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1. INTRODUCTION

One of the classical problems in control theory is that of
designing state observers to obtain in real time estimates of
unmeasurable state variables, using the available measured
outputs. This has motivated the study of the structural
property of observability and of various techniques for
designing state observers, as in the works by Krener and
Respondek (1985); Isidori (1995); Nijmeijer and van der
Schaft (1990); Tsinias (1990); Kazantzis and Kravaris
(1998); Menini and Tornambe (2002a,b, 2010a,b, 2011a).

Some of the works closer to the problems considered
here are by Sussmann (1978); Sontag (1979); Takens
(1981); Aeyels (1981a,b); Jouan and Gauthier (1996). In
some of such works the problem of observability through
sampled measurements is considered. In particular, an
application using a CAS (Computer Algebra System) of
the developments by Sontag (1979) was done by Nešić
(1998).

When dealing with polynomial systems, it is very useful
to use techniques from Algebraic Geometry, which provide
the natural tools to state clear and easily testable results.
This has been recognized by a variety of authors Diop
(1991); Helmke et al. (2003); Tibken (2004); Menini and
Tornambe (2014); Kawano and Ohtsuka (2013); Menini
and Tornambe (2013a,b). The main novelty of this paper,
with respect to such works, is that here observability and
embedding problems are studied with the focus of observer
design, whence results based on algebraic geometry are
stated that allow the easy writing of explicit forms for an
inverse of the observability map and of an embedding of
the given system. Although we illustrate the application
of our techniques with respect to high gain observers
(see, e.g.,Tornambe (1989); Esfandiari and Khalil (1992);
Gauthier and Kupka (2001); Hammouri et al. (2010)), it
is stressed that, in principle, they can be applied to other
ways of designing observers.

2. PRELIMINARIES AND NOTATION

The goal of this section is to briefly resume the basic
notions of algebraic geometry (Cox et al. (1998, 2007))
that will be used in the sequel.

Let x ∈ Rn, x = [ x1 ... xn ]
>

, let R[x1, ..., xn] (or, shortly,
R[x]) be the commutative ring of all scalar polynomials
in x1, ..., xn, and let R(x1, ..., xn) (or, shortly, R(x)) be
the field of all scalar rational functions of x1, ..., xn; Rn[x]
denotes the set of vector functions with n entries in R[x].

Let p1, ..., pm be polynomials in R[x]; the set

Vn(p1, ..., pm) := {x ∈ Rn : pi(x) = 0 for all i = 1, ...,m}
is called the affine variety 1 (briefly, variety) of Rn defined
by p1, ..., pm. As an example, V1(x1) is a point of R1,
V2(x1) is a line of R2, and so on. If Va = Vn(p1, ..., pma)
and Vb = Vn(q1, ..., qmb

), for some polynomials pi and qj
in R[x], then both Va ∩ Vb and Va ∪ Vb are varieties, and
they are given by:

Va ∩ Vb = Vn(p1, ..., pma
, q1, ..., qmb

),

Va ∪ Vb = Vn(p1q1, ..., pmaq1, ..., p1qmb
, ..., pmaqmb

).

A subset I of R[x] is a polynomial ideal (briefly, an ideal)
if it satisfies:

(1) if p, q ∈ I, then p+ q ∈ I;

(2) if p ∈ I and q ∈ R[x], then pq ∈ I.

Let p1, ..., pm be polynomials in R[x]; it is possible to show
that the set

〈p1, ..., pm〉n := {q1p1 + ...+ qmpm : qi ∈ R[x], i = 1, ...,m}
is an ideal of R[x] and, in particular, it is called the ideal
generated by p1, ..., pm.

1 In some texts Vn(p1, ..., pm) is called algebraic set, whereas the
term affine variety is reserved for the case when Vn(p1, ..., pm) is
irreducible.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 43



An ideal I is said to be finitely generated if there exist
polynomials p1, ..., pm in R[x] such that I = 〈p1, ..., pm〉n ;
the set of the ideal generators {p1, ..., pm} is called a
basis of I. By the Hilbert Basis Theorem (Cox et al.,
2007), every ideal of R[x] is finitely generated. Clearly,
if 〈p1, ..., pma〉n = 〈q1, ..., qmb

〉n, for some polynomials pi
and qj in R[x], then Vn(p1, ..., pma) = Vn(q1, ..., qmb

).

Let V = Vn(p1, ..., pm) be the variety defined by p1, ..., pm
in R[x]. By definition, polynomials p1, ..., pm vanish on V,
whence all polynomials belonging to 〈p1, ..., pm〉n vanish on
V. Note that there may be polynomials p /∈ 〈p1, ..., pm〉n
that vanish on V; this renders necessary the following
definitions.

Let V be a variety of Rn; it is possible to show that the
set

In(V) := {p ∈ R[x1, ..., xn] : p(x) = 0 for all x ∈ V} (1)

is an ideal and, in particular, it is called the ideal of V; note
that the empty set ∅ is a variety and that In(∅) = 〈1〉n =
R[x]. Clearly, 〈p1, ..., pm〉n ⊆ In(Vn(p1, ..., pm)), and the
equality 〈p1, ..., pm〉n = In(Vn(p1, ..., pm)) need not occur,

e.g., if n = 1, all the polynomials x21q(x1) of
〈
x21
〉
1
, with

q ∈ R[x1], vanish on the variety V = V1(x21) = {0}, but
I1(V1(x21)) = 〈x1〉1 and

〈
x21
〉
1
6= 〈x1〉1 since p(x1) = x1

vanishes on {0}, but does not belong to
〈
x21
〉
1
.

Let Va and Vb be two varieties of Rn, then

(1) Va ⊂ Vb if and only if In(Va) ⊃ In(Vb);
(2) Va = Vb if and only if In(Va) = In(Vb);
this, in particular, shows that the map In(V) is one-to-one.

For instance if n = 1, Va = {1} and Vb = {1, 2}, then
I1(Va) = 〈x1 − 1〉1 and I1(Vb) = 〈(x1 − 1)(x1 − 2)〉1, with
I1(Va) ⊃ I1(Vb).
Let I be an ideal of R[x]; it is possible to show that the
set

Vn(I) := {x ∈ Rn : p(x) = 0 for all p ∈ I} (2)

is a variety and that Vn(I) = Vn(p1, ..., pm) for any basis
{p1, ..., pm} of I.

A variety V can be studied through the corresponding
ideal In(V) given by (1) and, conversely, an ideal I can
be studied through the corresponding variety Vn(I) given
by (2), but In(Vn(I)) need not coincide with I (e.g.,
I1(V1(

〈
x21
〉
1
)) = 〈x1〉1), whence the map Vn(I) is not

one-to-one (e.g., V1(〈1〉1) = V1(
〈
1 + x21

〉
) and 〈1〉1 6=〈

1 + x21
〉
1
).

Given any subset S of Rn, it is easy to check that

In(S) := {p ∈ R[x1, ..., xn] : p(x) = 0 for all x ∈ S}
is an ideal even if S is not a variety; hence, Vn(In(S)) is a
variety that contains S. In particular, it is the smallest
variety containing S; Vn(In(S)) is called the Zariski
closure of S. As an example that will be useful in the
following, if S ⊆ Rn is open, S 6= ∅, then In(S) =
{0} and its Zariski closure coincides with the whole Rn
(Vn(In(S)) = Rn).

Some polynomials q1, ..., qm ∈ R[x] are algebraically de-
pendent if there exists a non-zero polynomial p ∈ R[q],

where q = [ q1 . . . qm ]
>

, such that p(q1(x), ..., qm(x)) = 0,

∀x ∈ Rn (algebraically independent, otherwise). Necessary
and sufficient condition for q1, ..., qm to be algebraically

dependent is that rankR(x)

(
∂q
∂x

)
< m.

Fix a total ordering > of the monomials of R[x]. For any
p ∈ R[x], with p 6= 0, one can write

p(x) = a1x
α1 + a2x

α2 + ...+ a`x
α` ,

where ai ∈ R, αi is a multi-index, i = 1, 2, ..., `, and
xα1 > xα2 > ... > xα` ; this allows one to define the
leading monomial LM(p) = xα1 and the leading coefficient
LC(p) = a1 of p.

Let {p1, ..., pm} be a basis of an ideal I of R[x]. A
polynomial r ∈ R[x] is said to be reduced with respect
to {p1, ..., pm} if either r = 0 or no monomial that appears
in r is divisible by LM(pi), i = 1, ...,m. A polynomial
r ∈ R[x], which is reduced with respect to {p1, ..., pm},
is called a remainder of the division of p ∈ R[x] by
{p1, ..., pm} if p− r ∈ 〈p1, ..., pm〉n.

Example 1. Fix the deglex (degree lexicographic) mono-
mial ordering on R[x1, x2] with x2 > x1. Let p(x) = x1x

2
2−

x1 and 〈p1, p2〉2 =
〈
x1x2 − x2, x22 − x1

〉
2
. It is easy to see

that r1 = 0 and r2 = x21 − x1 are both reduced with
respect to {p1, p2} and that p = x2p1 + p2 + r1 and
p = 0p1 + x1p2 + r2, which show that the remainder of
the division by an arbitrary basis need not be unique.

Let {g1, ..., gm} be a set of non-zero polynomials in R[x]. A
basis {g1, ..., gm} of an ideal I of R[x] is called a Gröbner
basis of I if, for any p ∈ R[x], the remainder of the division
of p by {g1, ..., gm} is unique. Every non-zero ideal I of R[x]
has a Gröbner basis, which need not be unique 2 .

A monomial ordering on R[xa, xb], with xa ∈ Rna and
xb ∈ Rnb , n = na + nb, eliminates xa if

xαa > xβa ⇒ xαax
γ
b > xβax

δ
b ,

for all multi-indices α, β for which xαa > xβa and for all
multi-indices γ, δ. For instance, the lexicographic ordering
with x1 > x2 > ... > xn eliminates x1, ..., x`, for all 1 ≤
` < n. Let I be an ideal of R[xa, xb]. The elimination ideal
of I that eliminates xa is I ∩ R[xb]. Let {g1, ..., gm} be a
Gröbner basis for a monomial ordering that eliminates xa.
Then, the set obtained from {g1, ..., gm} by retaining only
the elements that do not depend on xa (i.e., {g1, ..., gm}∩
R[xb]) is a Gröbner basis of the elimination ideal I ∩R[xb]
for the monomial ordering on R[xb] induced by >.

Example 2. Let I =
〈
x1 + x22, x1 − x2

〉
2
. Fix the lexico-

graphic ordering with x1 > x2, which eliminates x1; a
Gröbner basis of I for such an ordering is {x22+x2, x1−x2},
whence the elimination ideal of I that eliminates x1 is
I ∩ R[x2] =

〈
x22 + x2

〉
1
; in particular, {x22 + x2} is a

Gröbner basis of I ∩ R[x2] for the induced ordering (in
this case trivial).

3. OBSERVABILITY AND EMBEDDINGS OF
POLYNOMIAL SYSTEMS

Consider the following polynomial system

ẋ= f(x), (3a)

2 By using the stronger notion of reduced Gröbner basis unicity is
achieved, but this is not needed here.
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y = h(x), (3b)

where h ∈ R[x] and f ∈ Rn[x]. Consider the observability
map of order h + 1, h ∈ Z, h ≥ 0, given by ye,h = Oh(x),

where ye,h = [ y0 ... yh ]
>

, yi = diy
dti , for i = 0, 1, ..., h, and

Oh(x) :=


L0
fh(x)

Lfh(x)
...

Lhfh(x)

 , (4)

with Li+1
f h(x) =

∂Li
fh(x)

∂x f(x) and L0
fh(x) = h(x).

It is classical to define system (3) to be (N + 1)-
differentially observable if the observability map ye,N =
ON (x) is injective, i.e., if it is left invertible with a (not
necessarily unique) left inverse x = O−1N (ye,N ) such that

O−1N ◦ ON (x) = x, ∀x ∈ Rn (see Jouan and Gauthier
(1996)). Such a notion can be extended as follows.

Definition 1. System (3) is (N + 1)-polynomially (respec-
tively, rationally) observable if it is (N + 1)-differentially
observable and O−1N (ye,N ) is a polynomial (respectively,
rational) function.

Clearly, if system (3) is (N+1)-differentially (respectively,
polynomially or rationally) observable for a certain N ,
then it is (N + 1)-differentially (respectively, polynomially
or rationally) observable for all N ≥ N .

Now we consider the problem of finding an embedding for
system (3).

Problem 1. Given an integer N ≥ 0, find, if any, a
polynomial p(ye,N ) ∈ R[ye,N ] such that

p ◦ON (x) = 0, ∀x ∈ Rn. (5)

Note that, if the entries of ON (x) are algebraically depen-
dent and have degree less than or equal to d, then there
exists a polynomial p(ye,N ), having degree less than or
equal to dN+1, that solves Problem 1.

Any polynomial p(ye,N ) ∈ R[ye,N ] can be thought of as an
ordinary differential equation,

p(ye,N ) = 0; (6)

in particular, a polynomial p(ye,N ) solution of Problem 1
is called an embedding of (3). Any embedding has the
following property: if x(t) is a solution of (3a), then
y(t) = h(x(t)) is a solution of (6), i.e., the corresponding
ye,N (t) satisfies (6) identically.

About any regular point of ye,N = ON (x), by the Implicit
Function Theorem (see, e.g., Fleming (1987)), there ex-
ists locally a function ϕ(ye,N−1) such that the following
relation holds locally about such a regular point:

p(ye,N ) = 0⇔ yN = ϕ(ye,N−1);

the differential equation corresponding to yN = ϕ(ye,N−1)
is often called in normal form. Unfortunately, ϕ(ye,N−1)
need not exist about a singular point of ye,N = ON (x)
and, even in the case it exists, it need not be polynomial
nor rational. Thus, the following particularization of Prob-
lem 1 will be considered in this paper.

Problem 2. Given an integer N ≥ 0, find, if any,
p(ye,N−1) ∈ R[ye,N−1] (respectively, p(ye,N−1) ∈ R(ye,N−1))
such that p(ye,N ) = yN − p(ye,N−1) satisfies (5).

A solution of Problem 2 is called an explicit embedding of
system (3).

Let p(ye,N ) = yN − p̄(ye,N−1) be a solution to Problem 2;
the differential equation corresponding to yN = p̄(ye,N−1)
can be rewritten in the first-order normal form (or state-
space form) as follows:

ẏ0 = y1,

...

ẏN−1 = yN ,

ẏN = p̄(ye,N−1),

y = y0.

Now, let the polynomial λN+1 +k1λ
N + ...+kN+1 have all

roots with negative real part and let ε > 0 be a sufficiently
small parameter. Under the assumptions and conditions
of Theorems 1 and 2 of Tornambe (1992) (essentially,
boundedness of p̄(ye,N−1(t)) as a function of t), a high-
gain “practical” observer for such a system is given by

˙̂y0 = ŷ1 +
k1
ε

(y0 − ŷ0), (7a)

... (7b)

˙̂yN−1 = ŷN +
kN
εN

(y0 − ŷ0), (7c)

˙̂yN =
kN+1

εN+1
(y0 − ŷ0). (7d)

The observer (7) guarantees that the estimation error
ye,N (t) − ŷe,N (t) can be rendered arbitrarily small, by
decreasing ε, and has the advantage that the obtained
practical stability is global (i.e., the initial errors can be
arbitrary).

Once the output and its derivatives have been estimated
for a sufficiently high N , under the assumption that
the system is (N + 1)-differentially observable (hopefully,
polynomially or rationally observable), an estimate of
the state variables can be obtained by x̂ = O−1N (ŷe,N ),
especially when ye,N (t) is bounded as a function of t.

The following lemma follows easily from the definition
of algebraic dependence (see e.g., Menini and Tornambe
(2011b, 2009, 2010c,d); Menini and Tornambè (2012)).

Lemma 1. There exists a solution p(ye,N ) ∈ R[ye,N ] to
Problem 1 with p 6= 0 if and only if the entries of
the observability map ye,N = ON (x) are algebraically
dependent.

As well known, the entries of the observability map
ye,N = ON (x) are algebraically dependent if and only if

rankR(x)

(
∂ON (x)
∂x

)
≤ N .

The following theorem gives, in terms of algebraic geome-
try, a characterization for the entries of the observability
map to be algebraically independent, whence for Prob-
lem 1 to have no solution.

Theorem 1. Let YN = ON (Rn) be the image of Rn
through the observability map; let VN+1(IN+1(YN )) be
the Zariski closure of YN . The entries of ON (x) are
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algebraically independent (whence, there is no solution to
Problem 1) if and only if VN+1(IN+1(YN )) = RN+1.

Corollary 1. (1.1) IfN < n, the entries of the observability
map ye,N = ON (x) are algebraically dependent if and only
if system (3) is not (N + 1)-differentially observable;

(1.2) If N ≥ n, the entries of the observability map
ye,N = ON (x) are always algebraically dependent.

The following theorem gives two sufficient conditions un-
der which there exists a solution to Problem 2.

Theorem 2. (2.1) If system (3) is N -polynomially (respec-
tively, rationally) observable, then there exists p(ye,N−1) ∈
R[ye,N−1] (respectively, p(ye,N−1) ∈ R(ye,N−1)) such that
p(ye,N ) = yN − p(ye,N−1) satisfies (5).

(2.2) If N ≥ n+1, then there exists p(ye,N−1) ∈ R(ye,N−1)
such that p(ye,N ) = yN − p(ye,N−1) satisfies (5).

Remark 1. Statement (2.1) of Theorem(2) guarantees that
the N -polynomial (rational) observability, for some fixed
N , implies the existence of a polynomial (rational) em-
bedding, and Statement (2.2) guarantees that there al-
ways exists a rational embedding for N ≥ n + 1. As
will be illustrated in Section 4, in practice, the rational
embeddings can be more useful if the poles of the rational
function p(ye,N−1) are guaranteed not to be attainable by
the system trajectories. For some specific system, such an
additional requirement may be possible only for values of
N greater than n+ 1.

Example 3. If pair f, h is in the observability form,

f(x) =


x2
...
xn

ϕ(x1, . . . , xn)

 ,
h(x) = x1,

with ϕ ∈ R[x], then Problem 2 is solvable by

yN = ϕ(y0, . . . , yN−1).

Example 4. Let n = 1, f(x) = 1
2x and h(x) = x2. It is

easy to see that yi = x2, for all i = 0, 1, . . ., whence
the considered system is not N -differentially observable
for any N ≥ 0. Nevertheless, for such a system one has
the linear explicit embedding y1 − y0 = 0.

Problems 1 and 2 have been extensively studied in the ana-
lytic case by Jouan and Gauthier (1996) and Gauthier and
Kupka (2001) (earlier similar studies were given in Takens
(1981)), showing that if N ≥ 2n + 1, then Problems 1
and 2 are generically solvable, thus implying the existence
of an analytic function ϕ, locally about any regular point of
p(ye,N ) (a point ye,N = ON (xr) is regular for p(ye,N ) if the
Jacobian matrix of the observability mapping has full col-
umn rank about xr), such that yN = ϕ(y0, ..., yN−1). The
above mentioned results do not give a constructive pro-
cedure for the computation of such a polynomial p(ye,N ),
which can be determined by eliminating the x variables
from the equations y0 = L0

fh(x), ..., yN = LNf h(x) consti-

tuting the observability map ye,N = ON (x).

Clearly, the elimination theory for polynomial ideals seems
to be the correct instrument for such computations in the
polynomial case. To pursue such an approach, let IN be

the set of all polynomials being solution of Problem 1, and
define

JN :=
〈
y0 − L0

fh(x), ..., yN − LNf h(x)
〉
n+N+1

.

Theorem 3. (3.1) IN is a polynomial ideal of R[ye,N ];

(3.2) IN = JN ∩ R[ye,N ];

(3.3) if YN = ON (Rn) is the image of Rn through the
observability map, then VN+1(IN ) is the Zariski closure
of YN , i.e., the smallest variety containing YN ; in addition,
if system (3) is (N + 1)-differentially observable, then
VN+1(IN ) = YN .

According to the proof of Theorem 3, if one fixes the
lexicographic monomial ordering with x1 > x2 > . . . >
xn > yN > yN−1 > . . . > y0, then a Gröbner basis of
IN can be obtained from a Gröbner basis G of JN as
G ∩ R[ye,N ], i.e., simply by taking all the elements of G
that do not depend on the entries of x.

By the second part of Statement (3.3), if system (3) is (N+
1)-differentially observable, then x(t) is a solution of (3a)
if and only if y(t) = h(x(t)) is a solution of p(ye,N ) = 0,
for all p ∈ IN .

4. APPLICATION TO THE ROSSLER OSCILLATOR

The Rössler oscillator is described by the equations:

ẋ1 = x1x2 + b− cx1, (8a)

ẋ2 =−x1 + x3, (8b)

ẋ3 =−x2 + ax3, (8c)

y = x2, (8d)

where a, b and c are three scalar positive parameters,
and the choice of the measured output is just an exam-
ple, the studies reported here below can be analogously
developed for, e.g., y = x1 and y = x2. Despite the
apparent simplicity of such dynamic equations, for many
values of the parameters the Rössler oscillator exhibits a
chaotic behaviour, and the presence of an attractor renders
it a perfect benchmark for observer design, since it is
easy to generate bounded chaotic trajectories not conver-
gent to the origin. All the computations in this section,
and in particular the computation of all the mentioned
Gröbner bases, have been performed by using the freeware
Macaulay 2, a Computer Algebra System (CAS) special-
ized in algebraic geometry computations (see Grayson and
Stillman (2013)).

By computing Lfh(x), L2
fh(x) and L3

fh(x), it can be

seen that the observability map O3(x) is not injective.
By computing L4

fh(x) and a Gröbner basis G4 of the

ideal J4 = 〈y0 − h(x), y1 − Lfh(x), y2 − L2
fh(x), y3 −

L3
fh(x), y4−L4

fh(x)〉 of R[x1, x2, x3, y4, y3, y2, y1, y0] w.r.t.

the lexicographic monomial order (with x1 > x2 > x3 >
y4 > . . . > y0), it can be seen that the observability
map ye,4 = O4(x) is globally invertible. In fact, G4 is
constituted by 8 polynomials, of which the relevant ones
are

g4,4 = x3y0 + (−a− c)x3 + γ4,4(ye,4),

g4,5 = x3y1 + γ4,5(ye,4),
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g4,6 = x3y2 + γ4,6(ye,4),

g4,8 = x1 − x3 + y1.

The complete expressions of the above polynomials are
omitted for brevity. To see that ye,4 = O4(x) is injective,
note that h(x)− a− c, Lfh(x) and L2

fh(x) do not vanish

jointly at any x ∈ R3, being a + b + c 6= 0 by hypoth-
esis. This can be checked immediately by computing the
Gröbner basis of the ideal 〈h(x)− a− c, Lfh(x), L2

fh(x)〉,
that is given by {a+ b+ c, x2 + b, x1 − x3}, and noting
that one of its elements never vanishes. Whence, by equat-
ing to zero (y0−a−c)g4,4, y1g4,5 and y2g4,6, and summing
up the three resulting equations, one obtains the following
rational expression

x3 =−(y0−a−c)γ4,4(ye,4)+y1γ4,5(ye,4)+y2γ4,6(ye,4)

(y0 − a− c)2 + y21 + y22
, (9)

that is globally valid, along the trajectories of the system.
Furthermore, by equating to zero g4,8, one obtains:

x1 = x3 − y1; (10)

expressions (9), (10), with x3 replaced by its expression
given by (9), and the trivial x2 = y0, constitute an explicit
expression of a left inverse x = O−14 (ye,4), that is needed
to design the fifth order “practical” observer (7).

To perform some simulations, the values of the system
parameters have been chosen as a = 0.1, b = 0.1 and
c = 10. The initial condition for the system has been
chosen as

x(0) = [ 6 16 −0.6 ]
>
,

which, in the time interval [0, 40], gives the trajectory
reported in Fig. 1. The initial condition for the observer
has been chosen as ŷi = 0, i = 0, . . . , 4. The polynomial
λN+1 + k1λ

N + ...+ kN+1 has been chosen as

(λ+ 1)(λ2 + 2λ+ 2)(λ2 + 3λ+ 4),

and the parameter ε has been set as ε = 0.25 · 10−3.
The estimates of the state variables have been obtained
by x̂(t) = O−14 (ŷe,4(t)), being ŷe,4(t) the observer state.

In Fig. 2 the time behaviour of the three state variables
x1(t), x2(t) and x3(t) is reported together with the time
behaviour of the respective estimates x̂1(t), x̂2(t) and
x̂3(t); they are practically undistinguishable. But, since
the observer is just a “practical” one, a non vanishing
estimation error is expected: such an error is shown in
Fig. 3. The obtained error is acceptable, it can be reduced
arbitrarily by decreasing ε, at the expense of a worst initial
transient and more expensive computations.

5. CONCLUSIONS

After characterizing observability and high-gain observer
design for polynomial systems in terms of algebraic ge-
ometry notions, the main theoretical result of this paper
has been derived, that is Theorem 3, which allows to
find all possible implicit embeddings for a polynomial
system by using Gröbner bases and elimination theory.
Then, through the application to the Rössler system, it
has been shown that the same techniques, that can be
used by means of powerful modern Computer Algebra
Systems, effectively allow the design of high-gain observers
for polynomial systems.
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Fig. 2. The time behaviour of the three state variables and
of their estimates, for the chosen trajectory.
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