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Abstract: In order to sustain safety and high product quality, the data-driven fault detection tools are 
increasingly used in industrial processes. The quality variables are the key index of the final product. 
Obtaining them in high frequency is time-consuming in the laboratory because they require the efforts of 
experienced operators. Meanwhile, process variables such as the temperature, the pressure, and the flow 
rate can be readily sampled in high frequency; hence the sample size between the process and the quality 
data is quite unequal. To effectively integrate two different observation sources, the high-rate process 
measurements and low-rate quality measurements, a semi-supervised regression model with probabilistic 
latent variables is proposed in this article to enhance the performance monitoring of the variations of the 
process and the quality variables. The corresponding statistics are also systematically developed and a TE 
benchmark problem is presented to illustrate the effectiveness of the proposed method.   

 

1. INTRODUCTION 

In modern industries, it is essential to produce value-added 
products of the high quality. To maintain the operating safety 
and quality consistency in various processes, multivariate 
statistical process monitoring has become the most popular 
direction and its approaches have been widely used in 
industrial processes, including chemicals, polymers, semi-
conductor manufacturing and biology industries (Qin, 2012, 
Ge et al., 2013). Among them, principal component analysis 
(PCA) and its extensions have been firstly developed (Ge et 
al., 2009, Lee et al., 2004, Kim and Lee, 2003, Ge and Song, 
2012). Of great importance is its ability to divide the original 
measured data into two orthogonal spaces, low-dimensional 
model subspace which contains the system behavior and the 
residual space which includes the uncertain patterns of the 
model, such as noises or outliers. By using the multivariate 
control charts, the variations of processes are then monitored 
in these two spaces(Choi et al., 2005).  

PCA is based on a predefined model from the normal 
operating data of process variables(LI et al., 2009). Hence, it 
can detect the variations and the abnormal status of the 
process variables. However, producing a product based 
monitoring is crucial not only to the process operation but 
also to quality improvement. When the measured quality 
variables are incorporated into the monitoring model, due to 
the existing constraint relationships between the process 
variables (inputs) and the quality variables (outputs), the 
detectability of the abnormal situations resulting from the key 
quality variables will be enhanced. In chemometric 
techniques, projections to latent structures or partial least 
squares (PLS) and its other forms are increasingly used based 
on the process and the quality data collected from normal 

operations (Kruger et al., 2001, LI et al., 2009, Qin and 
Zheng, 2013). However, in the traditional PLS-based model, 
it is assumed that the sample size between process variables 
and quality variables are equal. Indeed, most process 
variables, like temperatures, levels, flow rates and pressures, 
are easily observed and recorded on a second or minute basis. 
Nevertheless, the quality variables that are the key indicators 
of the process performance are often measured off-line in the 
laboratory and are available infrequently on hourly or daily 
basis. Hence, what we observed is a small amount of quality 
data at several particular intervals and much more samples of 
the process variables.  

For effective monitoring of the process performance, the 
statistic model should be developed based on complete data 
samples (both input and output variables), directly using the 
high-rate process measurements and low-rate quality 
measurements. Thus, the whole dataset can be divided into 
two parts. The one that contains both input and output data 
samples is denoted as the labelled dataset; the other that only 
consists of input data samples, as the unlabelled dataset. 
Model training with both labelled and unlabelled data 
samples is termed as the semi-supervised learning, which is 
an area in machine learning and more generally, artificial 
intelligence. Because semi-supervised learning requires less 
human effort and gives higher accuracy, its theory and 
practical applications are of great interest(Zhu, 2006). The 
common semi-supervised learning methods include the EM 
algorithm with generative mixture models, self-training, co-
training, transductive support vector machines, and graph-
based methods (Chapelle et al., 2008, Belkin et al., 2006, Ge 
and Song, 2011). In this article, a probabilistic generative 
model-based method called semi-supervised probabilistic 
latent variable regression (SSPLVR) is proposed. In a 
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SSPLVR model, the process variables and quality variables 
with unequal sample sizes are used to develop a semi-
supervised model in the probabilistic framework. Compared 
with the conventional methods using labelled data only, the 
control decisions of the SSPLVR model using a small 
number of labelled data and a huge number of unlabelled 
process variables have been improved because all the data 
information has been sufficiently utilized. 

The remainder of the paper is organized as follows. The 
supervised probabilistic latent variable regression model is 
briefly reviewed in Section 2. Then the detailed SSPLVR 
model is developed and how to train the model using the EM 
algorithm is discussed in Section 3. Its corresponding 
monitoring approaches are also proposed. The TE benchmark 
is carried out as a case study to evaluate the proposed method 
in Section 4.  Finally, some conclusions are made. 

2. PROBABILISTIC LATENT VARIABLE REGRESSION 
MODEL 

2.1 Supervised probabilistic PCA 

As a widely used technique for dimension reduction, PCA 
has been extended to its probabilistic form, which is called 
probabilistic PCA (PPCA). In a PPCA model, each observed 
sample is given as  

 = +x Pt e  (1) 

in which JR∈x  has been scaled to zero mean and J RR ×∈P  
is the loading matrix. The latent variables RR∈t  are defined 
to follow standard normal distribution. J  is the number of 
process variables. R  is the number of latent variables. The 
noise of the process JR∈e  is set to be isotropic Gaussian 
with zero mean and its variance is calibrated by 2σ I . I  is an 
identity matrix. Like the other unsupervised method, only 
process variables are incorporated into the training model. 
Hence, PPCA cannot make clear that if the variations of 
process variables are relevant to the product quality.  

2.2 Probabilistic Latent Variable Regression (PLVR) 

To monitor quality variables more efficiently, the measured 
quality variables need to be utilized for modelling. When the 
quality data are measured, a supervised model can be 
constructed to link the relationships between process 
variables and quality variables. Given the input data (process 
variables, x ) and the output data (quality variables, y ), the 
probabilistic latent variable regression (PLVR) model is 
represented  by 

 x = Wt + e  (2) 

 y = Qt + f  (3) 

where J DR ×∈W  and M DR ×∈Q  are loading and regression 
matrix respectively, in which M  is the number of quality 
variables. Similar to PPCA, the latent variables DR∈t  which 
are shared by x  and y  follow Gaussian distribution with 
zero mean and unit variance.  D  is the number of the latent 
variables. The process noises of the process and the quality 

data are JR∈e  and MR∈f  respectively and the noises take 
isotropic Gaussian as 2~ (0, )N σ xe I  and 2(0,~ )N σ yf I . 
Given the latent variables, it is assumed that all the input and 
output data are conditionally independent to each other (Yu et 
al., 2006). Hence, the jointly marginal distribution of the 
observation ( , )x y  can be given 

 ( ), ( ) ( ) ( )p p pp d= ∫x y x t y t t t  (4) 

For a sample set of N samples, the complete log-likelihood is 

then calculated as 

 2

1

2ln ( , ,, ), ,
N

n n
n

nL p σ σ
=

= ∑ x yx W Qy t  (5) 

The model parameters 2 2{ , , },σ σx yW Q  for the PLVR model 
can be estimated utilizing the EM algorithm. In the PLVR 
model, the process variables and quality variables are 
observed in the same frequency; that is, their quantity is equal. 
In real processes, however, the assumption of the PLVR 
model is hard to satisfy. Since most quality variables are 
often measured at a lower sampling rate because measuring 
the variables is time-consuming. The quality variables make 
offline examinations through particular instruments. Thus, 
only a small number of quality variables with plentiful 
process variables are collected. This means that the PLVR 
model can be only trained after some process variable data 
are removed.   

3. SEMI-SUPERVISED PLVR MODEL  

In this section, a semi-supervised probabilistic latent variable 
regression (SSPLVR) model for the unequal sample sizes of 
the process variables and the quality variables is proposed. 
Then SSPLVR will be applied to process monitoring.   

3.1 SSPLVR model 

It is assumed that the process and the quality variables are 
recorded as K JR ×∈X  and N MR ×∈Y , where N K<  owing 
to the lower sample frequency of quality data. With the 
assumption that each sample of the process is independent of 
each other, the order of the process variable can be adjusted 
so that the first N samples of the process variables will have 
their homologous quality variables (Fig. 1). After the 
measured data have been reordered and normalized, the 
whole observations (V ) can be written as the union of the 
two parts, the labelled dataset ( 1V ) and the unlabelled dataset 
( 2V ), 

( ){ } { }1 2 , 1 , 1 ,n n kV V V n N k N K= = = = +x y x   ， ，  (6) 

Thus, the complete log-likelihood is separated into two parts,  

 1 2
1 +1
ln ( , ) ln ( )

N K

n n k
n k N

L L L p p
= =

= + = +∑ ∑x y x  (7) 

The marginal probability can be estimated separately, but the 
latent variables link with the two parts. 
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Fig.1. Collected samples are divided into the labelled dataset 

(in shade) and the unlabelled dataset (in un-shade). 

3.2 EM training method for SSPLVR 

The model parameters 2 2{ , , },σ σx yW Q  for the SSPLVR 
model can be estimated using the EM algorithm. The general 
framework for EM iterates the expectation step (E-step) and 
the maximization step (M-step) until convergence.  
In E-step, the old model parameters are fixed and are used to 
estimate the likelihood of all the observations. In M-step, the 
new parameters are calculated through maximizing the 
likelihood with respect to each of them. In E-step, given two 
partitions of the observed data ( ){ }1 , 1 ,= = ，n nV n Nx y  

and { }2 1 ,kV k N K= = +x ， ,  the posterior distributions of 
the latent variables are calculated respectively. Then, the 
expected sufficient statistics of the two parts latent variables 
are written as  

 -1 2 2ˆ( , ) ( )T T
n n n n nE σ σ− −= +x yt W Qx y M x y  (8) 

 -1( , ) ( , ) ( ,ˆ ˆ )ˆ ˆT
n n n n n

T
n n n n nE E E= +t t t tx y M x y x y  (9) 

 2 1( )ˆ T
k k kE σ − −= x L Wx xt  (10) 

 1ˆ ˆ ˆ( ) ( )ˆ( )T
k k k

T
k k k kE E E−= +t t t tx L x x  (11) 

where 2 2T Tσ σ− −+= +x yW W Q QM I  and  2 Tσ −= +x W WL I . 
In M-step, the parameters 2 2{ , , },σ σx yW Q  are similarly 
updated by maximizing the log likelihood function, which 
can be calculated as follows 

 1 1

1

1

+

+1

( , )ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

( )

( , ) ( )

N K

n n n n k k k
n k N

T T
n n n n k k k

k N

T T

N K

n

E E

E E

=

=

=

−

=

 
=  


+

+



 
 
 

∑

∑

∑

∑

W t tx x y x x

x y xt t t t

 (12) 
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T
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n

T

n
E E

=

−

=

   =    
   
∑ ∑y xt y x yQ t t  (13) 
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 (15)  

in which tr (·) is a calculator for the trace value of the matrix. 
After some iterations between the E-step and the M-step, the 
likelihood will converge and the final model parameters can 
be obtained.  

3.3 On-line monitoring scheme   

For on-line monitoring of the measurement variables, the 
control limits should be built up at each sampling time point. 
Similar to the monitoring statistic of PLS, two commonly 
used measures 2T  and SPE  statistics can be computed based 
on the SSPLVR model to monitor the variations of the latent 
variables subspace and the residual subspace. When a new 
sample of the process variables newx  is collected, the mean 
projection of the latent variables is estimated as   

 2 1( )x
T T

ne neww σ −= +t W W W xI  (16) 

Based on the latent variables of the process, the major 
variations of the model can be monitored through 2T  
statistics, which is constructed as  

 2 1var ( | )T
new new n newew newT −= t t tx  (17)  

in which 2 1( )var( | )ne w
T

n w e xσ − −= +W IWxt  represents the 
variance of the latent variables. Also, it is interesting to 
construct SPE  statistics. Because the final quality indexes 
determine the value of the product, the variations of the 
quality variables should be considered. Hence, it is 
straightforward to calculate the prediction error of the quality 
variables and monitor the model residual subspace for the 
PLVR model. However, only a small number of the quality 
variables have been collected. For the labelled data whose 
process and quality variables are recorded simultaneously, 

1SPE  built based on the prediction errors of the quality 
variables is given as  

 new
2 1

new

ˆ
       = ( )

ynew
T

new

x ne
T

wσ −+
−=

−
y y

y Q I
e

W W W x  (18) 

 1
T

ynew ynewSPE = e e  (19) 
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For the unlabelled data whose process variables are obtained, 
2SPE  developed based on the prediction error of the process 

variables can be given. 

 2 1
ˆ

   = ( )new

xnew T T
new

new new

xσ −
−

−
=

+
e

W W IW W x
x x

x  (20) 

 2
T

xnew xnewSPE = e e  (21) 

2SPE  can be treated as the supplement formation when the 
quality data are not sampled during this period. With the 
developed statistic distribution that reflects the normal 
operation, control limits are required to detect any departure 
of the process from its standard behaviour. The confidence 
limit for 2T  can be approximated by means of an F-
distribution(Tracy et al., 1992) 

 
2

2 ( 1)~ ( , )
( )new

D KT F D K D
K K D α

−
−

−
 (22) 

where ( , )F D K Dα −  is the upper 100α% critical point of F 
distribution with D  and K D−  degrees of freedom. The 
confidence bound of 1SPE  and 2SPE  can be determined by a 

2χ  distributed approximation: 2~ hSPE g χ⋅ , where g and h 
can be calculated as(Wen et al., 2012) 

 
2

( )

2 var( )
normal

normal

g h mean SPE

g h SPE

⋅ =

=
 (23) 

Among the three statistics of SSPLVR, 2T  statistic can 
reflect the variations of both process and quality variables, 
especially the process variables that is relevant to the final 
quality variables, which is because not only the intra-
covariance of the process and the quality variables but also 
the inter-covariance between them is taken into account in the 
latent variables subspace. 1SPE  statistic, which is based on 
the prediction errors of quality variables, will reveal that if 
the fault is quality relevant. Similarly, 2SPE  statistic mainly 
reflects the variations of process variables. After a huge 
number of unlabelled process variables are incorporated into 
SSPLVR, the performance of  2T and 2SPE  statistic will be 
improved naturally When more information of the process is 
provided. However, the detection ability of 1SPE  statistic 
will also be enhanced because the increase of the prediction 
accuracy of the model when all the data information has been 
sufficiently utilized in SSPLVR. 

4 CASE STUDY 

The Tennessee Eastman (TE) process is a real industrial plant 
often used for developing and evaluating the multivariable 
control technology. The process involves five major 
operation units: a reactor, a condenser, a compressor, a 
separator, and a stripper. More detailed discussion of the 
process and its control structures can be obtained in the 
reference (Downs and Vogel, 1993). In the TE process, the 
sample frequencies between the process and the quality 
variables are dissimilar. In this study, 16 easy-measured 
process variables are selected as the input data, which are 

tabulated in Table 1. All the process variables are collected 
per 3 minutes, whereas in the real process, the quality 
variable is sampled at the lower frequency. Hence, the 
composition of Stream 9 is assumed to be collected per 30 
minutes in this paper. Then, 500 process data samples and 50 
quality data samples are incorporated into the SSPLVR 
model to build up a semi-supervised projection. This means 
that 10% of the process variables are labelled by the 
corresponding quality data.        

Table 1.  Monitoring variables in the TE process 

No. Measured variables No. Measured variables 
1 A feed 9 Product separator 

temperature 
2 D feed 10 Product separator pressure 
3 E feed 11 Product separator underflow 
4 A and C feed 12 Stripper pressure 
5 Recycle flow 13 Stripper temperature 
6 Reactor feed rate 14 Stripper steam flow 
7 Reactor temperature 15 Reactor cooling water outlet 

temperature 
8 Purge rate 16 Separator cooling water 

outlet temperature 

 

Table 2.  Missing detection rates in TE Process 

Fault 
types 

SSPLVR PLVR 
T 2 SPE1 SPE2 T 2 SPE 

1 0.0063 0.225 0.0014 0.0125 0.8625 
2 0.0175 0.0375 0.0153 0.025 0.1875 
3 0.8962 0.9375 0.9375 0.9625 0.975 
4 0.9638 0.9375 0.9681 0.9875 1 
5 0.7013 0.875 0.7431 0.75 0.925 
6 0.0262 0.0375 0 0 0.0625 
7 0.5425 0.7625 0.6014 0.5875 0.9 
8 0.025 0.575 0.0264 0.0375 0.575 
9 0.9287 0.95 0.9417 0.975 0.9875 

10 0.5062 0.875 0.3639 0.6 0.925 
11 0.7688 0.9375 0.4778 0.875 0.9375 
12 0.0138 0.425 0.0167 0.05 0.425 
13 0.0563 0.4375 0.0486 0.0625 0.325 
14 0.0362 0.9625 0 0.3 0.9875 
15 0.8612 0.9125 0.9514 0.9375 0.975 

 

The monitoring performance of the proposed method is tested 
using 15 known faults of the TE process. All the faults 
consist of 960 samples and the faults all happened after 160 
sampling time. Similarly, only 10% of process variables, i.e. 
96 process variables are labelled. To make a comparison, the 
PLVR model is also applied based on the labelled data only. 
Take Fault 2 and Fault 11 for examples. For Fault 11, Fig. 2 
shows that the 2T statistic of SSPLVR performs better than 
the results of PLVR, because the 2T statistic is constructed 
based on the latent variables subspace and it reflects both the 
variations of the process and the quality variables. The 2SPE  
statistic is built based on the prediction error of the unlabelled 
process variables and it mainly reveals the changes of the 
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process variables. Hence, the monitoring performance of the 
2T  and 2SPE  statistic is improved when many unlabelled 

process data are incorporated into the SSPLVR model. For 
Fault 2, Fig 3 also indicates that 1SPE  of SSPLVR performs 
better than SPE  of PLVR. The 1SPE  statistic is used to 
indicate if the fault affects the final product quality, because 
it is based on the prediction error of the quality variables. It is 
also seen that 1SPE  of SSPLVR can detect the fault earlier, 
which is crucial for the consistency of the product quality 
because the quality performance deterioration is monitored 
timely. For all the 15 faults, the missing detection rates of 
SSPLVR and PLVR are compared and listed in Table 2. It is 
found that both 2T  and the SPE  statistics of SSPLVR are 
more efficient in fault detection in most cases. The PLVR 
model just utilized limited labelled process variables and the 
corresponding quality variables. Even though the constrain 
relationship of PLVR between the input and the output data 
can be constructed, the useful data are too few to mine the 
valuable information among them. On the contrary, the huge 
unlabelled process variables are helpful to detecting the 
abnormal situations of the process with higher accuracy.    

(a) 

 
 (b) 

 
Fig.2. Monitoring results of Fault 11 by (a) SSPLVR; (b) PLVR 

The monitoring performance affected by the sample sizes is 
evaluated. With more labelled data, the performance of the 
supervised model should be improved and vice versa. The 
missing detection rates using SSPLVR and PLVR for 
different sample sizes of quality data are collected and listed 
in Table 3. It is found that the missing detection rates of 
PLVR increase when the sample time of quality data change 
from 15 minutes to 60 minutes. As the labelled data are too 
few to extract the features of the whole process accurately, 
more false alarms and detection delays occur. However, the 
monitoring performance and detection delays of SSPLVR are 
almost unchanged for the quality data in different sampling 
frequencies. Thus, the SSPLVR monitoring model performs 
better after incorporating all the process and quality data into 
the model, especially when the sample size of the quality data 
are few.   
 

(a) 

 
 

(b) 

 
Fig.3. Monitoring results of Fault 2 by (a) SSPLVR; (b) PLVR 
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Table 3: Missing detection rates using SSPLVR and PLVR 
for different sample size of quality data 

Sample 

time(min)  

SSPLVR PLVR 

T 2 SPE1 SPE2 T 2 SPE 

6  0.0175 0.075 0.0175 0.02 0.0525 
15  0.0175 0.0375 0.0172 0.0313 0.1812 
30 0.0175 0.0375 0.0153 0.025 0.1875 
60 0.0175 0.075 0.0158    0.025 0.9 

 

5 CONCLUSION 

Monitoring the variations of the key quality variables is more 
important for on-line fault detection. It is hard to achieve 
because the quality data are examined offline and 
infrequently. It is straightforward using the process and the 
quality variables of the same sample size to construct the 
relationship between them, but the monitoring performance 
becomes much worsen when too few quality data are 
available. In this paper, a SSPLVR model is proposed using 
the unequal sample size between the process and the quality 
variables. When a mass of process variables are incorporated 
into the model, most of them do not have corresponding 
measured quality variables, but it is helpful to improve a 
more accurate regression model.          

SSPLVR is developed for process monitoring. Similar to the 
supervised probabilistic model, the 2T  and two SPE  
statistics of the SSPLVR model are developed to monitor the 
variations of the latent variable subspace, process and quality 
data regression errors respectively. To evaluate the feasibility 
of the proposed SSPLVR model, a TE benchmark is 
illustrated. The results disclose that the proposed method is 
superior to the supervised model which uses the labelled data 
only.   
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