(k) and
zi(k), respectively. In the following sections centralised and
distributed MPC will be introduced and it will then be
shown how SFC can be achieved using a MPC framework.

3. MODEL PREDICTIVE CONTROL

Model Predictive Control is an optimisation based control
technique that uses state-space based predictions in order
to form optimal inputs to a system over a prediction
horizon. While inputs are calculated over the full predic-
tion horizon, only the input for the first sample step of
the prediction horizon is applied to the system, and this
process is repeated every sample step.

A discrete-time, linear, time-invariant state-space model is
given as follows,

x(k + 1) = Ax(k) +Bu(k) (8)

y(k) = Cx(k), (9)

where x(k) is the state, u(k) are the inputs, and y(k) are
the outputs of the systems at a sample time k. Matrices
A, B, and C are the relevant state-space matrices. An
incremental state-space model is used for control in order
to ensure integral action:

xaug(k + 1) = Âxaug(k) + B̂∆u(k) (10)

y(k + 1) = Ĉxaug(k + 1), (11)

where xaug(k) = [∆xT(k) xT(k)]T is the augmented state
vector, ∆z(k) = z(k)− z(k − 1) denotes the increment in

z between samples k and k − 1, and Â, B̂, V̂ , and Ĉ are
the incremental state-space matrices.

To simplify notation, the prediction vector, over a horizon
H is first introduced. For a general vector p, its prediction
vector is p̃(k) = [pT(k) . . .pT(k + H − 1)]T. State and

output predictions for the system over the prediction
horizon are then determined using (10) and (11) as follows:

x̃aug(k + 1) = Â
f
xaug(k) + B̂

f
∆ũ(k) (12)

ỹaug(k) = Ĉ
f
x̃aug(k), (13)

where Â
f
, B̂

f
, and Ĉ

f
are the state-space prediction

matrices. The derivation of these matrices is based on
iteratively solving for x(k+a+1) based on x(k+a) using
(8) and is well established in the literature (Maciejowski,
2002).

MPC problems are constructed to fulfill control objectives
for a system based on knowledge of x(k). A cost function,
J(xaug(k),∆ũ(k)) (which will henceforth be denoted by
J(k)), is designed so as to embody the system’s objectives.
Typically this cost function is quadratic in ∆ũ and is
expressed as:

J(k) = ẽT(k + 1)Qẽ(k + 1) + ∆ũT(k)R∆ũ(k)

= ∆ũT(k)H∆ũ(k) + ∆ũT(k)f + µ
(14)

where the error vector, e(k + 1) = y(k + 1) − r(k + 1),
r(k) is a vector of the setpoints at sample step k, Q and
R are weighting matrices, H is a square symmetric non-
singular matrix, f is a vector, and µ is a constant which
does not depend on ∆ũ(k). For the unconstrained case,
an analytical solution for the inputs can then be found by
finding the value of ∆ũ(k) that minimises J(k).

The optimal choice of controls ∆ũ∗(k) is obtained when,

∂

∂∆ũ(k)
J(k) =2H∆ũ(k) + f = 0, (15)

where a superscripted * denotes the optimum value of a
variable. This yields the solution,

∆ũ∗(k) = −
1

2
H−1f . (16)

The input at the start of the horizon u(k) is applied to the
system and this process is repeated each sample step. Un-
constrained MPC in this form is equivalent in performance
to a Finite Horizon Linear Quadratic Regulator.

In the above formulation MPC is carried out from a central
location. At each sample step each area must send the
central controller state measurements, and the controller
must have access to the full state-space of each of the areas
to formulate the control problem. Having calculated the
input vector the central controller then sends the inputs
to each area. This may be impractical in the case where a
MTDC grid connects a number of areas under the control
of different TSOs, as TSOs may be reluctant to share
internal state-space information due to privacy concerns.
The need for long distance communication between the
controller and connected areas could also induce delays,
and the system would not be robust to the failure of the
central control agent. In the following section distributed
MPC is described where control agents responsible for
interconnected subsystems can communicate with each
other in order to coordinate their responses, thus avoiding
the need for a central coordinator.

4. DISTRIBUTED MPC

Consider a system consisting of n non-overlapping sub-
systems. A discrete-time, linear, time-invariant state-space
model is used to model the dynamics of each subsystem,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11143



xa(k + 1)=Aaxa(k)+Baua(k)+V ava(k) (17)

ya(k) =Caxa(k), (18)

where xa(k) is the state of subsystem a, ua(k) are sub-
system inputs, ya(k) are subsystem outputs, and va(k)
are external inputs from other subsystems that influence
subsystem a at sample step k. The matrices Aa, Ba,
V a, and Ca are the relevant state-space matrices. The
incremental state-space model is given by:

xaug
a (k + 1)= Âax

aug
a (k)+B̂a∆ua(k)+ V̂ a∆va(k) (19)

ya(k + 1)= Ĉax
aug
a (k + 1), (20)

where xaug
a (k) = [∆xT

a (k) x
T
a (k)]

T is the augmented state

vector of the ath subsystem and Âa, B̂a, V̂ a, and Ĉa

are the incremental state-space matrices for subsystem
a. State and output predictions for subsystem a are
performed in the same way as in the centralised case with

predictive matrices Â
f

a, B̂
f

a, V̂
f

a, and Ĉ
f
.

The Non-Cooperative distributed MPC (NCdMPC) is
now described. Further details on the derivation of this
algorithm are given in (Negenborn et al., 2008). Let agent
j ∈ Na be connected to agent a, where Na is the set of
agents connected to agent a by a common variable. The
interconnecting input vector, win

ja, is defined as the vector

of inputs to control problem a from agent j ∈ N in
a , where

N in
a ⊆ Na is the ordered set of agents connected to agent a

by an interconnecting input. Likewise, the interconnecting
output vector wout

ja is defined as the vector of outputs to

control problem j ∈ N out
a from agent a, where N out

a ⊆ Na

is the ordered set of agents connected to agent a by an
interconnecting output.

At each sample step k, a so called NCdMPC cycle is carried
out. This NCdMPC cycle is a process that consists of a
number of iterations in which agents optimise in a serial
fashion. The optimisation problem of agent a, for iteration
l of the distributed MPC cycle, at sample step k is:

θ∗
a(k, l) = arg min

θa(k,l)

(

J local
a (k, l) + J inter

a (k, l)

)

, (21)

where θa(k, l)=[∆ũT
a (k, l),∆w̃in

a
T(k, l)]T.

Here J local
a (k, l) represents the local control goals, and as

in the centralised case, is usually a quadratic function of
θ∗
a(k, l). The function is usually chosen so as to minimise

the difference between some system outputs and their
corresponding setpoints, and this will often be balanced
against the controller effort needed to achieve these goals.

The interconnecting cost for agent a, J inter
a (k, l), is given

by:

J inter
a (k, l) =

∑

j∈Na

J inter
ja (k, l), (22)

and J inter
ja (k, l) is the cost associated with the inter-agent

coordination with agent j given by:

J inter
ja (k, l) =

[

λ̃
in

ja(k, l)

−λ̃
in

aj(k, l)

]T
[

w̃in
ja(k, l)

w̃out
ja (k, l)

]

+
c

2

∥

∥

∥

∥

[

w̃in
ja(k, l)− w̃out

aj,prev(k, l)

w̃out
ja (k, l)− w̃in

aj,prev(k, l)

]∥

∥

∥

∥

2

2

,

(23)

where λ̃
in

ja(k, l) is the vector of Lagrange multipliers as-

sociated with the equality constraint w̃in
ja(k)=w̃out

aj (k), c

is a positive constant, and w̃out
aj,prev(k, l) and w̃in

aj,prev(k, l)

are taken as the most recently updated values of w̃out
aj (k, l)

and w̃in
aj(k, l), respectively.

When J local
a (k, l) is quadratic in θ∗

a(k, l) it is then possible
to express (21) as follows:

θ∗
a(k, l) = arg min

θa(k,l)
θT
a (k, l)Haθa(k, l) + θT

a (k, l)fa + µa,

(24)
whereHa is a square symmetric matrix, fa is a vector, and
µa is a constant which does not depend on θa(k, l). When
no inequality constraints are considered, an analytical
solution for θ∗

a(k, l) can then be found, using the same logic
as in (15) and (16). This allows the NCdMPC algorithm
to be implemented using a simple constant gain matrix.

Each agent solves (24) in a serial fashion, and after
the agents have optimised, they send updated values of
interconnecting variables to their neighbours. Agents who
are not connected by an interconnecting variable may
optimise in parallel too. When each agent has performed
one optimisation during iteration l of the distributed MPC
cycle, the Lagrange multipliers are updated as follows for
iteration l + 1:

λ̃
in

ja (k, l + 1) = λ̃
in

ja (k, l) + c
(

w̃in
ja(k, l)− w̃out

aj (k, l)
)

.

(25)
The distributed MPC iterations terminate when:

||λ̃
in

ja(k, l + 1)− λ̃
in

ja(k, l)||∞ ≤ ǫ, ∀j ∈ Na, ∀a = {1, . . . , n},
(26)

where ǫ is a small tolerance and ‖.‖
∞

denotes the infinity
norm. Upon convergence agents apply ua(k), for a =
1, . . . , n to the system, and the NCdMPC process is then
repeated each time step. In certain cases, there may be
constraints on the number of NCdMPC iterations allowed
in a sample step. In these cases, the NCdMPC iterations
can be terminated prematurely and the inputs which have
been calculated by each agent in the most recent iteration
can be applied to the system. While this can result in sub-
optimal performance, stable control performance is usually
maintained in such cases.

5. SECONDARY FREQUENCY CONTROL USING
MPC IN MTDC SYSTEMS

In order to develop a linear cost function to implement
MPC for SFC, it is necessary to linearise equations (1)
and (5), in order to generate state predictions. These
linearisations are given as follows, as in (Dai, 2011):

d

dt
fi(t) =

Pmi(t)− Pli(t)− P dc
i (t)

4π2f̄iJi
−
Dgi

Ji
(fi(t)−f̄i), (27)

zi =
N
∑

j=1

V̄ dc
i (vi − vj)

Rij

=
N
∑

j=1

V̄ dc
i (γixfi − γjx1j)

Rij

, (28)

where zi = P dc
i (t)− P̄ dc

i , where P̄ dc
i is the operating point

for the DC power in area i. It is assumed in (28) that each
area is under the PFC law given in (6).

State space equations can be used for predictions by
linearising equations (2) and (27) about an operating
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point, with the state of agent i given by xi = [xfi, xPi]
T,

where xPi = Pmi(t)− P̄mi, and P̄mi is the operating point
for Pmi(t). The linearised input of agent i is given by
ui = P 0

mi(t) − P̄ 0
mi, where P̄ 0

mi is the operating point for
P 0
mi(t), and the linearised output by yi = Cixi, where

Ci = [1, 0]. Each AC area a connected to the MTDC grid,
for a = 1, . . . , N , has an associated local cost function
J local
a . Using state-space predictions each agent’s local cost

function is given by:

J local
a =

k+H
∑

p=k+1

(

Ψa(p) +Ra∆u2
a(p)

)

. (29)

This cost function is designed to balance the minimisa-
tion of Ψa(p) against the predicted control effort needed
to achieve this at each sample step over the prediction
horizon. This cost function can be formulated depending
on the particular MPC algorithm being implemented.

6. SIMULATIONS

Simulations were carried out on a testbed to evaluate
the performance of four different MPC based SFC im-
plementations using Matlab and Simulink. The first two
implementations were a centralised MPC (CMPC) and a
NCdMPC with c = 1 and tolerance ǫ = 1×10−3, which was
allowed to fully converge at each sample step. The third
was an NCdMPC which terminated after only 1 iteration
at each sample step (denoted NCdMPC1). The final was
a decentralised MPC (deMPC) algorithm, where agents
did not exchange information, basing their control only
on local information. For the purposes of minimisation
of ∆P dc

j in the decentralised case, agent j assumed that
the DC voltages at HVDC connected areas were constant
and maintained their initial values for the duration of the
simulation.

The testbed for simulations was the 5-agent testbed given
in Fig. 1. The parameter values for the AC and DC grids
are given in Table 1. The system was simulated for 40 s,
and at time t = 0, P 0

l1 was increased by 5% of its original
value which necessitated responses from the primary and
secondary frequency controllers. The system was simulated
in discrete time with a sample step of 0.01 s using nonlinear
dynamics equations (1), (2), (3), and (5).

A sample step of 0.5s was used for control and the state
space, based on (27) and (28), was discretised accord-
ingly. The prediction horizon was chosen as H = 10.
Disturbances di were not known a priori or measurable
for the purposes of control. The weights for the MPC
algorithms were given as follows: Qfa = 1, Qza = 0.01,
and Ra = 0.1, for a = 1, . . . , 5. Warm starts were used
for the Lagrange multipliers in the NCdMPC cases, where
the optimal values of Lagrange multipliers from sample
step k − 1 were used to initialise the Lagrange multipliers
at the next sample step k. Agents that do not share an
interconnecting variable can perform their optimisations
in parallel, for the NCdMPC cases. Therefore, in each
NCdMPC cycle the first agents to optimise in parallel were
agents 1 and 4, then agents 3 and 5 optimised in parallel,
and finally agent 2.

AC grid parameters

Area 1 2 3 4 5

fnom (Hz) 50 50 50 50 50

P 0
m (MW) 50 80 50 30 80

Pnom (MW) 50 80 50 30 80

J (kg m2) 2026 6485 6078 2432 4863

Dg (W s2) 48.4 146.3 140 54.9 95.1

Tsm (s) 1.5 2.0 2.5 2 1.8

P 0

l
(MW) 100.42 59.58 40.31 49.70 39.59

Dl (Hz−1) 0.01 0.01 0.01 0.01 0.01

V̄ dc (kV) 99.17 99.6 99.73 99.59 100

P̄dc (MW) -50.4 20 10 -20 40.4

σ (no units) 0.02 0.04 0.06 0.04 0.03

γ (kV Hz−1) 1 1 1 1 1

τ (s) 1.5 2 2.5 2 1.8

DC grid resistances (Ω)

R12 R15 R23 R25 R34 R45

1.39 4.17 2.78 6.95 2.78 2.78

Table 1. AC and DC grid parameters.

MPC CMPC NCdMPC NCdMPC1 deMPC

Jsim(×10−6) 138 194.9 191.3 635

Table 2. Jsim for each MPC control scheme.

6.1 Results

The plots of f1 and P dc
1 under deMPC, CMPC, NCdMPC,

and NCdMPC1, are given in Fig. 2 and Fig. 3, respectively.
The following performance criterion was used in Table 2
to evaluate the performance of each of the controllers over
the course of the entire simulation:

Jsim =

5
∑

a=1

kf
∑

p=0

(

Ψa(p) +Ra∆u2
a(p)

)

. (30)

where kf is the total number of control samples during the
simulation.

The following can be observed from both the simulations
and values of Jsim. The CMPC gives the best Jsim per-
formance and provides shortest settling time, in terms of
both the damped response and settling times. The deMPC
case gives the worst Jsim performances, provides a highly
underdamped response, and has the longest settling time.
Both NCdMPC and NCdMPC1 provide similar responses
with damping and settling times comparable to that of
CMPC. The maximum number of NCdMPC iterations
needed to achieve this performance in a given sample step
is 2, as shown in Fig. 4.

Interestingly, here, NCdMPC1 provides a slightly lower
Jsim cost than NCdMPC. However, this could simply be
due to the nature of the disturbance in this case. While
space constraints do not permit it to be shown here, for
more severe contingencies NCdMPC has a consistently
lower value of Jsim, as would be expected. Typically, for
various contingencies, the responses are quite similar in
terms of damping, settling times, and minimisation of
Ψa(p), and so NCdMPC1 could suffice for use in reality
where time constraints may not allow many NCdMPC
iterations to be executed at each sample step.

7. CONCLUSIONS AND FUTURE WORK

In this paper a Non-Cooperative distributed MPC (NCd-
MPC) framework was proposed for Secondary Frequency
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Fig. 2. Frequency response in area 1 for CMPC, NCdMPC,
NCdMPC1, and deMPC cases.
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Fig. 3. HVDC power in area 1 for CMPC, NCdMPC,
NCdMPC1, and deMPC cases.
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Fig. 4. Number of NCdMPC iterations needed over the
course of the simulation (iterations remain at 1 after
5 s).

Control (SFC) of a Multi-Terminal HVDC (MTDC) sys-
tem, under decentralised voltage based Primary Frequency
Control, that avoids the need for a centralised coordinator.
The effectiveness of the approach has been demonstrated
with a simulation study. Future work will look at parallel
implementations of NCdMPC, consider the robustness of
this approach in terms of time delays and communication
failures, and will investigate the use of additional con-
straints in the control formulation.
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