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Abstract: Real-time vulnerability assessment (VA) is one of the essential tasks of the so called Smart 

Grid, since it has the function of detecting the necessity of performing global control actions. In view of 

this, the present paper will introduce a novel data-mining-based approach to map post-contingency 

Dynamic Vulnerability Regions (DVRs), taking into account three short-term instability phenomena. 

Based on probabilistic models of relevant inputs (e.g. nodal loads and occurrence of contingencies), the 

approach applies Monte Carlo (MC) simulation to recreate a wide variety of possible post-contingency 

dynamic data of some electric variables, which could be directly available from PMUs in a real system 

(e.g. voltage phasors or frequencies). From this information, a pattern decomposition method, based on 

empirical orthogonal functions (EOF), is used to approximately pinpoint the DVR spatial locations. The 

identified DVRs are then used to ascertain the actual dynamic state relative position with respect to their 

boundaries, which is accomplished by using a support vector classifier (SVC). The proposal is tested on 

the IEEE New England 39-bus test system. Results show the feasibility of the approach in finding hidden 

patterns in dynamic electric signals as well as in numerically mapping power system DVRs. 



1. INTRODUCTION 

Under high stressed system conditions, certain sudden 

perturbations might cause cascading events that may lead the 

system to blackouts, as stated by Amin (2000). It is crucial to 

ensure that these perturbations do not affect the system 

security, so that, the development of wide area protection 

systems, that allow guaranteeing the service continuity, is 

required. However, these protection systems are usually set to 

operate when specific pre-established operational conditions 

are reached, and they are unable to work under unconsidered 

contingencies that could begin cascading events. Under these 

considerations, the control of the system and the protection 

trigger should be adjusted depending on the real time event 

progress. This new context needs the development of a more 

intelligent system (Smart Grid) that could efficiently respond 

to the actual system conditions and provide autonomous 

control actions to enhance the system reliability (Moslehi and 

Kumar, 2010). This Self-Healing Grid has some specific 

requirements such as an adaptive control and protection 

system, adequate measurement equipment, sophisticated 

communication networks, and appropriate tools to analyze 

huge volumes of data in real time (such as appropriate data 

mining techniques). A fundamental task of this smart 

structure is the vulnerability assessment (VA), since it has the 

function of detecting the necessity of performing global 

control actions. Most VA methods are based on steady state 

(Static Security Assessment -SSA-) or dynamic (Dynamic 

Security Assessment -DSA-) simulations of N-x critical 

contingencies (Cepeda et al., 2011). As exposed by Yuan 

Zeng et al. (2006) and Savulescu (2009), the aim of these 

methods is to determine whether the post-contingency states 

are within a “safe region”, and accordingly, to decide the 

most effective preventive control actions. In recent years, the 

achieved and expected breakthroughs in emerging 

technologies, such as Phasor Measurement Units (PMUs), 

and Wide Area Monitoring, Protection and Control Systems 

(WAMPAC), motivates new research endeavors to develop 

more sophisticated VA methods (Savulescu 2009; Cepeda et 

al., 2011). Most of the current PMU-based approaches have 

been designed in order to perform preventive control actions, 

following the traditional practice. Nevertheless, as stated by 

Cepeda et al. (2011), the use of PMUs has a great potential to 

allow performing post-contingency dynamic vulnerability 

assessment (DVA) that could be used to trigger corrective 

control actions. In view of this, a novel data-mining-based 

approach to map post-contingency Dynamic Vulnerability 

Regions (DVRs), taking into account three short-term 

instability phenomena, was previously presented by Cepeda 

et al. (2012). Based on probabilistic models of relevant inputs 

(e.g. nodal loads and occurrence of contingencies), the 

approach applies Monte Carlo (MC) simulation to recreate a 

wide variety of possible post-contingency dynamic data of 

some electric variables, which could be directly available 

from PMUs in a real system (e.g. voltage phasors or 

frequencies). From this information, a pattern decomposition 
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method, based on empirical orthogonal functions (EOF), is 

used to approximately pinpoint the DVR spatial locations. 

Along this research line, the work presented in this paper 

presents a comprehensive pattern recognition approach for 

predicting the power system’s post-contingency dynamic 

vulnerability status (PCDVS) by considering the MC-based 

DVRs introduced by Cepeda et al. (2012) together with a 

support vector classifier (SVC) adequately adapted to this 

specific task. The ultimate goal is to perform early 

classification of the system status into “vulnerable” or “non-

vulnerable” in real time, by mining the post-contingency 

dynamic data obtained directly from PMUs.  

2. RELEVANT DATA MINING TOOLS 

The main mathematical tools employed in this work are the 

so-called data mining techniques, which have proven to be 

useful for extracting or mining knowledge (i.e. pattern 

recognition) from large amounts of data, as exposed by Han 

and Kamber (2006). In the following, a brief review on the 

rationale behind the use of empirical orthogonal functions 

and support vector classifiers is presented. 

2.1  Empirical orthogonal functions 

Empirical orthogonal functions (EOFs) are the result of 

applying singular value decomposition (SVD) to time series 

data. EOF is a time series data mining technique that allows 

decomposing a discrete function of time f(t) (such as voltage 

angle, voltage magnitude or frequency) into a sum of a set of 

discrete pattern functions, namely EOFs. Thus, EOF 

transformation is used in order to extract the most 

predominant individual components of a compound signal 

waveform (similarly to Fourier analysis), which allows 

revealing the main patterns immersed in the signal.   

The main approaches related to EOFs have been developed 

for using in the analysis of spatio-temporal atmospheric 

science data, whereas their application in other scientific 

fields continues to be scarce. The data concerned consist of 

measurements of specific variables, (such as sea level 

pressure, temperature, etc.) at n spatial locations at p different 

times (Jollife, 2012). The present paper employs a variation 

of this definition, where the n spatial locations are replaced 

by n different post-contingency power system states 

(obtained from MC simulation), and the p different times 

consist of PMU instant values of post-disturbance dynamic 

variables (voltage phasors or frequencies) measured at m 

buses, at r different instants that depend on the selected time 

window (i.e. p = mr).  

Therefore, a (n × p) data matrix of discrete functions (F) is 

structured, where the post-contingency measurements at 

different power system states (n) are treated as observations, 

and the PMU samples belonging to a pre-specified time 

window (p time points) play the role of variables. Since the 

different power system states result from the application of 

MC-based simulations, n is conceptually greater than p (n > 

p), and so F is a rectangular matrix. 
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where fk is the k-th discrete function of time obtained in the 

k-th MC-repetition that consists of p samples. 

Formally, the SVD of the real rectangular matrix F of 

dimensions (n × p) is a factorization of the form (Peña, 

2002): 

 1/2

np nn np pp
F U Λ V  (2) 

where U is an orthogonal matrix whose columns are the 

orthonormal eigenvectors of FF, V is the transpose of an 

orthogonal matrix whose columns are the orthonormal 

eigenvectors of FF, and 1/2 is a diagonal matrix containing 

the square roots of eigenvalues from U or V in descending 

order, which are called the singular values of F. 

Taking into account that n > p, this matrix decomposition can 

be written, as a finite summation, as follows: 
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where ui and vi are the i-th column eigenvectors belonging to 

U and V respectively, and i
1/2 is the i-th singular value of F. 

From (3), and after some computations, each element of F 

(each discrete function) can be written as follows: 

 
1/2 1/2 1/2
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It is worth mentioning that the expression shown by (4) 

actually represents the decomposition of the discrete function 

of time fk into a sum of a set of discrete functions (vj) which 

are orthogonal in nature (since they are the orthonormal 

eigenvectors of FF), weighted by real coefficients resulting 

from the product of the j-th singular value of F by the j-th 

element of the eigenvector uk. Thus, vj represents the j-th 

EOF and its coefficient akj = j
1/2ukj is called the EOF score. 

The sum of the singular values of F (i
1/2) is equivalent to the 

total variance of the data matrix, and each i-th singular value 

offers a measurement of the explained variability (EVi) given 

by EOFi as defined by (5). Thus, the number of the chosen 

EOFs depends on the desired explained variability. 
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It is worth to mention that the main advantage of EOFs is 

their ability to determine the orthogonal functions that better 

adapt to the set of dynamic functions. This feature enables the 

mining of the signal immersed patterns, and allows EOF to 

overcome other signal processing tools, such as Fourier 

analysis, which always employ the same pre-defined pattern 

functions that are not always suited to represent specific 

dynamic behavior. 
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2.2  Support vector classifier 

A support vector classifier (SVC) acquires decision functions 

that classify an input into one of the given classes through 

training using input–output (features-label) pair data. The 

optimal decision function is called the Optimal Hyper-plane 

(OH), and it is determined by a small subset of the training 

set which are called the Support Vectors (SV), using the 

concept of VC (Vapnik-Chervonenskis) dimension as the 

theoretical basis (Abe, 2010).  

SVC needs a priori an off-line learning stage, in which the 

classifier has to be trained using a training set of data. Hence, 

the data have to be split into training and testing sets. Each 

element in the training set contains one “target value” (class 

labels) and several “attributes” (features). The objective of 

SVC is to yield a training data based model, which predicts 

the target values of the test data given only the test data 

features (Hsu et al., 2010). Given a training set of features-

label pairs (xi, yi), i = 1,…, l, where xi  Rn and y  {1, -1}l, 

for a two-class classification problem, the support vector 

classifier requires the solution of the optimization problem 

formulated in (6) (Hsu et al., 2010). 
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where w is an n-dimensional normal vector to the hyper-

plane, b is a bias term, i is a slack variable associated with 

xi, C is the margin parameter, and (xi) is the mapping 

function from x to the feature space (Abe, 2010). 

The mapping function (xi) is usually defined as the so called 

“kernel function” K(xi, xj), as shown in (7) (Hsu et al., 2010). 

      
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There are several kernel functions such as linear, polynomial, 

radial basis function (RBF), among others. In this work, RBF 

kernel is used because this function is capable of handling 

possible nonlinear relations between labels and features (Hsu 

et al., 2010). This type of kernel is shown in (8). 

  
2

i j

i jK , , 0e



 

 
x x

x x  (8) 

Before training the SVC, it is necessary to identify the best 

parameters C of (6) and  of (8) (Hsu et al., 2010), as well as 

Wm that represents a weight factor used to change the penalty 

of class m (implicit into the optimization formulation), which 

is useful for training classifiers using unbalanced input data. 

For this purpose, an optimization problem is posed and 

solved, in this paper, via the swarm version of the mean-

variance mapping optimization (MVMOS), firstly presented 

by Rueda and Erlich (2013). 

 

3. PROPOSED APPROACH 

This section depicts a novel approach to estimate post-

contingency dynamic vulnerability regions (DVR) 

considering three phenomena regarding short-term stability 

(transient stability, voltage stability and frequency stability -

TVFS-). The DVRs are composed by two areas: the 

vulnerable region and the non- vulnerable region, delimited 

by a hyper-plane. 

A pattern recognition method based on empirical orthogonal 

functions (EOF) is used to determine the approximate spatial 

distribution of DVR. Then a support vector classifier (SVC) 

is used to estimate the post-contingency dynamic 

vulnerability status (PCDVS). The objective is to determine 

if the current operating state of the system is or not within the 

vulnerable region, which is achieved by evaluating the 

tendency of the system to change its conditions to a critical 

state as regards TVFS phenomena. Fig. 1 schematizes the 

proposed approach, highlighting the coupling between the 

off-line stage regarding the mapping of DVRs and the 

training of the SVCs, and its application for real-time 

prediction of vulnerability status. 

Dynamic 

Vulnerability Status 

Prediction

Dynamic Vulnerability 

Regions

 Intelligent Classifier

Training

SVC

Post-contingency 

Pattern Recognition

Post-contingency 

PMU Dynamic Data

Trained 

SVC
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Off-Line Training

SVC Parameter 
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MVMO

Empirical Orthogonal 

Functions (EOFs)

S

 
Fig. 1. Post-contingency vulnerability status prediction 

3.1  Recognition of Post-contingency Dynamic Vulnerability 

Regions 

The DVRs are empirically determined through mining post-

contingency data recorded by PMUs. As an alternative to the 

limited availability of statistics on dynamic measurements, 

probabilistic Monte Carlo (MC) N-1 contingency simulations 

allow obtaining the dynamic responses representing those 

data registered by PMUs in real time, through evaluating the 

time domain system response. This procedure is widely 

explained by Cepeda et al. (2012). 

Once the dynamic database has been structured, it is analysed 

using the EOFs with the aim of mapping the system DVRs, 

based on the patterns associated with the three TVFS 

phenomena. The corresponding EOF scores make vectors of 

real numbers that represent the system post-contingency 

dynamic behaviour patterns. These patterns vectors allow 

mapping the spatial DVRs on the coordinate system formed 

by the EOFs. Additionally, in order to prevent large numeric 

values give an erroneous interpretation of the vulnerability 

regions, it is suggested to normalize the pattern vectors 

before mapping the DVRs. In this research work, a linear 

normalization in the range [0, 1] has been adopted. 
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Each pattern vector has a specific associated class label based 

on the simulation resulting vulnerability status, as depicted 

by Cepeda et al. (2012). These class labels might correspond 

to a non-vulnerable case (label 0) or a vulnerable case (label 

1), depending on whether one or more of the local protection 

relays associated with the phenomena under study (out-of-

step relay -OSR-, low and high frequency relays -FR-, and 

low and high voltage relays -VR-) have triggered during the 

event progress. Using the resulting vector patterns and their 

corresponding vulnerable state class labels, the DVRs can be 

numerically mapped on the coordinate system formed by the 

main EOFs (Cepeda et al., 2012). 

In order to adequately capture the system response for 

different TVFS stability phenomena, several time windows 

(TW) have to be defined. These time windows are established 

according to the statistics of the triggering times of the relays, 

resulting from the MC simulation, influenced by the 

WAMPAC communication time delay (tdelay). 

  min
1

min , ,
i i iOSR VR FR delay

i n
t t t t t


   (9) 

where tOSRi, tVRi and tFRi are the tripping times of out-of-step, 

voltage and frequency relays recorded in n MC repetitions, 

respectively. Typically, the out-of-step relay presents the 

fastest tripping time due to the fast time frame evolution of 

transient instability. 

Since the post-contingency data comprise the samples taken 

immediately after the fault is cleared, the first time window 

(TW1) is defined by the difference between tmin and the 

clearing time (tcl). 

 
1 min clTW t t   (10) 

The rest of the time windows are defined based on the 

statistical concept of confidence interval related to 

Chebyshev's inequality (Han and Kamber, 2006), which 

settles that at least 89% of the data lie within three standard 

deviations (3). 

  / / 13k OSR VR FR kTW std t TW     (11) 

where std{} represents the standard deviation () of the relay 

tripping time that most intersects the corresponding time 

window TWk. 

3.2  Prediction of Post-contingency Dynamic Vulnerability 

Status 

DVRs are used to specify the relative position of the actual 

system dynamic state regarding its hyper-plane limit, which 

can be achieved by using a smart classifier. This paper 

employs a support vector classifier (SVC) with this aim. 

The SVC needs a preliminary off-line learning stage. This 

task is performed by using the post-contingency database 

obtained via MC simulations and the corresponding 

associated DVRs. The data is divided into training and 

testing. Each element of the training and testing sets contains 

a target value (class label) and several attributes (pattern 

vectors that best represent each DVR for every TW). 

Based on the two DVR associated regions (vulnerable and 

non-vulnerable), a two-class classifier is adopted in order to 

specify the system vulnerability status. It is worth mentioning 

that a SVC has to be trained for each TW. 

There are two essential aspects to be considered before 

training the SVC: 

 Choice of appropriate pattern vectors, showing the 

evolution of specific phenomena (TVFS). In this sense, a 

procedure for extracting and selecting the most relevant 

features is required. Thus, a method that maximizes the 

classification accuracy (CA) using decision trees (DT), 

originally introduced by Teeuwsen (2005), in 

combination with a certain explained variability (above 

97% ) has been employed to solve this problem. 

 Identification of the best parameters of SVC. To this end, 

a parameter identification problem has been defined and 

solved in this paper by optimizing an appropriated 

objective function based on the maximization of the 

classification accuracy. This optimization problem is 

solved by means of MVMOS. 

3.2  Implementation for real-time assessment 

In real-time application, the off-line trained SVCs will be in 

charge of classifying the PCDVS of the power system, using 

the actual post-contingency PMU voltage phasors and 

frequencies as relevant data. Firstly, the dynamic signals 

must be transformed to the corresponding EOF scores. For 

this purpose, the measured data have to be multiplied by the 

EOFs determined in the off-line training and stored in the 

control-center processor. Then, the obtained EOF scores will 

be the input data for the trained SVCs, which will be 

adequately selected depending on the corresponding TW. 

These SVCs will automatically indicate whether the system is 

within vulnerable or non-vulnerable regions associated to 

immediate post-disturbance short-term instability 

phenomena.  

This vulnerability status prediction might be then used by a 

real-time vulnerability assessment module, in which the 

predicted status might be considered along with estimated 

vulnerability indices (i.e. measures of the actual system 

security level like those suggested Cepeda and Colome, 

2012) to arrive at a more conclusive indicator (i.e. diagnosis) 

of the system vulnerability condition. The calculation of 

vulnerability indices and the coupling with the approach 

presented in this work will be thoroughly discussed in a 

future issue.  

 4. SIMULATION RESULTS 

The proposed approach is tested on the IEEE New England 

39 bus test system (Pai, 1989), slightly modified in order to 

satisfy the N-1 security criterion. The functionalities of 

MATPOWER (Zimmerman, 2013), and DIgSILENT Power 

Factory (DIgSILENT GmbH Web Page) were employed to 
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perform MC simulations in order to create the data base of 

system dynamic performance. At every MC simulation, an 

operating condition (load and corresponding dispatch) and a 

contingency are randomly generated, such that the causes of 

system vulnerability could be transient instability, short-term 

voltage instability, or short-term frequency instability. Two 

types of events are considered: three phase short circuits and 

generation outage. The short circuits are applied at different 

random locations of the transmission lines at 0.12 s, followed 

by opening of the corresponding transmission line at 0.2 s 

(i.e. fault clearing time tcl). Generation outages are applied at 

0.2 s.  

Both voltage components (magnitude and angle), and bus 

frequencies are considered as the potential input variables. A 

total number of 10,000 cases have been simulated, from 

which 7,600 are stable or non-vulnerable and 2,400 are 

unstable or vulnerable: 1,308 are transient unstable, 682 are 

frequency unstable, and 410 are voltage unstable. 

4.1  Mapping the DVRs 

First, several time windows are defined based on the MC 

statistics of the relay tripping times, and the procedure 

presented in Section 3.1. It is assumed that tdelay = 250 ms. 

The out-of-step relay time has a mean of 1.2252 s, a standard 

deviation of 0.3746 s, and a minimum value of 0.8342 s. 

Thus, vulnerability assessment has to be done in less than 

0.5842 s (tmin = 0.8342 s - tdelay). For this reason, an adequate 

data window (TW1) for TS phenomenon can be 300 ms (tmin - 

tcl = 0.3842 s) starting from the fault clearing. In this test 

system, the tripping of voltage relays presents a mean of 

4.1275 s, a standard deviation of 1.6872 s, and a minimum 

value of 3.22 s, whereas the frequency relay tripping time has 

a mean of 10.6829 s, a standard deviation of 2.4921 s, and a 

minimum value of 5.987 s. Using these values and (11), the 

rest of time windows are determined. This time-window 

definition is summarized in Table 1. 

Table 1. Time window definition 

Time 

Window 

std{tOSR/VR/FR} 

(s) 
 OSR /VR / FR k-1

3× std t + TW  

(s) 

TW  

(s) 

TW1 - - 0.30 

TW2 0.3746 1.4238 1.50 

TW3 0.3746 2.6238 2.70 

TW4 0.3746 3.8238 3.90 

TW5 1.6872 8.9616 9.00 

 

After TW definition, the corresponding EOFs are determined 

using the resulting MC dynamic data. Afterwards, the EOF 

scores (i.e. pattern vectors) are computed, and their related 

DVRs can be then mapped, using also the vulnerability status 

indicators. For instance, Fig. 2 presents the three dimensional 

distribution of the pattern vectors obtained from the voltage 

angles corresponding to TW1. In the figure, the blue areas 

(enclosing the “vulnerable” pattern vectors represented by 

blue surfaces) represent the vulnerable regions; whereas the 

white area (behooving to the “non-vulnerable” green-

diamond pattern vectors) corresponds to the non-vulnerable 

region. These areas have been empirically delimited, 

bordering the obtained pattern shapes which depend on the 

pattern vector spatial locations. 

 
Fig. 2. TW1 voltage-angle-based DVRs 

4.2  Building the SVC 

Next, it is necessary to choose the adequate number of EOFs 

that allows maintaining as much as possible of the variation 

presented in the original variables. For this purpose, the DT 

feature extraction and selection stage is applied, taking into 

account that EVi has to be at least 97%. As an illustration, 

Table 2 presents the number of chosen EOFs and their 

resulting EVis for TW1 and TW2.  

Table 2. Feature extraction summary 

Time 

Window 
Variable Number of EOFs 

EVi  

(%) 

TW1 

Vang 11 97.0325 

Vmag 5 97.2259 

Freq 2 99.7005 

TW2 

Vang 24 97.2816 

Vmag 10 97.1783 

Freq 2 99.6809 
 

For instance, a summary of the feature selection results for 

TW1 and TW2 are presented in Table 3, where the selected 

features (those that offer the maximum CA) are additionally 

highlighted. After the selection of features for each TW, the 

MVMOS-based SVC-parameter identification methodology is 

applied. For this purpose, LIBSVM (Chang and Lin, 2011) is 

used for running the SVC. 

Table 3. Feature selection summary 

Time 

Window 
Option Feature CA (%) 

 TW1 

1 [Vang] 97.477 

2 [Vmag] 96.779 

3 [Freq] 89.894 

4 [Vang, Vmag] 98.030 

5 [Vang, Freq] 98.103 

6 [Vmag, Freq] 97.773 

7 [Vang, Vmag, Freq] 98.140 

TW2 

1 [Vang] 99.927 

2 [Vmag] 99.885 

3 [Freq] 99.832 

4 [Vang, Vmag] 99.911 

5 [Vang, Freq] 99.917 

6 [Vmag, Freq] 99.885 

7 [Vang, Vmag, Freq] 99.906 
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The next step is to train the SVC. Table 4 presents the 

performance of the trained SVC for each TW, including, 

additionally, a performance comparison with other classifiers: 

decision tree classifier (DTC), pattern recognition network 

(PRN: a type of feed-forward networks), discriminant 

analysis (DA), and probabilistic neural networks (PNN: a 

type of radial basis networks). The performance of the 

classification is evaluated, for each TW, by using the mean of 

all iterations of a 10-fold CV classification accuracy (CAi). 

Note that SVC outperforms all other classifiers in terms of 

classification accuracy. 

Table 4. Classification performance 

Classifier 
mean{CAi} for Time Window (%) 

TW1 TW2 TW3 TW4 TW5 

DA 97.440 99.966 99.494 98.034 97.178 

DTC 98.200 99.931 99.736 99.436 99.291 

PRN 98.760 99.897 99.770 99.029 98.993 

PNN 98.930 99.977 99.770 99.137 99.055 

SVC 99.290 100.00 99.885 99.880 99.727 

In order to validate the complete TVFS vulnerability status 

prediction, the percentage of the complete classification 

accuracy (N samples correctly classified/Total N samples), 

security (N non-vulnerable samples correctly classified / 

Total N non-vulnerable samples) and dependability (N 

vulnerable samples correctly classified / Total N vulnerable 

samples) are computed. These results are shown in Table 5, 

which also includes the number of cases correctly classified 

as well as those where the classification fails. Both security 

and dependability present more than 99% confidence level, 

which supports the excellent performance of the proposed 

approach in alerting about critical changes in the system 

condition. 

Table 5. Vulnerability status estimation performance 

Feature Value 

Non-vulnerable cases correctly classified 7,587 

Vulnerable cases correctly classified 2,390 

Non-vulnerable cases classified as vulnerable 13 

Vulnerable cases classified as non-vulnerable 10 

Complete classification accuracy (%) 99.770 

Security (%) 99.829 

Dependability (%) 99.583 

6. CONCLUSIONS 

This paper summarizes a novel post-contingency pattern 

recognition method for predicting the dynamic vulnerability 

status of an Electric Power System. The methodology begins 

with the determination of post-contingency dynamic 

vulnerability regions (DVRs) using Monte Carlo simulation 

and empirical orthogonal functions, that allow finding the 

best pattern functions for representing the particular signal 

dynamic behaviour. This proposal considers three different 

short-term instability phenomena as the potential causes of 

vulnerability (TVFS), for which several time windows have 

been defined. These DVRs are then used to specify the actual 

dynamic state relative position with respect to their 

boundaries, which is established using an intelligent classifier 

together with an adequate feature extraction and selection 

scheme. In this connection, SVC is used due to its property of 

being more robust to over-fitting problems when adequate 

parameters are selected. To overcome this drawback, a 

MVMOS-based parameter identification method has also 

been applied. The proposed data-mining based pattern 

recognition method has shown excellent performance due to 

its high classification accuracy.  
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