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Abstract: A blended autopilot algorithm is developed using generalized predictive control and adaptive 
non-singular terminal sliding mode control, for dual control missile steered by combination of 
aerodynamic fins and reaction jets. The blended algorithm considers the reaction jets control design prior 
due to its inherent control error, and then treats the aerodynamic fin control on the basis of the reaction 
jets control results. The generalized predictive control method is applied to the reaction jets control, 
which could make the missile achieve desired performance with a small number of consumed reaction 
jets. Then a novel adaptive non-singular terminal sliding mode control method is proposed for the 
aerodynamic control system design, to meet the requirements of robustness and fast response for the 
control of the missile. The unknown bound of the uncertainties and disturbances is estimated adaptively 
in the control, which makes the control with better robustness. Using the Lyapunov stability theory, the 
finite time convergence in both reaching and sliding phases is achieved. Finally, the simulations are 
conducted on the nonlinear longitudinal missile model with uncertainties and disturbances, and the 
simulation results demonstrate the effectiveness of the blended autopilot algorithm. 

Keywords: Dual control missile, generalized predictive control, terminal sliding mode control, Lyapunov 
stability, robustness. 

 

1. INTRODUCTION 

Modern interception strategy requests anti-air missiles to hit 
to kill the target, which requires the missile control system 
having fast response. The traditional missiles with fins-only 
can hardly achieve a sufficiently fast response, since 
effectiveness of tail fins depends highly on the dynamic 
pressure especially at high attitude (Barnes and Brown, 1998). 
Moreover, fins-only missiles have a non-minimum phase 
characteristic which causes a large undershoot (Wise and 
Broy, 1998). To compensate this situation, alternative control 
technologies have to be used. Possible options are 
propulsion-based control in the forms of a reaction jet control 
system (RCS) combined with fin control, and the 
compensated missile is often called dual control missile 
(Tournes, et al., 2006; Shtessel, et al., 2006). There are two 
types of RCS configuration, the direct force type and the 
moment type. The RCS is located near the centre of gravity 
(c. g.) arising the acceleration directly in the former type, and 
in ahead of or in rear of c. g. arising the force and the 
moment in the later type (Hirokawa and Sato, 2001). The 
paper here concentrates on missiles of the moment type, 
which is based on PAC-3 configuration shown in Fig.1.   

The participation of the reaction jets brings problem of its 
control coordination with fins. Researches in (Idan, et al., 
2007) adopted command allocation strategy, with which the 
angle command was divided into two parts: one was assigned 
to the aerodynamic system and the other was to the RCS. The 
advantage of this strategy is easy to design, but the coupling 

of these two systems is not considered and the entire system 
stability is hard to be satisfied. Control quantity allocation 
strategy was proposed in researches (Ridgely，et al., 2006; 
Cui，et al., 2011), which considered the aerodynamic system 
design and the reaction jets system design together, and 
assigned the desired control quantity to these two actuators. 
However, the reaction jets output in these researches was 
regarded as continuous variable. If it was regarded as discrete 
in accordance with reality, control error would happen as the 
reaction jets can hardly produce the accurate allocated control 
quantity. Here in this paper, the RCS is first considered due 
to its inherent control error caused by their discrete trait, and 
then the aerodynamic fin control is designed based on the 
reaction jets control results. This method guarantees the 
entire system stability and control accuracy. In addition, the 
researches in (Idan, et al., 2007; Ridgely，et al., 2006; Cui，
et al., 2011) didn’t take consumption of reaction jets into 
consideration. As the reaction jets amount is limited, it is 
necessary to consider the control effort of the RCS. Thus 
generalized predictive control (GPC) method is adopted in 
the RCS design, since it can optimize the control effort by 
varying the control-weighting sequence of the cost functions 
during the minimization process (Geng and Geary, 1998).  

The participation of the reaction jets also brings disturbances 
to the aerodynamic control system, which makes the missile 
control system feature huge nonlinearity and uncertainty. 
Sliding mode control (SMC) has received much attention as 
an efficient control technique to handle systems with large 
uncertainties, nonlinearities, and bounded external 

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 2515



 
 

     

 

 

Fig. 1. Missile configuration 

disturbances. The most prominent property of SMC is its 
insensitivity to parameter variations and external disturbances. 
Some aerodynamic fin control systems were designed based 
on SMC in (Idan, et al., 2007 ； Tournes, et al., 2006; 
Shtessel and Tournes, 2009). However, SMC in those 
researches all adopted the linear hyperplane-based sliding 
modes which could only achieve the asymptotic convergence 
in the sliding phase. In view of the requirement of fast 
response for the missile, terminal sliding mode control 
(TSMC) with finite time convergence (Feng, et al., 2002; 
Wei, et al., 2009) is a better choice. Besides, research in 
(Koren, et al., 2008) all regarded the bound of disturbance as 
known in SMC design. However, the dual control missile is 
with unknown uncertainties in practice. In consideration of 
the above, a novel adaptive non-singular terminal sliding 
mode control (ANTSMC) method is proposed for the 
aerodynamic fin control system design. ANTSMC here can 
achieve the finite time convergence in both reaching and 
sliding phase and need no knowledge of the bound of the 
uncertainties and disturbances in advance.  

In this work, a blended autopilot based on GPC and ATSMC 
for the dual control missile is designed to robustly improve 
the system time response in presence of parametric 
uncertainties and external disturbances. The rest of the paper 
is organized as follows: Section 2 describes the model of the 
dual control missile introduced from (Bi, 2010). Section 3 
presents the blended autopilot algorithm in detail. Simulation 
results are demonstrated in Section 4. Finally, Section 5 
provides the concluding remarks. 

2. MISSILE MODEL DESCRIPTION 

As the normal acceleration command from the guidance laws 
can be converted to the angle of attack command, we choose 
the angle of attack as the commanded signal. In general, the 
dynamic model of the dual control missile in pitch channel 
can be expressed in the following form (Bi, 2010) 

(( )cos sin cos ) /

( ( ) ( , ) ( ) ( )) /
e

Z

q e f y q

q Z F X mg mV

q M M q V M M U J
a

a d

a a a m
a a d

ì = + + - + +Dïïíï = + + + +Dïî


    (1) 

where a  is the angle of attack, m  is the angle of path, p  is 

the pitch angular rate; m is the aircraft mass, V  is the aircraft 
velocity; X  and Z  are the aerodynamic forces along the x  
and z  body axes, ZF  is the force produced by the reaction 

jets; yJ  is the moment of inertia along the y  body axis, 

( )a aM , ( , )qM q V , ( )
e eM d a d , and ( )fM U  are the static 

aerodynamic moment, damping moment, fin control moment, 
and reaction jets produced moment respectively; de  is the 

elevator deflection and U  is the reaction jets fire command 

vector; aD  and 
qD  denote total uncertainties and 

disturbances in the missile. The aerodynamic model and the 
reaction jets model are not given here. 

The dual control missile features huge nonlinearity and 
uncertainty in the dual control missile. The autopilot for such 
missile must be competent to handle those characteristics 
with strong robustness. Besides, there are two kinds of 
actuators with different features in the model. So, the 
autopilot should be able to make these two actuators 
corporate well. In this paper, a blended autopilot is proposed 
to make the angle of attack a  track the angle command ca  

accurately and rapidly in presence of parametric uncertainties 
and external disturbances. 

3. BLENDED AUTOPIOLT DESIGN 

As mentioned in Section 1, there always exits control errors 
in the RCS due to its discrete nature and limited amount. In 
addition, the reaction jets response much faster than the fins. 
Thus the RCS is designed prior; the aerodynamic fin control 
system is later designed on the basis of the control effort of 
the RCS. Further, to avoid unnecessary consumption of the 
reaction jets, they are not allowed to be fired under the 
conditions that the error between the present angle and the 
desired angle is small, or the calculated RCS control effort is 
small. Thus a firing condition is set in the blended autopilot 
to decide whether or not the reaction jets work. The 
conditions are expressed as follow: 

0

0fc

e
e

k
M M





 

                                      (2) 

where ce     is the present control error, 0e  is the initial 

error, fcM  is the calculated RCS control effort， 0M  is the 

threshold to fcM , and k  is a positive constant. Only if the 

condition is satisfied, which implies the error and the 
calculated RCS control effort are large enough, the reaction 
jets fire and f fcM M ; else 0fM  . The closed-loop 

control system is shown in Fig.2. RCS design and the 
aerodynamic fin control design will be described in the 
following. 

c e

fcM

fM

e

Fig. 2. The closed-loop control system structure 

3.1 RCS Design 

As the amount of the reaction jets is limited, the RCS should 
aim at improving the system response and at the same time 
avoiding the excessive reaction jets consumption. Thus the 
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RCS design should take control effort into consideration. 
Besides, the dual control model is with huge uncertainties. 
The aim of the GPC algorithm is to generate a sequence of 
control signals at each sampling interval which optimizes the 
control effort. Moreover, the GPC has low sensitivity to 
model error. Thus, the GPC is adopted in the RCS design. 

3.1.1 GPC Algorithm 

Here, a brief introduction of the GPC algorithm is given. The 
following CARIMA model is adopted for the plant in the 
GPC (Clark, et al., 1987): 

1 1 1( ) ( ) ( ) ( 1) ( ) / (1 )A z y k B z u k k z       0,1,2,k       (3) 

where 1( )A z  and 1( )B z  are polynomials in the delay 

operator 1z ; ( )y k  and ( )u k  are output and control variables, 

respectively; ( )k is an uncorrelated random sequence. Now 

a prediction of the plant output is given here: 
( ) ( ) ( 1) ( )j j jy k j E k j F u k j G y k                      (4) 

where j  is the number of future time steps being predicted; 

jE ,  jF , and jG  result from a recursive solution of the 

Diophantine relation 

1 1 1

1 1 1

1 ( ) ( ) ( )

( ) ( ) ( )

j
j j

j j

A z E z z G z

F z B z E z

   

  
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


                   (5) 

Then a predictive control law is given to minimize a cost 
function given by 

{[ ] [ ] }T T
r rJ E Y Y Y Y U U                      (6) 

where 
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    

       

 

            (7) 

and 1N  is the minimum output horizon, 2N  is the maximum 

output horizon, uN  is the maximum control horizon, 

1 1 2( ), ( 1),..., ( )r r ry k N y k N y k N     are the desired 

values of the output sequence from the 1( )k N th sampling 

instant to the 2( )k N th sampling instant, 1 2, ,...,
uN    is the 

control-weight sequence.  

According to J/ 0U   , the predicted control vector can 
be derived as 

1
1 1 1 2( ) ( ) [ ( - ) ( )]T T

rU k F F R Y F U k j GY k                (8) 

where 1F , 2F , and G  are matrixes derived  from (4), which 

are not given here in detail, and one can refer to (Clark, et al., 
1987). 

However, only the first element of the vector is used. Then 
the current control is gotten as  

1
1 1 1 2

( ) ( 1) ( )

( 1) [1,0,...,0]( ) [ ( - ) ( )]T T
r

u k u k u k

u k F F F Y F U k j GY k

  

      
     (9) 

3.1.2 GPC Based RCS Design 

 In this part, the RCS based on the GPC is developed. 
Assuming the missile CARIMA model is as follow 

1 1

1 0

( ) (1 ( )) ( ) ( ) ( 1) ( )

( ) ( )

( ) [ ( 1),..., ( ), ( 1),..., ( 1)]

[ ,..., , ,..., ]
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  



     

 
       



        (10) 

where fM  is regarded as control variable, a  is regarded as 

the output. As the parameter vector   is unknown, the least 
squares identification method is used to estimate them, which 
is expressed as follow: 

( ) ( 1) ( )[ ( ) ( ) ( 1)]

( 1) ( )
( )

( ) ( 1) ( )

1
( ) [ ( ) ( )] ( 1)

T

T
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               (11) 

where   is the forgetting factor parameter. 

  Then the costing function is chosen based on the control 
effort and control accuracy as  

2 2

1

2 2

1

{ [ ( ) ( )] [ ( ) ( 1)] }
N N

c j j f
j N j

J E k j k j r e M k j 
 

              (12) 

where 
2 2/( ) je c

j j jr e e  , ( ) ( )j ce k j k j     , j  and 

c  are positive constants. Notably, the control-weight of the 
control effort is small when the current control error je  is big, 

aiming at improving the angle response speed; and it is big to 
avoid the unnecessary consumption of the reaction jets when 
the error is small.  

Now, the main steps of the RCS based on the GPC are as 
follows: 

1) Initialize the control algorithm such as the order of 

the missile CARMA model an , bn , initial value ˆ(0) , (0)P , 

control parameter 1N , 2N , uN  and forgetting factor  . 

2) Record the present angle of the attack ( )k  and the 

desired ( )c k j  . 

3) Estimate the missile CARMA model parameter ̂ , 

i.e. Â  and B̂ , using the least squares identification method 
(11) online. 

4) Solve Diophantine equation (5) to get polynomial 

jE , jG , and jF . 

5) Build vector rY , ( )U k j  , and ( )Y k , and matrix 

G , 1F , and 2F . 

6) Calculate ( )u k  according to (9). 

7) Let 1k k   and go to Step 2. 

3.2 Aerodynamic Fin Control Design 

In this section, the ANTSMC method is proposed to cope 
with the huge uncertainties and disturbances in the 
aerodynamic system, and to make the system response fast. 
The finite time convergence in both reaching and sliding 
phases is demonstrated by using the Lyapunov stability 
theory. 
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Denote the state vector 1 2[ , ]Tx x x , and control input u  as 

1 cx    , 2x q , and eu d= . Then the model of the 

aerodynamic system can be obtained as 

1 2

2

ˆ ( )

( ) ( ) ( )

x x f x

x h x g x u d x

ìï = +ïíï = + +ïî




                          (13) 

where  
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a a m a

a

a

ìï = + - + - + Dïïïï = + +ïíï =ïïïï = Dïî



      
Similar with (Feng, et al., 2002), the sliding surface is chosen 
as  

/
1 2

ˆ( ( )) /p qs x x f x b= + +                           (14) 

where 0b> is a design constant, and p  and q  are positive 

odd integers, which satisfy 1 / 2p q< < . 

Remark 1: There exits unknown term aD  in ˆ ( )f x , thus the 

following observer (15) is used to estimate ˆ ( )f x  and the 

observer output 1z  is used to replace it. 

Consider the observer: 
2/31/3

0 0 2 0 0 1 0 1 1

1/21/2
1 1 1 1 0 1 0 2

2 2 1

, 2 ( )

, 1.5 ( )

1.1 ( )

z v x v L z x sign z x z

z v v L z v sign z v z

z Lsign z v

       
      
   







          (15) 

where 0L  . Then 1z  converges to ˆ ( )f x , and 2z  converges 

to ˆ ( )f x


  in a finite time, if the state 1x  and 2x  are measured 

without noise (Shtessel, et al.,  2007). 

Assuming ( )d x  in (13) satisfies max( )d x d£ , with maxd  a 

constant but unknown, then we propose the following control 
law for the system (13): 

1 2 /
2 max 1 2

ˆ ˆ ˆ( ) ( ( ) ( ) ( ( )) sgn( ))p qq s
u g x h x f x x f x d s s

p s
b d h h- -=- + + + + + +

   (16) 

where 2d³ , 1 2, 0h h > , and maxd̂  is an estimation of 

unknown scalar maxd , which is determined by the following 

updating law: 
/ 1

m ax 2
ˆ ˆ( ( )) p qp
d x f x s

q
d

b
-= +



     
( max

ˆ (0) 0d > )            (17) 

Remark 2: ˆ ( )f x  in (16) is also replaced by the observer 

output 1z . In addition, as the analytical expression of ˆ ( )f x


 in 

(16) cannot be derived, thus it is replaced by the observer 
output 2z . 

Then we have the following result. 
Theorem 1: Consider the system (13) with the non-singular 
terminal sliding surface (14). Then using the control law (16) 
and the updating law (17), the state of the system can reach 
the sliding surface in finite time and then convergence to the 
origin along the sliding surface in finite time too. 

Proof: In the reaching phase ( 0s ¹ ), taking the time 

derivative of (14) along (13) renders to  

/ 1
2 2

ˆ ˆ ˆ( ) ( ( )) ( ( ) ( ) ( ) ( ))p qp
s x f x x f x h x g x u d x f x

qb
-= + + + + + +

  (18) 

Substituting (16) in to (18) yields 
/ 1

2 max 1 2
ˆ ˆ( ( )) ( ( ) sgn( ))p qp s

s x f x d x d s s
q s

d h h
b

-= + - - -      (19) 

Let max max max
ˆd d d= - . Consider the following Lyapunov 

function candidate: 
2 2

1 max

1 1

2 2
V s d= +                                      (20) 

Differentiating (20) with respect to time and using (19) and 
(17) render to 

1 max max

/ 1 2
2 max 1 2 max

ˆ ˆ( ( )) ( ( ) )p q

V ss d d

p
x f x d x s d s s s d s
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 
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

(21) 

Since p  and q  are positive odd integers and 1 / 2p q< < , 

there is / 1
2

ˆ( ( )) 0p qx f x   . Then it becomes 

/ 1 2
1 2 m ax m ax 1 2

/ 1 2
2 m ax 1 2

/ 1
2 2
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ˆ( ( )) ( (1 ) )
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p q

p q

p q

p
V x f x d s d s s s

q

p
x f x d s s s
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p
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
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










    

    
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
    (22) 

which implies that 2 2
1 m a x 1

1 1
( ) ( 0 )

2 2
V t s d V   . Hence, 

s  and 
m axd  are bounded. 

Furthermore, consider another Lyapunov function candidate 
2

2

1

2
V s                                  (23) 

Differentiating (23) with respect to time and using (19) we 
obtain 

2

/ 1 2
2 max max 1 2

ˆ ˆ( ( )) (( ) )p q

V ss

p
x f x d d s s s

q
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




    

      (24) 

From max
ˆ 0d >  and / 1

max 2
ˆ ˆ( ( )) 0p qp
d x f x s

q
d

b
-= + ³


, we 

can obtain max max
ˆ ˆ( ) (0) 0d t d³ > .  

Choosing max
ˆ (0)d  large enough, one can obtain that 

m ax m ax m ax m ax m ax

m ax m ax
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ˆ(0 ) (0 ) 0

d d t d d d

d d
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               (25) 

Substituting (25) in to (24) yields 
2

/ 1 2
2 1 2

/ 1
2 2

ˆ( ( ) ) ( )

ˆ( ( ) )

p q

p q

V s s

p
x f x s s

q

p
x f x s

q
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


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


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  

              (26) 

Then, the sliding mode 0s =  can be reached from anywhere 
in the phase plane in the finite time according to the analysis 
in (Feng, et al., 2002). 

In the sliding phase (s=0) 
/

1 1
q px xb=-                                         (27) 
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Consider 2
3 1

1

2
V x=  as a candidate Lyapunov function of (27). 

By differentiating 3V  with respect to time and substituting 

(27) into it, we have  
/ 1 ( ) /2 ( )/ 2

3 1 1 1 32q p p q p p q pV x x x Vb b+ + += =- =-                 (28) 

According to (Wei, et al., 2009), the system states converge 
to the origin along the sliding surface in finite time. This 
completes the proof. 

Remark 3: It should be noted that the ANTSM control (16) is 
always non-singular in the state since 1 / 2p q< < . 

Remark 4: 1sh  in (16) is exponential approach item, which is 

designed to make the system possess a fast approach speed 

when the sliding surface is big. maxd̂  in (16) is designed to  

estimate the uncertainties bound in the model, which makes 
the choice of the control parameter independent on the 

uncertainties. Besides, the adaptive maxd̂  helps improve the 

system robustness. 
Remark 5: In order to eliminate chattering, a saturation 
function sat can be used to replace the sign function sgn.  

4. SIMULATION RESULTS 

In this section, the performance of the proposed blended 
autopilot algorithm is evaluated for the dual control missile 
as shown in (Bi, 2010). The control objective is to make the 
angle of attack a  track the angle command ca  rapidly and 

accurately in the presence of disturbances and uncertainties. 
First, the control parameter is given. Then, we present a 
comparison between the dual control missile and fin-only 
control missile in which the RCS doesn’t work. Next, the 
proposed ANTSMC method is compared with the traditional 
SMC applied to the dual control missile in this paper. The 
robustness of the proposed blended autopilot algorithm is 
then discussed. 

1.1 Simulation Parameters 

The angle command is set as c 10    at 0.1 sec after the 

simulation starts, and the simulation begins from the trimmed 
equilibrium state 0.70e    , 1.15   , and 1000 /tV m s . 

The control parameters in the RCS are given here: the order 
of identification model 5an  , 3bn  , the minimum and 

maximum output horizon 
1 1N  , 

2 4N  , the maximum 

control horizon 4uN  . The control parameters in the 

aerodynamic control system are given here: 4  , 15p , 

13q  , 
1 5  , 

2 3.5  .  

1.2 Comparison Between the Dual Control Missile and Fin-
only Control Missile 

The reaction jets improve the system response speed only 
when the coordination method and the RCS control method 
are designed effectively. To verify the effectiveness of the 
proposed blended autopilot, the dual control missile is 
compared with the fin-only control missile. The control 
parameters of the aerodynamic control system are all same.  

The simulation comparison curves of the angle of attack are 
shown in Fig. 3. We can observe the dual control missile is 
with much faster response speed than the fin-only control 
missile, which shows the effectiveness of the proposed 
coordination method and the RCS control method. Fig. 4 
shows the output of the reaction jets, from which we are 
informed the reaction jets work at the beginning of the 
response and stop while the angle achieves the desired 
command. This shows the unnecessary fire doesn’t happen.   

1.3 Effectiveness of the Proposed ANTSMC Method 

To verify the effectiveness of the proposed ANTSMC 
method, it is compared with the traditional SMC with linear 
sliding surface and without the adaptive term. The other 
control parameters are all same in those two methods.  

Fig. 5 shows the comparison curves of the angle, from which 
we can observe the dual control missile with the proposed 
ANTSMC method has a faster convergence speed. 

1.4 Robustness Verification of the Dual Control Missile 
System with the Blended Autopilot 

To certify the robustness of the blended autopilot, 
uncertainties 0.5Z   and 0.5 ( , )q qM q V   are added to the 

dual control missile. The comparison curves between the 
angle response with and without uncertainties is shown in Fig. 
6, from which we can obtain the system possesses good 
robustness.  
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Fig. 3. Comparison of  with the dual and fin-only control 
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Fig. 6 Comparison of   with and without disturbances 

5. CONCLUSION 

This paper presents a new blended autopilot algorithm for 
missile steered by combination of aerodynamic fins and 
reaction jets. To improve the system response speed and at 
the same time avoid the excessive reaction jets consumption, 
the generalized predictive control is adopted in the RCS 
design. Then an adaptive non-singular terminal sliding mode 
control is proposed to cope with the huge uncertainties and 
disturbances in the aerodynamic control system, and to 
improve the state convergence speed. The finite time 
convergence in both reaching and sliding phase is guaranteed 
and demonstrated by using the Lyapunov stability theory. 
Finally, the fast response performance and robustness of the 
dual control missile with the proposed blended autopilot are 
demonstrated through simulations. 
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