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Abstract: This study investigates the sliding mode control (SMC) method based on the
nonlinear characteristic model and its application to flexible satellites. A novel nonlinear
dynamic sliding mode surface is designed depending on the nonlinear characteristic model.
The expected advantage of the proposed SMC compared to the traditional SMC is to improve
performances and robustness. The proposed results apply to a class of nonlinear systems and
rely on the parameter estimation of the characteristic model. The theory is illustrated on the
rapid maneuver and fast stability problem of the sun synchronous orbit satellite.
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1. INTRODUCTION

In recent years, control problems for nonlinear systems
have attracted a great deal of interest, which is motivated
by their different types of applications (see, e.g., Sun et al.
[2013]), such as hypersonic vehicles, flexible satellites, and
power systems. To improve the performances of the close–
loop system, many nonlinear control methods, such as
adaptive control in Chen et al. [2009], optimal control in
Luo et al. [2005], and output feedback control in Wong
et al. [2001] have been employed. It is well known that
SMC is an efficient method to deal with nonlinear systems
with external disturbances and parametric uncertainties
(see, e.g., Yu et al. [2012]). Usually, a linear sliding mode
surface is employed to design a controller for nonlinear
systems (see Xia et al. [2011]). In order to enhance the
performance of the SMC system, a solution is to employ
nonlinear sliding mode manifolds. For example, the termi-
nal SMC has advantages of fast convergence and better
disturbance rejection performance (see, e.g., Zhang et al.
[2012] for a detailed discussion).

For some controlled plant, it is not easy or possible to
depict their dynamics and environment with mathemat-
ical models, and for some others, even if they can be
represented by accurate mathematical models, the order
of the models is usually very high and the structure is
very complicated. Therefore, the theory of characteristic
modeling, as a kind of data–based model–free approach
for control system design, was proposed in Wu et al.
[2001]. It requires the analysis of the dynamic and control
performance of the system instead of an accurate plant
dynamic analysis. Based on this methodology, a golden
section adaptive control method, which aims at designing
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an engineering–oriented adaptive controller by using only
a few parameters, has been successfully used in various
industries (see, e.g., Meng et al. [2009]).

The satellite attitude control problem includes attitude
stabilization and attitude tracking (see Wen et al. [1991]),
and the latter has important applications in particular.
In terms of satellite attitude tracking tasks, large angle
or fast angular rate will generally be considered in the
rotation process. Therefore, the cross coupling terms in
the dynamic and kinematic equations become significant
and cannot be neglected, which make the system turn
out to be highly nonlinear (see, e.g., Zhang et al. [2013]).
System uncertainties and external disturbances are two
further challenges to be addressed in the design of attitude
controllers. Furthermore, the orbiting attitude slewing op-
eration introduces vibration in the flexible appendages,
which may degrade the attitude pointing accuracy. S-
ince an attitude control law based on linearisation and
nonlinear inversion was presented in Singh [1988], many
investigations using various controllers to design spacecraft
attitude control laws have been available (see, e.g., Hu
et al. [2012], Peaucelle et al. [2011], and Zanchettin et al.
[2011]).

In this paper, by introducing a nonlinear sliding mode
surface based on characteristic modeling, the SMC method
is proposed for the tracking control of a class of nonlinear
systems. Firstly, according to the characteristic modeling
method, the characteristic model of a class of nonlinear
systems is established and the parameters of the model are
obtained by the recursive least–square method. Secondly,
a characteristic model–based nonlinear sliding mode is
designed and Lyapunov stability law is applied to tackle
the problem how the states can reach the sliding surface.
Furthmore, an application to a nonlinear system is verified
by simulation results, which also facilitates the analysis
of the nonlinear sliding surface. Finally, the proposed
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controller is used for the attitude control problem of
flexible satellites.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Characteristic Modeling

Consider the nonlinear system

ẋ(t) = f(x, ẋ, · · · , x(n), u, u̇, · · · , u(m)), (1)

where x and u denote the state and input of the system,
respectively. Choosing

x = x1, ẋ = x2, · · · , x(n) = xn + 1

u = u1, u̇ = u2, · · · , u(m) = um + 1
(2)

then (1) can be written as

ẋ1(t) = f(x1, · · · , xn + 1, u1, · · · , um + 1). (3)

Assume that the characters of the nonlinear system (3) are
as follows (see Wu et al. [2001]):

(a) There are only a single input and a single output.
(b) The power of u(t) is 1.
(c) If xi = 0 and ui = 0, we have f(·) = 0.
(d) f(·) is continuously differentiable to all variables, and

partial derivative values are bounded.
(e) | f(x(t + △t), u(t + △t)) | − | f(x(t), u(t)) |< M△t,

where the constant M > 0 and △t is sampling time.
(f) The states and control value are bounded.

Based on (3), the following lemmas will be used in the
derivation of the main results.

Lemma 1. (see Wu et al. [2001]) For any nonlinear system
that can be described as (1), if assumptions (a)–(d) are sat-
isfied and sampling time △t satisfies certain conditions, its
characteristic model can be expressed with the following
2–order difference equation,

x(k+1) = f1(k)x(k)+f2(k)x(k−1)+g0(k)u(k)+g1(k)u(k−1).
(4)

If the system is stable and assumptions (e)–(f) are satis-
fied, then

• f1(k), f2(k), g0(k), and g1(k) are parameters of the
characteristic model and are slowly time varying.

• The ranges of these coefficients can be determined
beforehand.

• In dynamic process, under the same input, selecting
suitable sampling period △t can make sure that the
output error between the characteristic model and the
controlled plant keeps within a permitted limit.

• In steady state, both outputs are equal.

For the minimum–phase system, in general the character-
istic model is chosen as follows:

x(k + 1) = f1(k)x(k) + f2(k)x(k − 1) + g0(k)u(k). (5)

Lemma 2. (see Wu et al. [2001]) For any nonlinear system
that can be described as (1), if assumptions (1)–(4) are sat-
isfied and sampling time△t satisfies certain conditions, the
desired signal r and its derivative value are bounded, the
error characteristic model of the system can be expressed
with the following 2–order difference equation,

e(k+1) = f1(k)e(k)+f2(k)e(k−1)+g0(k)v(k)+g1(k)v(k−1),
(6)

where g0(k) = −g1(k) + O(△t) is slowly time varying,
O(△t) represents the high–order infinitesimal term of the
sampling time, and e(k) = y(k) − r(k) and v(k) is the
bounded sampling control.

For the minimum–phase system, in general the error
characteristic model is chosen as follows:

e(k + 1) = f1(k)e(k) + f2(k)e(k − 1) + g0(k)v(k). (7)

2.2 Control Object

The problem we study in this paper deals with the non-
linear system described by (1). The control objective is to
design a tracking control law which makes sure the output
of the nonlinear system follows a reference trajectory.

3. NONLINEAR CHARACTERISTIC MODEL–BASED
SMC

In this section, we introduce the characteristic model of
nonlinear systems and the SMC method based on this
model. The behavior properties of the closed–loop system
are described and discussed to illustrate the effect of
controllers. Simulations are presented.

3.1 Nonlinear Characteristic Model

In order to verify the possible intervals of nonlinear system
characteristic modeling, one example is given. For the sta-
ble nonlinear system, characteristic modeling simulation
is done with three kinds of control signals. Using Van der
Pol equation as the controlled plant, the nonlinear system
is

ÿ + (y2 − 1)ẏ + y = u. (8)

Since (8) can be rewritten as the form of (3), its character-
istic model can be described as the style of (4) after it is
discreted with sampling time △t = 0.005s. Suppose that
the control input u has the following three types:

(a) step signal: u(k) = 10,
(b) 0.2Hz sinusoid signal: u(k) = 10 sin(0.4kπ△t),
(c) 0.2Hz square wave signal: u(k) = 10sgn[sin(0.4kπ△t)].

Here we use the recursive least–square method to estimate
parameters. Set the forgetting factor λ = 0.97.

The simulation results in the steady state are listed in
Tables 1–3, where the first rows of errors are output
estimated errors before parameter estimation while the
second rows are output estimated errors after parameter
estimation.

Table 1: Simulation results with input (a)
1.9593× 10−9

Error −2.7173× 10−11

f1 1.9915 max 1.9958 min 1.9746
f2 −0.9916 max−0.9746 min−0.9958
g0 0.0026 max 0.0027 min 0.0026
g1 −0.0026 max−0.0026 min−0.0026
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Table 2: Simulation results with input (b)
−0.0048Error −0.0044

f1 1.9264 max 2.0083 min 1.9262
f2 −0.9748 max−0.9695 min−1.0490
g0 −0.2534 max−0.1800 min−0.2677
g1 0.2487 max 0.2611 min 0.1761

Table 3: Simulation results with input (c)
−0.0011Error −0.0009

f1 1.9687 max 2.0923 min 1.9796
f2 −0.9927 max−0.9852 min−1.0983
g0 0.0003 max 0.0005 min−0.0012
g1 −0.0004 max−0.0003 min−0.0011

3.2 Sliding Mode Control

To implement a sliding mode controller, it is necessary to
design a stable switching surface so that the sliding mode
can occur. Based on the nonlinear characteristic model of
system (1), the sliding mode are designed as

s(k) =

[
L1f̂1(k) + L2f̂2(k)

η1 | e(k) |µ +η2
− L2f̂2(k)

]
e(k)

+ L2f̂2(k)e(k − 1)

(9)

where L1 = 0.382 and L2 = 0.618 are golden section
coefficients, r(k) is the desired output, e(k) = y(k)− r(k),

and η1 > 0, η2 > 0, and µ are adjustable parameters. f̂1(k)

and f̂2(k) are the estimated values of the corresponding
coefficients in (5). The coefficients are estimated by the
gradient projection algorithm as follows:

θ̂n(k) = θ̂(k−1)+
λe1Φ(k − 1)

[
y(k)−Φ(k − 1)T θ̂(k − 1)

]
λe2 +Φ(k − 1)TΦ(k − 1)

θ̂(k) = Pro
[
θ̂n(k − 1)

]
(10)

where Φ(k − 1) = [y(k − 1), y(k − 2), u(k − 1)]
T

and

θ̂(k) =
[
f̂1(k), f̂2(k), ĝ0(k)

]T
. The positive constants λe1

and λe2 satisfy 0 < λe1 < 1 and λe2 > 0, respectively.
Pro[x] represents the orthogonal projection from x to the
bounded closed convex set. According to Tables 1–3 we
obtains {

1.95 ≤ f̂1 ≤ 2,−1 ≤ f̂2 ≤ −0.95
ĝ0 ∈ (g0min, g0max) .

(11)

Defining

Kp (k, e(k)) = kp(k) [η1 | e(k) |µ +η2]
−1

kp(k) = L1f̂1(k) + L2f̂2(k)

kd(k) = −L2f̂2(k),

(12)

then the nonlinear characteristic model–based sliding
mode (9) can be represented as

s(k) = Kp (k, e(k)) e(k) + kd(k) [e(k)− e(k − 1)] . (13)

Moreover, the nonlinear characteristic model based SMC
law is

u(k) =

{
(−ρs(k)−

[
C1(k)f̂1(k)− C2(k)

]
e(k)

− C1(k)f̂2(k)e(k − 1)− ϑsgn [s(k)]

}
/{[

C1(k)f̂1(k)− C2(k)
]
ĝ0(k)

}
,

(14)

where ρ and ϑ are positive constants, C1(k) = Kp(k, e(k))+
kd(k), and C2(k) = kd(k).

Theorem 3. If the error characteristic model of system (1)
can be expressed with (7), under the control law (14),
the tracking error of system (1) converges to zero with
ϑ

1−ρ < |s(k)|.

Proof. Choosing Lypapunov function V (k) = 1
2s(k)

2, the
behavior of s(k) can be prescribed as

s(k + 1) = C1(k + 1)e(k + 1) + C2(k + 1)e(k). (15)

Substituting (7) and (14) into (15) yields

s(k + 1) =− ρ
C1(k + 1)

C1(k)
s(k) +

C1(k + 1)

C1(k)
C2(k)e(k)

− C2(k + 1)e(k)− ϑ
C1(k + 1)

C1(k)
sgn [s(k)] .

(16)

According to Wu et al. [2001] , Kp (k, e(k)) and kd(k) are

bounded and f̂1(∞) and f̂2(∞) barely vary when k > N .
Then we obtain

s(k + 1) = −ρs(k)− ϑsgn [s(k)] (17)

and
[s(k + 1)− s(k)] sgn [s(k)] = (−1− ρ)|s(k)| − ϑ < 0,

[s(k + 1) + s(k)] sgn [s(k)] = (1− ρ)|s(k)| − ϑ > 0.
(18)

Hence the control law (14) makes (9) converge to zero in
finite time. Observing s(k) = 0 in sliding phase, it follows
that

e(k) =
C1(k)

C1(k) + C2(k)
e(k − 1). (19)

Substituting (11) into(12),we have C1(k) > 0 and C2(k) >

0, which result in 0 < C1(k)
C1(k)+C2(k)

< 1. Thus the error

converges to zero, which completes the proof.

3.3 Simulation Results

In this part, we give the simulation results of the proposed
method to verify the effectiveness and performance of the
designed controller.

For the nonlinear system (8), the output is expected to
track a desired signal r. Traditionally, we take s = ch1ė+
ch2e as the sliding mode and u = −T sgn(s) as the
controller. The simulation result in Fig. 1 shows the control
effect loses stability. Then we choose the nonlinear sliding
mode as shown in (9) and u = −T sgn(s) as controller. Fig.
2 shows that the designed sliding mode can solve tracking
problem but the tracking error has chattering due to the
controller. The designed controller in this paper, however,
as shown in Fig. 3, insures the fast maneuver and stability
without chattering. The phase phase of designed sliding
mode and controller is shown in Fig. 4, which shows that
the sliding mode and the tracking error can converge to
zero.
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Fig. 1. The linear sliding mode controller with ch1 = 5,
ch2 = 1, and T = 15,
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Fig. 2. The nonlinear sliding mode and u = −T sgn(s) with
η1 = 10, η2 = 1, µ = 2, and T = 15.
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Fig. 3. The nonlinear sliding mode and the designed
controller with η1 = 10, η2 = 1, µ = 2, ρ = 0.8,
and ϑ = 1× 10−4
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Fig. 4. Sliding mode and output error phase plane

Remark 1. The proportionality coefficient Kp (k, e(k)) is
related to kp(k) and varies with e(k). Adjustable param-
eters µ, η1, and η2 are related to control performance.
Usually, the dynamic process performance of the overall
system can be improved as η1 grows, but it will cause
vibration in the steady state. The growth of η2 suppresses
the vibration whereas reduces the dynamic process perfor-
mance in the meantime. Therefore, how to determine the
value of η1 and η2 is the key question of the SMC based
on the nonlinear characteristic model.

4. SATELLITE ATTITUDE CONTROL

The application of the nonlinear characteristic model–
based SMC to the three–axis stabilized complex satellite

with large flexible solar panels is investigated in this
section.

4.1 Kinematics model of satellite

Reconnaissance the satellite is usually treated as a rigid
body with many flexible structures. The dynamics model
of satellite and vibration model of solar wings are (see Kim
et al. [2004])

I sω̇s + ω×
s I sωs + F saη̈sa = TT (20)

η̈sa + 2ξsaωsaη̇sa + ω2
saηsa + FT

saω̇s = 0 (21)
where ωs = [ωx, ωy, ωz]

T ∈ ℜ3×1 is the angular
velocity, I s ∈ ℜ3×3 is the rotational inertia of satellite,
TT ∈ ℜ3×1 is the aggregate external torque, ηsa ∈ ℜm×1

is the vibration modal coordinates array of solar wings,
ωsa ∈ ℜm×m is the modal frequency matrix of solar wings
vibration, ξsa is the vibration damping ratio of solar wings,
and F sa ∈ ℜ3×m is the coupling coefficient matrix between
wings and body. Define ω×

s as

ω×
s =

[
0 −ωz −ωy

ωz 0 −ωx

−ωy ωx 0

]
. (22)

Quaternion are generally used in the on-board attitude
presentation, which are defined by

q0 = cos(
α

2
), q = [γ1 sin(

α

2
), γ2 sin(

α

2
), γ3 sin(

α

2
)]T

(23)

where [γ1, γ2, γ3]
T
is the principle axis from the current

attitude to the reference attitude and α is the principle
angle. Kinematics model is established referring to the
aforementioned frame and quaternion:

q̇ =
1

2
(q× + q0I )ωs, q̇0 = −1

2
qTωs. (24)

4.2 Design of Controller

Define

x =
[
q0, qT , ηT

sa, η̇T
sa, ωT

s

]T
, u = TT (25)

and take 5–order vibration modal of solar wings. The
system (20), (21), and (24) can be rewritten as:

A1ẋ = A2(x) +Bu (26)

where

A1 =


1 O1×3 O1×5 O1×5 O1×3

O3×1 I3×3 O3×5 O3×5 O3×3

O5×3 O5×3 I5×5 O5×5 O5×3

O5×1 O5×3 O5×5 I5×5 FT
sa5×3

O3×1 O3×3 O3×5 Fsa3×5 Is3×3



A2(x) =


−1

2
qTωs

1

2

(
q× + q0I

)
ωs

η̇sa

−2ξsaωsaη̇sa − ω2
saηsa

−ω×
s Isωs

 , B =


O1×3

O3×3

O5×3

O5×3

I1×3

 .

According to Wu et al. [2001], since (26) can be rewritten
as the form of (3), the characteristic model of the system
(26) is chosen as follows:

qi(k + 1) = f1i(k)qi(k) + f2iqi(k1) + g0i(k)ui(k), (27)

where 1.95 ≤ f1i ≤ 2, −1 ≤ f2i ≤ −0.95, g0min ≤ g0i ≤
g0max, and i = 1, 2, 3. The coefficients estimated by the
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gradient projection algorithm have been shown in Section
2.

The sliding modes are designed as

si(k) =

[
L1f̂1i(k) + L2f̂2i(k)

η1i|ei(k)|µ + η2i

]
ei(k)

+ L2f̂2i(k)ei(k − 1),

(28)

where qri(k) are desired quaternion, ei(k) = qi(k)−qri(k),
and i = 1, 2, 3.

Accordingly, the controllers are depicted as

ui(k) =

{
(−ρsi(k)−

[
C1i(k)f̂1i(k)− C2i(k)

]
ei(k)

− C1i(k)f̂2iei(k − 1)− ϑsgn [si(k)]

}
/

{[
C1i(k)f̂1i(k)− C2i(k)

]
ĝ0i(k)

}
,

(29)

where C1i(k) = Kpi(k, ei(k)) + kdi(k), C2i(k) = kdi(k),
and i = 1, 2, 3.

4.3 Numerical Simulations

The designed controller is applied to a sun synchronous
orbit satellite. The main parameters of the flexible satellite
can be described as:

Is =

[
6393.31 26.95 −21.09
26.95 4737.30 1868.48
−21.09 1868.48 8361.13

] (
kg ·m2

)
,

ωsa = diag(1.02, 1.24, 1.92, 2.86, 3.88)(rad/s),

ξsa = 0.005.

There is a solar panel control problem for a sun syn-
chronous orbit satellite, which has one degree freedom
single solar panel driven by a constant velocity to point to
the sun. Due to this problem, coupling coefficient matrix
between wings and body is time varying as follows:

Fsa = CT (θ)Fs0.

where

C(θ) =

[
cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

]
,

FT
s0 =


0.335908 18.3213 −20.8864

−0.0100547 −20.8362 −26.3452
−29.7119 0.0752216 0.561621
20.0637 −0.364224 −0.790376
0.0240133 10.2219 27.968

 .

The closed system logic structure is shown in Fig. 5.

In this simulation, the initial quaternion value is set to

q = [0.0245, 0.28422, 0.3853]
T
. The final target quater-

nion value is q = [0, 0, 0]
T
. For the sliding mode, the

parameters are µ = 1, η1 = 50, and η2 = 0.2. The
parameters of controller are tuned as ρ = 0.8 and ϑ = 1×
10−4.

First we consider the rotational inertia of satellite as Is.
The simulation results are shown in Figs. 6–9.

The simulation results show that convergent times of
three–axis are very close. Maneuvering angles are 5◦, 30◦,

Fig. 5. Control logic block diagram for satellite
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and 50◦, respectively. The rapid maneuvering performance
and pointing accuracy are significantly improved. The
interference of the solar wings vibration with pointing to
the sun is suppressed. As can be seen from the phase
plane in Figs. 10–12, the nonlinear characteristic model
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based sliding mode and the controller demonstrate a faster
convergence and better robustness compared to Zhou et al.
[2013].
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Fig. 11. The sliding mode and tracking error of the second
channel
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Fig. 12. The sliding mode and tracking error of the third
channel

Then the rotational inertia of satellite is considered as
1.5Is and 0.5Is, respectively. The simulation results in
Table 4 illuminate that although there has high uncer-
tainty of the satellite, the proposed controller can provide
a satisfactory tracking result.

Table 4: Simulation results

Rotational inertia 1.5Is 0.5Is
Maneuvering performance 27s 29s

Pointing accuracy 0.005◦ 0.005◦

Stable performance 25s 23s
Attitude stability 0.001◦ 0.001◦

5. CONCLUSION

A nonlinear sliding mode for SMC based on the character-
istic model has been proposed in this paper. The proposed
controller has been used for controlling a class of nonlinear
systems to track the desired signal and guarantee the sta-
bility. We have shown that the benefit of the nonlinear s-
liding mode surface has possibly improved the convergence
and robustness of the systems. This has been illustrated on
a real application satellite model. The simulation results

have been presented to confirm the effectiveness of the
controller.
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