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Abstract: The frequency locking of optical cavities in the physics community has been
traditionally performed using classical controllers. This approach works well as long as the
system is not operating far from its linear region of operation. An optical cavity is however
a highly nonlinear system and problems arise when it is affected by large disturbances. In
this paper, we model the non-linearities arising in such an optical system and propose an
extremum seeking controller to frequency lock the optical cavity. Simulation results are presented

to validate the proposed scheme.

1. INTRODUCTION

The frequency locking problem arises in almost every
quantum optics experiment. Optical cavities need to be
stabilized before anything useful can be done (quantum ex-
periment can be performed). The more stable the cavity is,
the greater will be the sensitivity of the experiment. One of
the most promising applications where frequency locking is
of absolute importance is the interferometric gravitational
wave detector (GWD) which requires a sensitivity of the
order of 107%%; see Aufmuth and Danzmann [2005]. It is
believed that gravitational waves generated by extremely
heavy celestial bodies can be strong enough to bend space
and hence change the distance between two fixed points
miles away by the minutest of amount. The role of the
GWD is to detect this drift when it happens.

Traditionally, the Pound-Drever-Hall (PDH) (see Bachor
and Ralph [2004]) approach is widely used in the physics
community to achieve frequency locking in optical cavities.
However, the approach has its limitations in that it works
well as long as the system is operating close to resonance
but it breaks down when the difference between the laser
frequency and the resonant frequency of the cavity is too
large. The difference between the laser frequency and the
resonant frequency is regulated by controlling the position
of a piezo-electric actuator which is glued to one of the
cavity mirrors; see Figure 1. The cavity system comprises
of a mechanical subsystem made up primarily of a piezo-
electric actuator and an optical subsystem corresponding
to the optical cavity. The two subsystems possess widely
different time constants and this feature of the system al-
lows the cavity system to be modeled as a linear dynamical
system followed by a static nonlinearity. To circumvent
this problem which arises when the difference between
the laser frequency and the resonant frequency of the
cavity gets too large, a time-varying Kalman filter which
takes into account the inherent nonlinearities of the system
was designed, successfully implemented and tested on a
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dSPACE system. Experimental results of this work are
due to appear but simulation results of this work can be
found in Sayed Hassen and Petersen [2010].

Optical cavities however have dynamics which can vary
greatly with time. In particular, the nonlinearity present
can change drastically with variations in temperature,
humidity and to the slightest external mechanical distur-
bance. While the time-varying Kalman filtering approach
in Sayed Hassen and Petersen [2010] works well as long as
the nonlinearities are accurately modeled, the approach
shows its limitations with changing parameters within
the optical cavity. Moreover, the approach suffers from
numerical problems as the order of the polynomial used
to model the nonlinearities becomes too high. Also, the
dynamical order of the linear part of the system has to be
kept at a minimum to minimise computing time.

In this paper, we propose to use the extremum seeking
control (ESC) approach which does not require explicit
knowledge of the nonlinearity present in the system. Ad-
ditionally, the only requirement for the approach to work is
that an extremum exists. For the problem under considera-
tion, the extremum occurs at the resonant frequency of the
optical cavity. Given that the nonlinearity is ever changing,
with this approach, the controller does not need to keep
track or regulate about a given set point or value. Instead,
the controller tracks a varying maximum of a performance
output (in this case the transmittance output signal) and
stabilizes the system at that extremum. The extremum
seeking approach is in fact based on the premise that if the
changes in the optimal reference occurs over a sufficiently
long time interval, it is reasonable to assume that the
system is static which in turn reduces the problem to
that of an optimization problem; see Zhang and Ordoénez
[2007]. The stability properties of the approach has been
an issue of concern for some time and resulted in sparse
applications of ESC. Local stability properties of a class of
extremum seeking algorithms were proven for the first time
in Krsti¢ and Wang [2000] using averaging analysis and
singular perturbation, resulting in a new impetus being
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given to the approach and in a series of application papers;
see, e.g., Tunay [2001]; Peterson and Stefanopoulou [2004];
Guay et al. [2004]; Banaszuk et al. [2004]; Li et al. [2004].
More recently, semi-global stability results were obtained
by Moase and Manzie [2012].

The paper is divided as follows: in the next section, the
operation of an optical cavity is briefly explained. The
mathematical model of the optical cavity is derived in
Sec. 3 and the repetitive nature of the cost function is also
demonstrated. The problem is stated in Sec. 4 and the
basis of operation of the extremum seeking scheme as well
as the reasoning behind the choice of the ESC parameters
is explained in Sec. 5. Simulation results are presented in
Sec. 6 on a perturbed system under realistic conditions
before we conclude.

2. OPTICAL CAVITY OPERATION

One of the most well known types of optical cavity is
the Fabry-Perot cavity (see Bachor and Ralph [2004])
which is formed by two partially transmitting mirrors
facing each other and which are spaced apart by large
distances compared to the size of the mirrors. The mirrors
are curved in such a way that the desired optical modes
(transverse modes) set-up inside the cavity are well-defined
with smooth and regular transverse patterns; see Siegman
[1986]. The two waves traveling in the forward and re-
verse direction in a Fabry-Perot cavity set up an optical
standing-wave which has a periodic spatial variation along
the axis of the cavity with a period equal to one-half the
optical wavelength. Depending on the length of the cavity,
the plane waves propagating inside the cavity interact
constructively resulting in stable optical modes and in
a resonant mode, or destructively giving rise to unstable
optical modes. The resonant frequency of an optical cavity
depends upon its optical path length. The optical path
length is usually modified by using a piezoelectric actuator
attached to one of the mirrors of the cavity. In this way,
the piezoelectric actuator adjusts the detuning variable A.
Our aim is to frequency lock an optical cavity to a free
running laser.

3. CAVITY MODEL

A schematic of the frequency stabilisation system is de-
picted in Figure 1. The laser mode b of frequency wy is

isolator cavity b1,out
laser -—
b by
piezo
b u
out bL,out bL

Fig. 1. Cavity locking feedback control loop.

modelled by a boson field b = 8 + by where ( is a real
number (without loss of generality) and by is a vacuum
field, a standard quantum Gaussian white noise with unit
variance; see Gardiner and Zoller [2000]. The cavity is also
coupled to two other optical fields: a transmitted mode by,
and a loss mode by,.

The cavity can be described in the Heisenberg picture by
the following quantum stochastic differential equations;
e.g., see Bachor and Ralph [2004]; Gardiner and Zoller
[2000]:

i=—(5 —iA)a— Vro(B + bo)

2
—\/E1b1 - \/ELbL; (1)
bout = \/an + 6 + bO; (2)
bl,out = \/Ela/ + b1~ (3)

Here, the annihilation operator for the cavity mode is de-
noted by a and the annihilation operator for the coherent
input mode is denoted by b = 3 + by, both defined in an
appropriate rotating reference frame (see Arnold [1989]),
where by is quantum noise. We write

K= kKo + K1+ KL (4)

where k represents the decay rate of the cavity and is
usually measured in hertz(Hz). ko quantifies the coupling
strength of the field by to the cavity. Similarly, x; and K,
quantify the strength of the couplings of the optical fields
b1 and by, to the cavity respectively.

A denotes the frequency detuning between the laser fre-
quency and the resonant frequency of the cavity. The ob-
jective of the frequency stabilisation scheme is to maintain
A = 0. The detuning is given by

A=f.—fL fr, (5)

_c
N an
where f. is the resonant frequency of the cavity, f7, is the
laser frequency, nL is the optical path length of the cavity,
c is the speed of light in a vacuum and ¢ is a large integer
indicating that the ¢'" longitudinal cavity mode is being
excited.

The cavity locking problem is formally a nonlinear control
problem since the equations governing the cavity dynamics
in (2) contain the nonlinear product term A a.

8.1 Modelling

We continuously measure a quadrature of the laser field
reflected by the cavity b,,; using homodyne detection, pro-
ducing a classical electrical signal y;. The second measure-
ment y» is obtained from by ,,; and represents the trans-
mitted light intensity (transmittance) from the cavity.
The signal y; is measured using the standard homodyne
detection method and includes a sensor noise v;. Similarly,
Y2 is measured using a photodiode and includes a sensor
noise vy. Figure 2 shows a block diagram of our system.
The detuning A representing the difference between the
cavity’s resonant frequency from the laser frequency fr,
is generated by the mechanical subsystem represented by
the HV-amplifier and the piezoelectric actuator. The other
noises that enter the optical cavity are the quantum noises.

We model the measurement of the Xy quadrature of by
via homodyne detection by changing the coupling operator
for the laser mode to \/Eoe_wa, and measuring the real
quadrature of the resulting field. The two output signals
are respectively given by:

11788



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Mechanical Measurement
Noise Quantum Noises Noises

B — T

|
| + HV amplifier

li—» O» + P A Optical
Lt Piezo—Electric Cavity
' System

Fig. 2. Block diagram of the cavity system.
gl = eii(ﬁbout + eid)bT

out

= Vro(e a+ ea’) + 28 cos é + qo;
Y2 = bi)outbl,out

=riata+ /ri(aby +b4{a) +biby; (7)

where qo = e by + ewbg is standard Gaussian white
noise. The cavity dynamics can then be expressed in state-
space form in terms of the amplitude and phase quadrature

(6)

—-A

variables as follows:
K
ql_1| 2 q| cos¢ sing qo
HE R IHR Rl
2
- 10 a1 _ 10 qr _ 2ﬁ Y]
o8] [ ] - [ ][
_ ; q q0
y1 = kov/ko [ cos ¢ sing | {p] +ka[10] {po}
+ 2ko 8 cos ¢ + 01;
A L) 2 Vi q1 ~
=ky| — ~— .
Yo 2<4(p +q¢°) + 5 [QP]{pJ>+v2
Here, y; is the output of the first sensor in which we have
included the noise term v; and k5 is the trans-impedance
gain of the homodyne detector. Similarly, yo represents
the measurement of the transmitted light intensity which
includes the sensor noise vy and ks is the sensor gain of
the associated photodiode.
3.2 Separation of time-scale approach to nonlinearity
modeling

With the detuning variable A treated as an input signal
in (8), this system is clearly nonlinear. The system (8)
only behaves linearly when the variations of A about the
linearised operating point are small. Under such circum-
stances, we can use linear control design techniques to
control the system; see Sayed Hassen et al. [2009]. In
the more general case, the detuning variable A is not
necessarily small. In fact, it tends to be quite large and
the linear control techniques discussed previously turns
out to be inappropriate. In this section, we investigate the
nonlinear behaviour of the measurement signals. Ignoring
the noise terms qo, po, q1, p1,qr and py, in (8), we can write

(8)
p= —gp+qA. 9)

In most problems of interest, the optical cavity has a very
large value of k, implying that it has a large bandwidth

. K
¢=-50- PA — 2/kKof3;

and is a very fast system compared to the mechanical
subsystem. This feature allows for a decomposition of
the system into stages that are dictated by a separation
of time-scales. The end result is then a reduced model
representing the dominant slowest phenomena together
with a “boundary layer” model which evolves much faster
and which represents deviations from the predicted slow
behaviour. We use this approach to represent the optical
cavity as a “boundary layer” model that acts like a static
nonlinearity on A.

To determine the characteristics of this static nonlinearity,
we set ¢ =p =0 in (8) and (9) and obtain

- -5 A 1[2\/?06]__[2%%]
P A B 0 B+ Az

2

s

For the case when ¢ = § in (8), the two measurements

available can then be written as:

Y1 = ka+/Kop + 2k2 8 cos ¢ + vy
ko Brio A

RO

yo = k3(p® + ¢*) + vo
_ ksB%ko
= o AT

+v1 = fi(A) + v1; (10)

+ vy = fQ(A) + vo. (11)

Here, we have combined all the noise terms together such
that:

3 .k 1-
U1 :U1+/€2QO;02:112+§2\/F&1[Q p] {gﬂ ks = Zkzﬁy

Using typical experimental values for the parameters of the
optical system (see Table 1), the plots shown in Figure 3
were generated to show the nonlinear effect of the detuning
variable A on the measurement signals y; and ys.

H Simulation parameters ‘ Value ‘ Units H
B 7% 107 Hz
K 1 x 10° Hz
KO 1 x 10* Hz
ko 5x107% | V/Hz
k3 8 x 107° \%

Table 1. Optical Cavity Model and Sensor
Parameter Values.

It is clear from Figure 3 that maximum transmission
occurs when the detuning variable A is zero. This occurs
when the frequency of the laser’s electromagnetic field is
equal to the cavity’s free spectral range (FSR) = ¢/2L.

4. PROBLEM STATEMENT

We consider the general problem of finding an extremum
(minimum or maximum) of a nonlinear function. Let the
system under consideration be described by the following
nonlinear equations:
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Variation of phase quadrature p with A
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Fig. 3. Behaviour of the nonlinear measurement functions

f1(A) and fo(A) with large variations in A.

where z € R" is the state, u € R is the input, y € R is
the measured output as well as the performance output.
f:R*x R — R"” and J : R®” — R are smooth functions
and are in general unknown.

The aim is to design a controller to minimize (or maximize)
the unknown function J(x) or y and therefore minimize the
performance output. The controller will use information
from the performance output J(x) and/or the gradient
VJ(x) to regulate the state = in finite time through the
control input u, to eventually minimize the performance
output. This controller exists if and only if (12) is con-
trollable. The extremum seeking control problem is then
posed as:

min J(x), subject to & = f(x,u).

rER™ (14)

5. EXTREMUM SEEKING CONTROL

In Tan et al. [2010], ESC is defined as a “form of adaptive
control where the steady-state input-output characteristic
is optimized, without requiring any explicit knowledge
about this input-output characteristic other than it exists
and that it has an extremum.” The approach has seen
a resurgence in popularity recently as a result of a new
stability analysis in Krsti¢ and Wang [2000]. Numerous
engineering problems which are inherently nonlinear and
have either a local minima or maxima are potential can-
didates for the application of extremum seeking control.

For the optical cavity under consideration, we have shown
that it can be conveniently modeled as a Hammerstein
model, a model which is widely used to represent nonlin-
ear dynamical systems. The system is broken up into 2
blocks, consisting of a linear dynamical block followed by
a static nonlinearity. The continuous-time implementation
of extremum seeking control applied to the optical cavity
is depicted in Figure 4.

We will be using the measurement ys (transmittance)
which is obtained from the static nonlinear block f2(z) and
which is assumed to have a maximum f3(z). The proposed
extremum seeking control scheme will tune the plant input
u such that fo(z) is maximized. From Figure 4, the plant

_______________ Y2
PLANT
U

i o S X

- ks |« + |[<*— LPF HPF |
I I
I I
I I
I I
| ki [ > ko |
I I
I I
I
| Q@ asin(wt) :
\ )

CONTROLLER
Fig. 4. Block diagram of the controlled system

input u is a superposition of a sinusoidal dither and a
mean part @. Moreover, by multiplying the plant output
by the dither, we obtain a quantity, which in an averaged
sense, is approximately proportional to the gradient of the
input-output map f4(-). This information is then used by
a gradient descent/ascent law to drive 4 towards the input
that maximises f(-).

The purpose of the high pass filter is to isolate the
variations of the measurement y, from the average value
and to only preserve the perturbation. The resulting signal
is then modulated by the same excitation (dither) signal
(asin(wt)), which picks the component of the filtered signal
with the same frequency w as the probing signal. The
resulting signal is then low pass filtered and is used as
a measure of the gradient of the input-output map. An
integral controller then determines the average component
of the control signal that is to be fed to the plant to drive
the estimated gradient to zero. The estimated gradient
goes to zero when a maximum is reached in this case.
If the high pass filter filter and the low pass filter are
described by the first order transfer functions wtjsj-l and
Srfu - respectively, then the extremum seeking control law
in Figure 4 can be written as:

K= =X (15)
W

¢ =ko - asin(wt) - x; (16)

§=—£+wid; (17)

1= ks & (18)

S =
Il

=u+ ky - asin(wt).

An analysis of the stability of extremum seeking control
was first rigorously performed in Krsti¢ and Wang [2000]
where local stability of a system with fairly general nonlin-
ear dynamics was proven using averaging techniques and
singular perturbation. In Tan et al. [2006], the results were
extended to semi-global stability under stronger condi-
tions. The approach however relied on having a slow dither
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relative to the dynamics of the plant, which can result
in very slow convergence. More recently, in Moase and
Manzie [2012], this problem was investigated and semi-
global stability results were obtained using a dither of
arbitrary frequency on a class of SISO Hammerstein plant
with fairly arbitrary nonlinearity.

5.1 Extremum seeking controller parameters

From Figure 4, it is clear that extremum seeking algo-
rithms rely on a few design parameters. The performance
of the scheme is linked with these parameters. Measures of
performance could be (but not restricted to) the speed of
convergence, the domain of convergence and the accuracy.
Next, we explain the basis behind the choice of these
parameters to meet these performance indicators.

Dither The “dither” or excitation signals employed in
extremum seeking schemes in the literature generally
tend to be sinusoidal. Other types of dither may work
equally well or even better. It is argued in Tan et al.
[2008] for example that square waves provide faster con-
vergence than sinusoidal or triangular waves of the same
amplitude and frequency. The reasoning behind this
being simply that square waves yield larger normalized
power.

Frequency A faster excitation frequency w results in
faster convergence. However, it should not be so fast to
be completely attenuated by the dynamics of the plant,
resulting in the extremum seeking scheme being driven
by noise rather than the dither.

Gain The amplitude of the dither signal should be chosen
so that it is small compared to # as it only over '
the control signal. A small dither signal will ensure
the cost function does not oscillate too much abo
optimal value once that value has been reached.

Integrator gain The gain of the integrator ks amj
the average component of the control signal tk
applied to the plant.

High Pass Filter The high pass filter only allows »
tions beyond a certain frequency range in the sigr
to pass through.

Low Pass Filter The low pass filter only allows th
frequencies (average values) to be integrated.

Ideally, one would expect the time-constant of the
pass filter to be larger than that of the low pass filte
the period of the dither to be in between the two v
Moreover, the excitation signal should be small com;
to the integrator gain.

6. SIMULATION RESULTS

For the frequency locking cavity problem, we have chosen
the parameters of the controller as shown in Table 2: The
linear part of the plant is assumed to be a second order
system with transfer function

3.38 x 107
§2 + 742.9s + 7.193 x 107’
and its Bode plot is represented as shown in Figure 5.

P(s) =

The simulink block diagram used for simulation is shown
in Figure 6. Both the phase quadrature y; and the trans-
mittance yo as represented by (10) and (11) respectively

H Parameters Value H

a 1x 101!
w 7 x 108
k1 2x 1071
ko 5

ks 6 x 103
wh 1x10?
wy 1 x 102

Table 2. Extremum seeking controller para-
meter values.

Bode Diagram

From: Input To: Output
T

Magnitude (dB)

Phase (deg)
)
S

|

@

&
T

-180= L
10° 10" 10°
Frequency (rad/s)

Fig. 5. Bode plot of the linear dynamics of the cavity

are measured, but only y, is used to control the system.
White noises are also included in both measurements. We

Band-Limited
White Noise2

Detuning
Generate y_1

Generate y_2

State-Space

1000s

1000s+1
Transfer Fen1

Band-Limited
White Noise1

0.01s+1
Integrator Transfer Fon

Gain Product

Fig. 6. Simulink block diagram

initiate the system away from lock at a detuning of 0.1
MHz and allow the extremum seeking controller to seek
the extremum of ¥, and to lock onto the value. Then a step
input of magnitude 5 volts is applied at the input of the
plant at the time ¢ = 0.2 second to simulate a disturbance.
The response of the system is observed. Figure 7 shows the
time response of the two measurement signals. It is clear
that the extremum seeking control algorithm is successful
in bringing the perturbed system back into lock after it has
been pushed well outside its linear region of operation.
The phase quadrature y; is brought back to zero while
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the transmittance signal reaches its peak value about 0.5
seconds after the disturbance. It can also be noted that
the algorithm used is quite aggressive in that it pushes the
signal y» beyond its peak value before bringing it back.
The corresponding detuning and control signal are also
shown in Figure 8

Phase quadrature (V)

0.3 0.4 0.5

Transmittance (V]

"
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time(s)

Fig. 7. Measurement signals y; and s

Detuning (MHz)

I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time(s)

Control signal (V)

i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time(s)

Fig. 8. Detuning A and control signal u
7. CONCLUSION AND FUTURE WORK

We have successfully applied the extremum seeking control
approach to the frequency locking problem of a Fabry-
Perot optical cavity. The nonlinearities arising in an opti-
cal cavity are derived using a singular perturbed approach
and the overall system is represented as a Hammerstein
model. The linear part of the model is reasonably ap-
proximated by a second-order system, with a resonant
frequency at around 1300 Hz. The parameters of the ex-
tremum seeking controller are chosen on the basis of a
series of performance requirements and indicators and the
system was simulated with a relatively large disturbance
introduced to push the cavity into its nonlinear region
of operation. The controller was effective and prompt in
bringing the system back into frequency lock. Work is in
progress to implement the proposed control scheme on an
experimental test bed and promising initial results have
already been obtained.
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