
High Order Sliding Mode Differentiator for

Dynamical Inversion of Non-Involutive

Systems

Jean-Pierre Barbot ∗ Driss Boutat ∗∗ Krishna Busawon ∗∗∗

Mangal Kothari ∗∗∗∗

∗ J-P. Barbot is with ECS-lab EA 3649 ENSEA 6 Avenue du Ponceau,
95014 Cergy-Pontoise, and EPI Non-A, INRIA, France, (email:

barbot@ensea.fr)
∗∗ D. Boutat is with ENSI Bourges, Laboratory PRISME, 88, Bd

Lahitolle 18020 Bourges Cedex, (email: driss.boutat@ensi-bourges.fr)
∗∗∗ K. Busawon is with the Faculty of Engineering and Environment,
Northumbria University, Newcastle upon Tyne, UK, NE1 8ST, (email:

krishna.busawon@northumbria.ac.uk)
∗∗∗∗ M. Kothari is with the Faculty of Engineering and Environment,
Northumbria University, Newcastle upon Tyne, UK, NE1 8ST, (email:

mangal.kothari@northumbria.ac.uk)

Abstract: - This paper deals with the left inversion problem for a class of nonlinear systems. It
is well-known that such problem is a challenging one because of the presence of non-smooth
unknown inputs and non-involutivity of the forced fields’ distribution. To overcome these
difficulties, we first propose a novel left invertible form. Then, using this form, we design an
observer in order to reconstruct the state and the control inputs. Numerical results are given in
order to validate the proposed approach.
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1. INTRODUCTION

Since the early nineties, the left inversion problem (i.e re-
covering inputs from outputs and their derivatives knowl-
edge) has been treated in both the geometric and algebraic
contexts Respondek [1990], Fliess [1986]. Additionally, the
concept of inverse dynamics is used to overcome some
constraints in the dynamical inversion problems Daoutidis
and Kravaris [1991]. In the majority of the work on the
left invertibility and dynamical inversion, it is assumed
that the inputs are either available or analytical or at least
sufficiently smooth. In this paper, we relax these assump-
tions - as in our earlier work Barbot et al. [2009], Boutat
et al. [2013] on the topic - and consider the more generic
case whereby the inputs can be non-smooth but bounded;
such as in the case of a square signal for example. One
restriction for left inversion is due to the fact that some
nonlinear systems do not have certain integrability proper-
ties. Another restriction arises from the non-involutivity of
the forced terms or fields. To overcome these limitations,
we first propose a new left inversion form, building on
our earlier work Barbot et al. [2009], Boutat et al. [2013]
on the subject. Note that the integrability problem and
non-smoothness of the inputs can be addressed using the
algebraic formulation together with the left invertible form
as given in Respondek [1990] and Fliess [1986]. However,
such a form requires some specific differentiators for re-
covering the unknown input. For technical reasons, finite

time differentiators seem to constitute natural candidates
to design a ‘reconstructor’ for the proposed left invert-
ible form. One can find more details about of finite time
differentiators in the following references, Levant [1998],
Davila et al. [2005], Liu et al. [2011], Floquet and Barbot
[2007], to name a few. Nevertheless, due to some constrains
such as the observability matching condition, Perruquetti
and Barbot [2002], only few of them are deemed suitable.
Recently, high order sliding mode differentiators Barbot
et al. [1996], Fridman et al. [2008] are being employed
for this purpose. However, they must meet some specific
order imposed by the observability matching condition.
This type of observer was used in the context of classical
dynamical inversion in Fridman et al. [2008].

The rest of the paper is organized as follow. Section 2
present a formal description of the problem. Section 3
outlines some previous results on the topic. In Section 4,
we introduce the proposed left invertibility form and state
the conditions under which the form can be obtained. In
Section 5, we first recall some well-known results on high
order sliding mode and then propose high order sliding
mode differentiator. In Section 6, the efficiency of the
proposed algorithm is verified through numerical results
and some concluding remarks are drawn in Section 7.
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2. PROBLEM STATEMENT

Throughout the paper, the following MIMO dynamical
system is considered

ẋ= f(x) +

m
∑

i=1

gi(x)ui (1)

y= h(x) (2)

where x ∈ U ⊆ ℜn represents the state with an open set
U that contains x = 0, y = (y1, ..., ym)T ∈ ℜm represents
the output and u = (u1, ..., um)T ∈ ℜm is the vector
of unknown inputs. The unknown inputs are considered
bounded and PieceWise Smooth (PWS). The vectors fields
f , gi and h are assumed to be sufficiently smooth.

Assumption 1: There exists ρi such that
∑m

i=1 ρi = n

Rank



























dh1

...

dlρ1−1
f h1

...
dhm

...

dlρm−1
f hm



























|x∈U

= n

Thus, the pair (h, f) is locally weakly observable Hermann
and Krener [1977]. This assumption is made in order to
avoid the singularity problem that might occur in the dif-
feomorphism construction. The properties for recovering
unknown inputs from outputs can be defined from two
point of view: The first one is the left invertibility in the
sense of Hirshorn Hirschorn [1979], Respondek [1990]. The
second one is the invertible equivalent to the previous one
but expressed in term of its internal dynamic Daoutidis
and Kravaris [1991]. Our definition of left invertibility is
more restrictive than that of Hirshorn. Hence, the invert-
ibility conditions are more stringent.

Definition 2.1. The dynamical system (1)-(2) is said to be
invertible at x0, if two distinct inputs u1 6= u2 yield two
distinct outputs y(t;u1, x0) 6= y(t;u2, x0).

Definition 2.2. The dynamical system (1)-(2) is said to be
left invertible at x0, if a realization of its inverse dynamic
can be obtained from the following equation

η̇ = ϕ (η, y, ẏ, ...) (3)

u= ω (η, y, ẏ, ...) (4)

where η is a substate of the state x and η is globally
strongly input-to-state stable (GSISS).

The property of GSISS is more restrictive than the well-
known input-to-state stability property; for more details
please refer to Sontag [1989].

Definition 2.3. The system η̇ = f(η, w) is GSISS if for
all bounded input w(t) and all bounded initial conditions
η1(0) and η2(0):

• ∀t ≥ 0 ||η(t, w, η1(0))|| and ||η(t, w, η1(0))|| are bounded
• limt→+∞||η(t, w, η1(0))− η(t, w, η2(0))|| = 0

Note that the form (3)-(4) is one of the equivalent condi-
tions in Theorem 5.1 in Respondek [1990]. In Respondek

[1990], the system is left invertible in the sense of Hir-
shorn. Here, the stability condition on η is simply added.
Moreover, in Respondek [1990] the comparison is also
done with an algebraic approach and with a flat system
Fliess et al. [1995]. More precisely, if the dimension of η
is zero, then the system (1)-(2) is flat and the output is
also flat. Nevertheless, in both geometric and algebraic
approaches, the unknown inputs are considered analytic.
If a distribution associated to the system is non-involutive
and the unknown inputs are non-smooth, these approaches
cannot be used. Next, we show the difficulty that arises
when inputs are non-smooth through this example.

ẋ1 = x3 + u1

ẋ2 = x1 + u1

ẋ3 = u2 (5)

y1 = x1

y2 = x2

where u1, u2 are PWS. It is easy to see that u2 appears on
the derivative on the second derivative of y1 (i.e ÿ1 = u2+
u̇1) but as u1 is not differentiable, then ÿ1 does not exist.
Nevertheless, it is possible to reconstruct the inputs from
the outputs with any input derivative. The solutions are
u1 = ẏ2 − y1 and u2 = ˙̄y− ẏ1 with ȳ = ẏ1 − ẏ2, where ȳ is
called a dummy output. In this example, it is important
to note that ˙̄y exists even if ÿ1 and ÿ2 do not exist. Note
that the derivative and addition operators do not commute
in this case 1 . Now consider the following non-involutive
example:

ẋ1 = x2

ẋ2 =−2x2 − x1 − x5 + (x2
5 + 1)u1

ẋ3 = x4 (6)

ẋ4 = x2 − x3
3 − x4 + u2

ẋ5 =−x3
5 + (x2

2 + 1)u2

y1 = x1

y2 = x3

Arranging the system (6) in the form (1)-(2), we get

g1 =











0
x2
5 + 1
0
0
0











g2 =











0
0
0
1

x2
2 + 1











(7)

And the Lie bracket [g1, g2] is

[g1, g2] := Lg1g2 − Lg2g1 =











0
−2x5(x

2
2 + 1)

0
0

2x2(x
2
5 + 1)











(8)

It can be noticed from the above that [g1, g2] is not in
the span{g1, g2}, thus the distribution is not involutive.
Therefore, the integrability problem occurs and it is not
possible to transform the system in the form (3)-(4) Isidori
[1995]. We will later show in Section 4 that the above
system can be transformed into the left invertibility form.

1 More precisely
¨̂

y1 − y2 exists and ÿ1 + ÿ2 doesn’t exist
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For the linear system (5), it is always the input u1

which arrives first generates difficulties for the output
derivatives. However, for nonlinear system even if the
system is involutive another difficulty arises, which we
demonstrate through this example.

ẋ1 = x3 + β1(X)u1

ẋ2 = x1 + β2(X)u1

ẋ3 = u2 (9)

y1 = x1

y2 = x2

with u1 and u2 PWS and bounded. If β1(X) and β2(X)
are not function of x3 and are generically different from
zero, it is possible to reconstruct the inputs from the
outputs. In this case, the unknown input are given by u1 =
ẏ2−y1

β2(X) and u2 = β2(x) ˙̄y+β1(x)β2ẏ1−β̇2(x)(ȳ−β1(x)x1)−β̇1β2y1

β2(X)2 .

Obviously, the system (9) is left invertible in the meaning
of Respondek [1990] and Fliess [1986]. But if β2(X) = 0
with either β1(X) or β2(X) is function of x3, then the
system (9) is not left invertible as per Definition 2. This is
due to the fact that u is non-smooth.

3. DYNAMIC INVERSION ALGORITHM

This section is based on the algorithm introduced in
Barbot et al. [2009], and consistent with the context of
dynamical inversion given in Boutat et al. [2013]. Consider
the system (1)-(2) and compute its characteristic matrix
as follows

Γ0 =









Lg1L
(r1−1)
f h1 ... LgmL

(r1−1)
f h1

... ... ...

... ... ...

Lg1L
(rm−1)
f hm ... LgmL

(rm−1)
f hm









Defining £ be the commutative algebra of the measured
outputs and their successive Lie derivatives up to order
ri − 1 the relative degree of the ith output 2 is given
as £0 = span{h1, ..., L

r1−1
f h1, ..., hm, ..., Lrm−1

f hm}. The
above definitions are used to initialize the following algo-
rithm.
Algorithm
0) Algorithm initialization set i = 0

(1) Set £ = £i and Γ = Γi and compute rank(Γi),
(a) if rank(Γ) = m then go to step 4), else
(b) compute (1 ×m) row vector

K(x) = (k1(x), ..., km(x)) 6= 0 such that:

K(x)Γ(x) = 0 for all x ∈ U (10)

(c) if there is no K(x) ∈ £ then go to 5, else go to
Step 2).

(2) From K(x), the function is defined

hK(x) =

m
∑

i=1

ki(x)L
ri
f hi(x) =

m
∑

i=1

ki(x)y
(ri)
i

(a) if all hK(x) ∈ £ then go to 5, else
(b) compute the relative degree of hK(x), if there is

no hK(x) with finite relative degree then go to
Step 5), else go to Step 3).

2 ri is the smallest number such that ∂riyi
∂tri

depends explicitly of u.

(3) Set y = (yT , hK(x))T , increment i and compute the
corresponding Γi and £i, and go back to Step 1).

(4) End algorithm there is a solution.
(5) End algorithm there is no solution.

Remark 1. The 1 − c) guarantees that the new output is
only function of available information at the current step.
Moreover, step 2 defines a new dummy output which is
independent of u and which is derivable.

If after γ iterations, the algorithm stops at Step 4, then it
supplies enough outputs hi for i ∈ {m+ 1, ..m + lγ}

3 to
obtain a matrix

Γγ =























Lg1L
(r1−1)
f

h1 . LgmL
(r1−1)
f

h1

. . .

. . .

Lg1L
(rm−1)
f

hm . LgmL
(rm−1)
f

hp

Lg1L
(rm+1−1)
f

hm+1 . LgmL
(rm+1−1)
f

hp+1

. . .

Lg1L

(

rm+lγ
−1
)

f
hm+lγ . LgmL

(

rm+lγ
−1
)

f
hm+lγ























of rank equal to m. This verifies Assumption 1 and there
exists a diffeomorphism φ(x) = (ξT , ηT )T such that the
system can be transformed in the form:

ξ̇i,j = ξi,j+1 (11)

for i ∈ {1, ..,m+ lγ} and 1 ≤ j ≤ θi − 1

ξ̇i,θi = bi(ξ, η) +

m
∑

j=1

ai,j(ξ, η)uj (12)

for 1 ≤ i ≤ m+ lγ

η̇ = f(ξ, η, u) (13)

where η = (η1, ..., ηρ)
T is independent from ξ with ρ ≥ n−

∑m+lγ
i=1 θi with lγ is the number of dummy outputs added

by the algorithm and θi ≤ ri with respect to the chosen
basis. Moreover, bi(ξ, η) = Lθi

f hi for i = 1 : m + lγ and

ai,j = LgjL
θi−1
f hi for j = 1 : m + lγ and the ai,j are the

Γγ(x) coefficients if θi = ri and are equal to zero if θi < ri.
From (11)-(13), it is possible to deduce a form similar to
that in (3)-(4). However, u appears in the dynamic of η as
follows






















η̇ = f(ξ, η, u)

u = (PΓγ)−1P

















ξ̇1,θ1
...

ξ̇m,θm

...

ξ̇m+lγ ,θm+lγ









−









b1(ξ, η)
...

bm(ξ, η)
...

bm+lγ (ξ, η)

















(14)

where P ∈ ℜm×m+lγ is a linear projection matrix such
that rank(PΓγ) = rank(Γγ) = m. Moreover, the choice of
P is made with respect to ξ, η basis choice (i.e. the selected
rows are θi = ri).

In (14), the dynamic of η is function of the unknown
inputs, thus it is not possible to estimate η directly.If
the distribution span{gi, gj} is involutive, there exists a
diffeomorphism φ such that the η can be segregated from
ξ and the η dynamic, and hence, the dynamics of η will
be free from the unknown input u Isidori [1995]. For
the involutive case, a constructive method based on the

3 lγ is the number of dummy outputs
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dedicated projector idea was given in Boutat et al. [2013]
to estimate η as follows






















η̇ = f(ξ, η)

u = (PΓγ)−1P

















ξ̇1,r1
...

ξ̇m,rm

...

ξ̇m+lγ ,rm+lγ









−









b1(ξ, η)
...

bm(ξ, η)
...

bm+lγ (ξ, η)

















(15)

Moreover, if η̇ = f(ξ, η) is globally strongly input state
stable (GSISS), then the system is left invertible. However,
such a method is not applicable when the distribution
span{g1, ..., gm} is not involutive and the inputs are not
smooth. In the next section, we have proposed a novel left
invertible approach that allows to deal with non-involutive
systems with unknown non-smooth inputs.

4. LEFT INVERTIBLE FORM

Using high high order sliding mode observer theory, it is
possible to observe the system (11)-(13) in finite time for

all ξi,j , ξ̇i,θi , i ∈ {1, ..,m + lγ} and j ∈ {1, θi − 1}. To
achieve this, we substitute u in (14) to obtain the closed-
loop system

η̇ = ¯̄f(ξ, η, ξ̇1,θ1 , ..., ξ̇m+lγ ,θm+lγ
) (16)

Using (16), we propose a new left invertible form as follows

ξ̇i,j = ξi,j+1 (17)

for i ∈ {1, ..,m+ lγ} and 1 ≤ j ≤ θi − 1

ξ̇i,θi = bi(ξ, η) +

m
∑

j=1

ai,j(ξ, η)uj (18)

for 1 ≤ i ≤ m+ lγ

η̇ = ¯̄f(ξ, η, ξ̇1,θ1 , ..., ξ̇m+lγ ,θm+lγ
) (19)

Proposition 4.1. Under Assumption 1, there exists a dif-
feomorphism φ(x) = (ξT , ηT )T which transform system
(1)-(2) in the left invertible form (17)-(19) if there exists
γ ≥ 0 such that Rank{Γγ} = m.

Then, it is now possible to give the following theorem:

Theorem 4.2. If there exists a diffeomorphism φ which
transform the system (1)-(2) into the form (17)-(19) with

η̇ = ¯̄f(ξ, η, ξ̇1,θ1 , ..., ξ̇m+lγ ,θm+lγ
) globally strongly input

state stable, then the system is left invertible.

Proof 4.3. The proof is given in the next section.

5. HIGH ORDER SLIDING MODE OBSERVER

In Fridman et al. [2008], an observer structure was pro-
posed for state estimation and input reconstruction if
rank{Γ0} = m and the distribution span{g1, ..., gm} is
involutive. In this paper, the system does not satisfy at
least one of these assumptions. To address this, we propose
a novel finite time observer for the system (17)-(19) as
follows

˙̂
ξi,1 = νi,1

νi,1 = ξ̂i,2 − λi,1|ξ̂i,1 − ξi,1|
ri

ri+1 sign(ξ̂i,1 − ξi,1)

˙̂
ξi,2 = νi,2

νi,2 = ξ̂i,3 − λi,2|ξ̂i,2 − νi,1|
ri−1

ri sign(ξ̂i,2 − νi,1)

... =
... (20)

˙̂
ξi,θi−1 = νi,θi−1

νi,θi−1 = ξ̂i,θi − λi,θi−1|ξ̂i,θi−1 − νi,θi−2|
1
2

sign(ξ̂i,θi−1 − νi,θi−2)

˙̂
ξi,θi =−λi,θisign(ξ̂i,θi − νi,θi−1)

It is shown in Levant [2005], Levant [2007], that observer
(20) converges in finite time. More precisely, there exists t0
such that for all i ∈ {1, ...,m+ lγ} and j ∈ {1, ..., θi}, ξ̂i,j
is equal to ξi,j . Thus, defining ei,θi = ξi,θi − ξ̂i,θi , ∀t ≥ t0
and using the finite-time relation, we get ėi,θi = 0, which
implies

λi,θisign(ξ̂i,θi − νi,θi−1) = bi(ξ, η) +

m
∑

j=1

ai,j(ξ, η)uj

λi,θisign(ξ̂i,θi − νi,θi−1) = ξ̇i,θi (21)

As known, the higher order sliding mode observer suffers

from chattering problems. To address this, λi,θisign(ξ̂i,θi−
νi,θi−1) is filtered with a low pass filter with a cutoff
frequency between the highest frequency of the system and
the chattering frequency. The filtered state is denoted as

ξ̇fi,θi . Similarly, the dummy outputs are also filtered. Using

(21) and (14), we estimate the unknown input û for all
t ≥ t0 as follow

û = (P Γ̂γ)
−1P





























ξ̇f1,θ1
...

ξ̇fm,θm

...

ξ̇fm+lγ ,θm+lγ















−











b1(ξ, η̂)
...

bm(ξ, η̂)
...

bm+lγ (ξ, η̂)

























(22)

where Γ̂γ estimates Γγ . Substituting (22) into (19), we
obtain the following estimation for η

˙̂η = E1
¯̄f(ξ, η̂, ξ̇f1,θ1 , ..., ξ̇

f
m+lγ ,θm+lγ

) (23)

where E1 = 1 when t > t0, t0 is the time when the

observation error e := ξ− ξ̂ and λi,θisign(ξ̂i,θi − νi,θi−1)−

ξ̇i,θi have converged to 0 and E1 = 0 for 0 < t < t0.

6. NUMERICAL RESULTS

In this section, the performance of the proposed observer
is verified on the following system
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ẋ1 = x2

ẋ2 =−2x2 − x1 − x5 + u1

ẋ3 = x4 + u1 (24)

ẋ4 = x2 − x3
3 − x4 + u2

ẋ5 =−x3
5 + (x2

2 + 1)u2

y1 = x1

y2 = x3

from the formalism of (1)-(2) the g1 and g2 are:

g1 =











0
1
1
0
0











g2 =











0
0
0
1

(x2
2 + 1)











The Lie bracket [g1, g2] is

[g1, g2] =











0
0
0
0

2x2











/∈ span{g1, g2}

Thus, the distribution span{g1, g2} is not involutive. From
the algorithm given in Section 3, the diffeomorphism which
transform the system in the form (11)-(13) is φ(x) with
ξ1,1 = x1, ξ2,1 = x3−x2, ξ1,2 = x2, ξ2,2 = x4+2x2+x1+x5

and η = x5. This gives the following left invertible form

ξ̇1,1 = ξ1,2

ξ̇1,2 =−2ξ1,2 − ξ1,1 − η + u1

ξ̇2,1 = ξ2,2 (25)

ξ̇2,2 =−2ξ1,1 + 2ξ1,2 − (ξ2,1 − ξ1,2)
3

− 5(ξ2,2 − 2ξ1,2 − ξ1,1)

+ 3η − η3 + 2u1 + (ξ21,2 + 1)u2

η̇ =−η3 + (ξ21,2 + 1)u2

y1 = ξ1,1

y2 = ξ2,1 + ξ1,2

The dummy output is ȳ = ξ2,1 = y2 − ẏ1 and again from
the algorithm the following can be obtained

Γγ =

(

1 0
1 0
2 1

)

settingP =

(

1 0 0
0 0 1

)

Now, using Section 5 and the super twisting algorithm
Levant [1998], we can first observe ξ1,1 ξ1,2 as follows

˙̂
ξ1,1 = ν1,1

ν1,1 = ξ̂1,2 − λ1,1|ξ̂1,1 − ξ1,1|
1
2 sign(ξ̂1,1 − ξ1,1)

˙̂
ξ1,2 =−λ1,2sign(ξ̂1,1 − ξ1,1)

From y2 and ξ̂1,2 the dummy output is defined ȳ = y2 −

ξ̂1,2 = ξ2,1 and in order to have sufficiently smooth dummy
output ȳ is filtered with a low pass filter of order at least
equal to two (the order of the relative degree) and we

obtain with this filtered output ξf2,1.

˙̂
ξ2,1 = ν2,1 (26)

ν2,1 = ξ̂2,2 − λ2,1|ξ̂2,1 − ξf2,1|
1
2 sign(ξ̂2,1 − ξf2,1)

˙̂
ξ2,2 =−λ2,2sign(ξ̂2,1 − ξf2,1)

As, there exists t0 > 0 such that ∀t > t0 ξ̂i,j is equal to
ξi,j then E1 = 1 for t > t0 and E1 = 0 for t ≤ t0. From
these, the unknown input (22) û can be estimated as

û = E1

(

1 0
−2

ξ2
1,2

+2
1

ξ2
1,2

+2

)

(

˙̂
ξ1,2 + 2ξ̂1,2 + ξ̂1,1 + η̂

˙̂
ξ2,2 − 3ξ̂1,1 − 12ξ̂1,2 + 5ξ̂2,2 + (ξ̂2,1 + ξ̂1,2)3 − 3η + η3

)

Now, including û in the η̂ dynamic, the following estimator
can be designed:

˙̂η = E1(−η̂3 + (ξ̂21,2 + 1)κ)

with

κ=
−2

ξ21,2 + 2
(−

˙̂
ξ1,2 + 2ξ̂1,2 + ξ̂1,1 + η̂)

+
1

ξ21,2 + 2

(

˙̂
ξ2,2 − 3ξ̂1,1 − 12ξ̂1,2 + 5ξ̂2,2

+ (ξ̂2,1 + ξ̂1,2)
3 − 3η + η3

)

As for t > t0 ξ̂i,j is equal to ξi,j then the estimator converge
asymptotically to η̂ = η and thus û converge to u. The
proposed observer is tested on Simulink and plots are given
in Figures 1-3. It can be seen from Figures 1-2 that actual
and observed states are closed to each other, in fact the
initial three states are on top of each other. The actual
and observed commands are shown in Figure 3. Again,
it can be seen that the observer is able to reconstruct
the control commands accurately. This shows that the
proposed higher order sliding mode observer is efficient and
able to construct states and control commands accurately.
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Fig. 1. Actual and observed states.

7. CONCLUSIONS

In this paper, we have proposed a higher order sliding
mode observer to reconstruct states and control com-
mands. The observer can deal with non-involutive systems
and can construct non-smooth control inputs. This is
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Fig. 2. Actual and observed states.
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Fig. 3. Actual and reconstructed control commands.

achieved by using a new normal form for left inversion
and using high order sliding mode theory. The efficiency
of the proposed approach is verified by numerical results.
In order to avoid chattering, we have used low pass filters
that filters signals that coming directly from the equivalent
vector. In future, we will address the problem of observ-
ability singularity and/or left invertibility singularity .
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