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Abstract: Variable Stiffness Actuators (VSA) are currently being regarded as promising
actuator types in robotics research especially due to their capability to store potential energy
in their elastic elements and to control this energy by altering the elastic properties of these
elements. The controllable potential energy enables these actuators to outperform their rigid
counterparts especially when realizing fast explosive motions. Most of joint designs with VSA’s,
however, are described by nonlinear deflection-torque relations and consequently a thorough
analysis regarding their maximum attainable performance is difficult. In this work, we tackle
this problem by using Pontryagin’s Minimum Principle and develop a general method to solve
the optimal control problem of minimizing any given terminal cost for these joints. In other
words, we show the optimal control strategies to alter VSA’s elastic properties for various tasks
such as maximization of the final link velocity or time-optimal tracking, which are all found to
depend on the change of the system’s potential and kinetic energy relative to its total energy.
The application of the method is illustrated for VSA’s with adjustable linear and cubic springs,
where the potential energy stored in the springs is maximized at a given final time.

1. INTRODUCTION

Inspired by the variable joint stiffness of humans, Variable
Stiffness Actuators (VSA) have become a major research
field in robotics. Consequently, the number of joint de-
signs with VSA’s are increasing vastly (van Ham et al.
[2009]). Using compliant elements to connect the links to
the motors as done in these designs provides significant
advantages. First of all, safer robots can be realized by
decoupling the rotor inertia from the links to decrease the
impulse a human operator will experience at a collision
(Bicchi and Tonietti [2004]). Secondly, decoupling the ro-
tor inertia improves the robustness of these systems, es-
pecially in case of unforeseen impacts. Indeed, the impact
energy can be absorbed by elastic elements of VSA’s and
this prevents the system from being damaged in contrast
to stiff robots, where impacts mostly lead to failure of these
systems particularly when the motor is connected to the
link using gear trains (Pratt and Williamson [1995]). A
good example for this increased robustness is the DLR
Hand Arm System, which is shown to stay undamaged
after being hit with a baseball bat (Wolf et al. [2011]).
Finally, making use of the stored energy in the elastic
elements, the performance of robots with VSA’s can signif-
icantly be increased. In this paper, we will mainly investi-
gate this last property and try to find the control strategy
that maximizes the performance of these actuators.

Numerous works already exist demonstrating the perfor-
mance gain of joints with VSA’s for different motion types,
see for ex. Braun et al. [2011], Garabini et al. [2011], Had-
dadin et al. [2012a,b], Nakanishi and Vijayakumar [2012].
Most of these works use Optimal Control (OC) Theory
as a mathematical tool, but they either rely on numerical
methods which prevents us from finding a clear physical
interpretation of the resulting control strategy or assume
simple adjustable linear deflection-torque relations, which
is mostly not a valid assumption in real applications. In-
deed, for most of the existing joint designs the elastic joint
torque in VSA’s are represented by adjustable nonlinear
functions (Eiberger et al. [2010], Wolf and Hirzinger [2008],

Motor M
KJ(φ, u)

θ =const. q(t)

Fig. 1. Joint Model with Variable Stiffness Actuator

Wolf et al. [2011]). In this work, we will focus on this
nonlinear deflection-torque relation and make use of Pon-
tryagin’s Minimum Principle to discuss how to optimally
adjust it to maximize the joint’s performance.

The paper is organized as follows. In Section 2, we in-
troduce the joint model with the VSA and define our
OC Problem, which consists of only a terminal cost in
order to have a control strategy that fully exploits the sys-
tem dynamics. Section 3 provides necessary conditions for
the corresponding OC by applying Pontryagin’s Minimum
Principle and clarifies the dependence of the control on the
system’s states and costates. Using these necessary condi-
tions, we then develop in Section 4 a general method to
construct the optimal control trajectory, where we describe
all the resulting terms using physical quantities to gain a
physical understanding. Finally, in order to illustrate how
to use the method and also to see how nonlinearities affect
the resulting strategy, we investigate the OC strategy to
maximize the potential energy in two different VSA’s con-
sisting of adjustable linear and cubic springs, respectively.

2. PROBLEM FORMULATION

In this paper, we investigate elastic joints consisting of
one link, one fixed motor and finally a VSA that connects
the link to the motor, see Figure 1. The joint torque τJ
in the spring, which acts on both the motor and link,
depends not only on the angular deflection φ but also on
the torque profile that can vary due to VSA. We let the
elastic joint torque τJ to be directly controlled such that
it is constrained between two continuously differentiable
functions of the angular deflection τJ,1, τJ,2 with
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Fig. 2. Controllable Elastic Joint Torque in the VSA

τJ(φ, u) =
1

2
(τJ,2(φ) + τJ,1(φ)) +

u

2
(τJ,2(φ)− τJ,1(φ)) ,

(1)
where τJ,1 < τJ,2 holds for all φ > 0 and u ∈ [−1, 1] de-
notes the piecewise continuous control. The two functions
τJ,1 and τJ,2 will furthermore be assumed to be strictly
increasing and symmetrical with respect to the origin.
Figure 2 visualises one possible choice for τJ,1,τJ,2 and
the controlled torque τJ (φ, u). The dynamics of the joint
model illustrated in Fig. 1 can simply be described using
Newton’s second law with equation (1) as:

Mq̈ = τJ(φ, u), (2)

where M > 0 stands for the link’s mass of intertia, q
for the link position, θ = const. for the fixed motor
position, φ = θ − q for the angular deflection and finally
u for the control of VSA as already mentioned. Without
loss of generalization, we let the motor position θ = 0
and obtain the following first-order differential equations
which we need to apply Pontryagin’s Minimum Principle
(Papageorgiou [1996]):

f(u,x) := ẋ =

(

φ̇
q̈

)

=

(

−q̇
τJ(φ, u)

M

)

=

(

−x2

τJ(x1, u)

M

)

, (3)

where the state is given by x = (φ q̇)
T
. Note that,

with this particular choice of the states, we can easily
investigate the change of the potential energy as well as
the kinetic energy by merely looking at the evolution of
the states, since both are closely related. This property
will be useful when we later describe the optimal control
strategy in terms of physical quantities.

In order to fully define an OC problem, we need to choose
a cost functional, which is to be minimized by the optimal
control. As already mentioned, we want to find control
strategies that fully exploit the system dynamics. In other
words, we do not necessarily consider the way a final state
is reached. Consequently, we omit any running costs and
deal in this paper with cost functionals consisting of only
a terminal cost:

J(u) = ϑ(x(tf ), tf ), (4)

where the terminal cost ϑ(x(tf ), tf ) can be chosen accord-
ing to the investigated performance criterion. As we will
see, all the optimal controls minimizing a given terminal
cost need to satisfy similar necessary conditions, which is
why at this step we do not specify ϑ in more detail. In
the following section, we will make use of Pontryagin’s
Minimum Principle to derive these necessary conditions.

3. NECESSARY CONDITIONS

In order to apply Pontryagin’s Minimum Principle, we
need to first build the Hamiltonian H, which depends on
the system dynamics and the cost functional. For the given

system (3) and the cost functional (4) the Hamiltonian
becomes (Papageorgiou [1996]):

H = λTf = −λ1x2 + λ2
τJ(x1, u)

M
, (5)

with λ denoting the costates of the system. This particular
Hamiltonian H is known to be minimized by the optimal
control u∗ along the optimal trajectory x∗ and λ∗, so that
we have:

H(x∗,λ∗, u∗) ≤ H(x∗,λ∗, u), (6)

for all u ∈ [−1, 1]. Evaluating this inequality for the
Hamiltonian in (5) and using the torque relation for the
VSA in (1) we have:

λ∗
2 [τJ,2(x

∗
1)− τJ,1(x

∗
1)]u

∗ ≤ λ∗
2 [τJ,2(x

∗
1)− τJ,1(x

∗
1)]u.

(7)
According to the assumptions we had for τJ,1 and τJ,2, we
have then the following relations for u∗:

u∗ =







−1 x∗
1λ

∗
2 > 0

1 x∗
1λ

∗
2 < 0

singular x∗
1λ

∗
2 = 0

. (8)

The trajectory of the optimal angular deflection x∗
1 and

the optimal second costate λ∗
2 play thus a significant role

in determining the optimal torque profile. According to
Minimum Principle, the partial derivatives of the Hamil-
tonian with respect to x provide the system dynamics of
the costates (Papageorgiou [1996]):

λ̇ = −
∂H

∂x
=

(

−
∂τJ(x1, u)

∂x1

λ2

M
λ1

)

. (9)

In order to better understand the trajectory of the
costates, it is instructive to find a mechanical analog for
this particular set of first-order differential equations. Dif-
ferentiating the second row of (9) with respect to time and
using its first row, we can first obtain:

Mλ̈2 +
∂τJ(x1, u)

∂x1
λ2 = 0. (10)

Since ∂τJ (x1,u)
∂x1

= ( 1+u
2 )

dτJ,2
dx1

+ ( 1−u
2 )

dτJ,1
dx1

≥ 0 holds
for the strictly increasing functions τJ,1 and τJ,2 when
u ∈ [−1, 1], we can conclude that equation (10) describes
an elastic joint with a spring similar to the joint depicted
in Figure 1. Furthermore, the stiffness of this new joint

corresponds to the instantaneous stiffness ∂τJ (φ,u)
∂φ

of the

original joint described by (2). We will make more use of
equation (10), as we derive analytical expressions for the
costates. According to the necessary conditions (8), which
need to be satisfied by the optimal control u∗, Minimum
Principle does not give any information regarding the
optimal control strategy, if a singularity occurs. In order
to better understand when such a singularity can occur,
we turn our focus now to the singularity of u∗ and provide
conditions under which singular arcs can be ignored.

3.1 Singularity of the Optimal Control

The control u∗ will only be singular if x∗
1λ

∗
2 = 0 holds in

a finite time interval t ∈ [ts, ts + ε] with ε > 0. In order
for this product to remain at zero, x∗

1 = 0 or λ∗
2 = 0 must

hold in a finite time interval. We focus now on these two
possibilities.

If x∗
1 = 0, then ẋ∗

1 = −x∗
2 = 0 holds, as well. In this case,

x∗ is identically zero and the controls can not change the
system’s state since τJ(0, u) = 0 holds for any u. In other
words, x = 0 is an isolated point of the system (3) and
there is nothing to solve. Similar to the angular deflection
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x∗
1, λ

∗
2 can only stay at zero, if λ̇∗

2 = λ∗
1 = 0 holds. Since

λ = 0 is an isolated point for the costates as well, λ∗ will
then be identically zero.

The OC problems, which we will deal with in this paper,
will be restricted to those for which both x∗ and λ∗ are
not identically zero. Note that in the presence of this
restriction, we can still derive the optimal control strategy
in most cases, as Minimum Principle provides in general
non-zero boundary conditions of the costates at the final
time as follows (Papageorgiou [1996]):

(

δϑ

δx

∣

∣

∣

tf ,x
∗

f

+
δg

δx

∣

∣

∣

tf ,x
∗

f

ν∗ − λ∗(tf )

)T

δxf = 0, (11)

where g(x∗(tf ), tf ) = 0 ∈ R
l denotes any given end

constraints and ν∗ ∈ R
l a constant vector. For instance,

we have for the OC problem of maximizing the angular
deflection

J = −x1(tf )
(11)
⇒ λ∗(tf ) =

δϑ

δx

∣

∣

∣

tf ,x
∗

f

=
(

−1
0

)

6= 0, (12)

and our restriction is not violated. Once we derive the
equations needed to obtain the OC strategy, we will
investigate this particular OC problem for VSA’s with
linear and cubic torque profiles in detail (see Sec. 4.4).

To sum up, for OC problems where x∗ and λ∗ are not
identically zero, we now know that the optimal control u∗

will always take its minimum or maximum value along the
optimal trajectory. According to (8) we can then write for
the optimal control u∗:

u∗ = −sgn(λ∗
2x

∗
1). (13)

In the following section, we will make use of this bang-bang
property of the optimal control to derive the equations
that will yield the optimal trajectory.

4. CONSTRUCTING THE OPTIMAL TRAJECTORY

Since we constrain ourselves to OC problems with nonzero
x and λ, we know from the previous section, that u∗

is bang-bang. The optimal deflection-torque relation will
then switch between τJ,1(φ) and τJ,2(φ). For a constant
control u∗ ∈ {−1, 1}, the dynamics of the angular deflec-
tion can be rewritten similar to (2) 1 :

Mẍ1 + τJ,i(x1) = 0, (14)

where i ∈ {1, 2} and τJ,1 is obtained when u∗ = −1 and
τJ,2 when u∗ = 1. It is important to note that both x1 and
ẋ1 = −x2 are continuous and that equation (14) describes
a conservative system with the total energy:

E =
1

2
Mẋ2

1 +

∫ x1

0

τJ,i(ξ)dξ. (15)

Furthermore, as long as E remains constant, both the
angular displacement x1 and its time derivative ẋ1 will
oscillate with a certain period. This period will in general
not only depend on τJ,i but also on the Enegy E, unless
the spring is linear (Nayfeh and Mook [1995]).

Since E is constant, we can make use of equation (15) to
express the velocity ẋ1 in terms of the angular deflection:

ẋ1(x1) = ±

√

2(E −
∫ x1

0
τJ,i(ξ)dξ)

M
. (16)

Note that for constant enery E, the maximum velocity will
be obtained whenever the angular deflection x1 is zero.

1 Take the time derivative of the first row of (3) and use its second
row to obtain this relation.

We will denote this velocity with φ̇max := ẋ1(x1 = 0).
Furthermore, the sign of the system’s angular velocity ẋ1
changes at the maximal deflections x1 = ±φmax, where
the energy E is fully stored in the spring:

E
!
=

∫ φmax

0

τJ,i(ξ)dξ. (17)

Since the optimal control u∗ depends on the angular
deflection (see (8)), one might try to use (16), to derive
a relation between the deflection x1 and the current time
t by integration:

±

∫ x1(t)

x1(t0)

√

M

2(E −
∫ x1

0
τJ,i(ξ)dξ)

dx1 = t− t0. (18)

The integral in (18) can usually not be written in closed-
form and this complicates finding an expression for the
angular deflection x1 as a function of time t. Furthermore,
for nonlinear springs the deflection x1(t) influences the dy-
namics of the costates λ, since the instantaneous stiffness
in (10) depends on the current angular displacement. It is
thus not straightforward to solve the differential equations
corresponding to the costates, if λ is to be expressed as
a function of time. For that reason, we follow another
approach and search for an expression of the costates in
terms of the angular deflection. In particular, we want to
see how the OC strategy is related to the potential energy
stored in the spring, which is known to determine the
OC strategy for variable stiffness joints with linear springs
(Haddadin et al. [2012b]). In order to show this relation, we
will follow four main steps: We will first derive second order
differential equations for λ2 along the trajectory of the an-
gular deflection and discuss its solution, which we express
in terms of physical quantities. The resulting differential
equations will have singularities, which will be discussed
in the second step. Using the derived expression for λ2
together with the relation (13), the switching structure of
u∗ will be derived, where we also investigate the influence
of a switch in the control on the optimal trajectory. Finally,
it will be shown how the obtained results can be used to
solve the OC problem of maximizing the potential energy
of elastic joints with two different VSA’s.

4.1 Differential Equation and Solution for λ2(x1)

In the following, we will find a description of the second
costate λ2 in terms of the angular deflection x1 by mak-
ing use of the differential equation (10). Note that this
equation describes the dynamics of λ2 in terms of its time
derivatives, whereas we want to investigate the change of
λ2 along the angular displacement x1. In order to make
use of (10), we need to first rewrite this equation such
that it only contains the costate’s derivatives with respect
to x1. Applying the chain rule (Rudin [1976]) to the time
derivatives of λ2(x1), we have:

λ̇2 =
dλ2

dx1

dx1

dt
=

dλ2

dx1
ẋ1 (19)

λ̈2 =
d

dt
(
dλ2

dx1
ẋ1) =

d2λ2

dx2
1

ẋ2
1 +

dλ2

dx1
ẍ1. (20)

Note that the two derivatives dλ2

dx1
and d2λ2

dx2
1

in (19)-(20) are

well-defined, unless ẋ1 = 0 or equivalently x1 = ±φmax.
Furthermore, both λ2 and λ̇2 = λ1 are continuous accord-
ing to Minimum Principle. In addition, since

dτJ,i(x1)
dx1

is

continuous from our initial assumption, λ̈2 is continuous
as well (see (10)). Consequently, we can conclude that both
dλ2

dx1
and d2λ2

dx2
1

are continuous in x1 ∈ (−φmax, φmax). We

can now substitute the time derivatives of λ2 in equation
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(10) with its derivatives with respect to x1 using (19)-(20).
This leads to the following linear differential equations:

Mẋ2
1

d2λ2

dx2
1

+Mẍ1
dλ2

dx1
+

dτJ,i
dx1

λ2 = 0 (21)

⇒
d

dx1

(

ẋ2
1(x1)

dλ2

dx1
+

τJ,i(x1)

M
λ2

)

= 0, (22)

where we make use of the relation d
dx1

ẋ2
1(x1) = −2

τJ,i(x1)
M

=

2ẍ1 (see (14) and (16)). Note that the last equation (22) is
a linear first-order differential equation with singularities
at x1 = ±φmax. Its analytical solution can simply be found
using variation of constants (Braun [1993]) as:

λ2(x1) =

∣

∣

∣

∣

ẋ1(x1)

φ̇max

∣

∣

∣

∣

(

λ2(0) +
dλ2

dx1
(0)

∫ x1

0

∣

∣

∣

∣

ẋ1(ξ)

φ̇max

∣

∣

∣

∣

−3

dξ

)

.

(23)
This solution for λ2(x1) is uniquely determined in x1 ∈
(−φmax, φmax) by the boundary conditions λ2(0) and
dλ2

dx1
(0), which are evaluated at x1 = 0. In addition, at

the singularities x1 = ±φmax, λ2 will take the value

limx1→±φmax
λ2(x1) = dλ2

dx1
(0)

Mφ̇2
max

τJ,i(±φmax)
. Using (22), we

can now find an analytical solution for the derivative dλ2

dx1
:

dλ2

dx1
=

1

ẋ2
1(x1)

(

φ̇2
max

dλ2

dx1
(0)−

τJ,i(x1)

M
λ2(x1)

)

, (24)

which is however not defined at the singularities as already
expected from (19). The two analytical expressions (23)-
(24) play a significant role for understanding the optimal
trajectory, since they describe the costates on which the
optimal strategy depends in terms physical quantities. For
instance, we see from (23) that λ2 merely depends on the

ratio
∣

∣

∣

φ̇

φ̇max

∣

∣

∣
, which indicates how much of the system’s

energy is converted into the link’s kinetic energy. Accord-
ing to (24), not only this ratio but also the acceleration

ẍ1 = −
τJ,i(x1)

M
has an effect on the value of dλ2

dx1
.

In order to simplify the illustration of the costates graphi-
cally and also have a better understanding of the potential
energy change relative to the total energy, we introduce
here the normalized angular deflection x̄1 defined as:

x̄1 =
x1

φmax

. (25)

Similar to the ratio
∣

∣

∣

φ̇

φ̇max

∣

∣

∣
, this normalized angular de-

flection indicates the percentage of the total energy that
is stored in the springs as potential energy. Note that
with this notation x̄1 ∈ [−1, 1] holds and consequently,
the singularities of the differential equation will occur at
x̄1 = ±1. Corresponding to this normalized deflection x̄1,
we also define a new derivative λ

′

2 defined as λ
′

2 := dλ2

dx̄1
=

1
φmax

dλ2

dx1
. Using these two additional variables, equation

(23) becomes:

λ2(x̄1) =

∣

∣

∣

∣

ẋ1(x̄1)

φ̇max

∣

∣

∣

∣

(

λ20 + λ
′

20I(x̄1)
)

, (26)

where λ20 := λ2(x̄1 = 0), λ
′

20 := λ
′

2(x̄1 = 0) and

I(x̄1) :=
∫ x̄1

0

∣

∣

∣

ẋ1(ξ)

φ̇max

∣

∣

∣

−3

dξ. Figure 3 depicts the response of

the two systems (10) and (14) for a cubic joint torque (u =
const.) described by τJ(φ) = kcφ

3, where the response
is computed numerically using adaptive Gauss-Kronrod
quadrature (Shampine [2008]) (M = 1kgm2,kc = 2 Nm

rad3 ,

x1(0) = 0, ẋ1(0) = 2 rad
s
, λ2(0) = 2, λ̇2(0) = 4 1

s
).

−1 −0.5 0 0.5 1

−5

0

5

x̄[1]

λ
2
[1
]

−1 −0.5 0 0.5 1
−2

−1

0

1

2

x̄[1]

ẋ
1
[r
ad

/s
]

−1 −0.5 0 0.5 1

−20

0

20

x̄[1]

λ
′ 2
[1
]

−1 −0.5 0 0.5 1

−10

0

10

20

x̄[1]

λ̇
2
[1
/s
]

λ2(x̄1) |ẋ1(x̄1)/φ̇max|(λ20− + λ
′

20I(x̄1)) |ẋ1(x̄1)/φ̇max|(λ20+ + λ
′

20I(x̄1))

Fig. 3. λ(x̄1) and ẋ1(x̄1) for a Cubic Stiffness Profile

According to Fig. 3, the value of λ
′

2 at x̄1 = 0 stays
at the same value, whereas λ2 takes different values at
this position. In other words, the boundary condition λ20

changes its value along the optimal trajectory unlike λ
′

20.
In Fig. 3 the first two values for λ20 are denoted by λ20−

and λ20+ . It is important to note that this change in
λ20 can only occur at the singularities x̄1 = ±1, since
the solution (26) uniquely determines λ2(x̄1) between the
singularities x̄1 ∈ (−1, 1). In order to fully describe the
costate trajectory we need to be able to compute the
change in λ20. For that reason, we turn our attention in
the following section to the behaviour of λ2 and λ

′

2 at the
singularities.

4.2 Singularities of the Differential Equation (x̄1 = ±1)

According to Minimum Principle, the costates λ1 = λ̇2 and
λ2 are continuous at every point of the optimal trajectory.
Consequently, they are continuous at the singularities
x̄1 as well. We will make use of this continuity at the
singularities, to see whether the boundary conditions λ20

and λ
′

20 change. Similar to the notation used in Figure
3, we denote the trajectory of the costates before it
reaches the singularity with λ2− , λ

′

2− and afterwards with

λ2+ , λ
′

2+ . Since λ2 is continuous, we have at x̄1 = ±1:

λ2−(±1) = λ2+(±1)

(26)
⇒

Mφ̇2
maxλ

′

20−

τJ,i(±φmax)φmax

=
Mφ̇2

maxλ
′

20+

τJ,i(±φmax)φmax

⇔ λ
′

20− = λ
′

20+ . (27)

We already observed the equality (27) in Figure 3, where

we saw that λ
′

2 always takes the same value at x̄1 = 0.
In this same Figure, we also observed that λ2 can take
different values at x̄1 = 0. This change in λ20 can be
computed using the continuity of λ̇2 = ẋ1

dλ2

dx1
. Using the

analytical solution for dλ2

dx1
in (24) with (16), (17), (19) and

(26) we first obtain the following expression:

λ̇2(x̄1) = −
τJ,i(x1)

Mφ̇max

sgn(ẋ1)
(

λ20 + C(x̄1)λ
′

20

)

, (28)

where C(x̄1) := I(x̄1) −
Mφ̇3

max

τJ,i(x1)φmax|ẋ1(x̄1)|
is a function

that is symmetrical with respect to the origin. Note that
equation (28) depends on the sign of ẋ1. Consequently,

if both boundary conditions λ20 and λ
′

20 would have

stayed constant, λ̇2 would in general have a jump at the
singularities x̄1 = ±1, which is a contradiction. We have
already shown that λ

′

20 does not change and thus we can
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conclude that λ20 must jump when λ̇2(±1) = 0. Evaluating
(28) at x̄1 = ±1, we can conclude:

λ20+ = −λ20− ±∆ · λ
′

20, (29)

where ∆ := 2 limx̄1→1− C(x̄1). This particular constant is
to be subtracted from λ20− after the positive singularity
x̄1 = 1 is reached and added if the negative singularity
x̄1 = −1 is reached.

The four equations (26)-(29) can now be used to construct
the costates assuming the control u stays constant. Table
1 summarizes some of these analytical expressions for
different torque profiles 2 . Using the analytical expressions
we derived for the costates, we will next discuss the
switching structure for the optimal control along the
optimal trajectory.

4.3 Switching Structure

Since the optimal control is bang-bang, the optimal control
u∗ is uniquely determined by the switching positions, at
which it changes its sign. According to (13), the switching
structure for u∗ can be obtained by investigating the sign
of the product x∗

1λ
∗
2(x

∗
1) along the optimal trajectory.

Using the analytical expression for λ2(x̄1) in (26), we can
then conclude that the switching positions will depend on
the boundary conditions λ20 and λ

′

20. Remember that in
our discussions in the two previous Sections 4.1-4.2 we
assumed that u remains at a constant value. However,
determining the switching positions for a constant control
is not sufficient to determine the switching structure along
the whole optimal trajectory. We also need to find how a
change in the control influences the states and costates.

In the following two subsections, we first show the depen-
dence of the switching positions on the boundary condi-
tions, and provide a graphical illustration that depicts the
optimal control u∗ along the optimal trajectory. Then, we
discuss the influence of a switching in u∗ on the states and
costates. Combining the two results will yield the optimal
switching structure.

Switching Positions x̄∗
1 and the Control u∗ As already

mentioned the switching positions of the control u∗, which
we will denote with x̄∗

1, can simply be computed by
determining the positions, where the product x∗

1λ
∗
2 changes

its sign. Since both x∗
1 and λ∗

2 are continuous, the first
obvious candidate for the switching position is x̄∗

1 = 0.
According to (13), if λ∗

2 does not change its sign when the
link passes through its equilibrium position x1 = 0, the
control u∗ will switch. Other candidates for the switching
positions are then the positions at which λ∗

2(x̄
∗
1) is zero.

In order to fully construct the optimal trajectory, we have
to also find these non-zero states x̄∗

1 at which λ∗
2 equals to

zero. Equation (26) provides the dependence of λ2 on the
position x̄1, which we need to compute these states. Using
(26) we can conclude that if λ

′

20 = 0, λ2 will be equal to

zero at the singularities x̄∗
1 = ±1, whereas if λ

′

20 6= 0 at x̄∗
1

satisfying

I(x̄∗
1) =

∫ x̄∗

1

0

∣

∣

∣

∣

ẋ1(ξ)

φ̇max

∣

∣

∣

∣

−3

dξ
!
= −

λ20

λ
′

20

. (30)

2 The function F (a; b) :=
∫ a

0

dξ
(1−ξ2)(1−b2ξ2)

stands for the

incomplete elliptic integral of the first kind, F̃ (a, b; c; z) :=
∑∞

i=0

(a)s(b)s
(c)ss!

zs = 1 + ab
c
z +

a(a+1)b(b+1)
c(c+1)2!

z2 + . . . for the hyper-

geometric function and finally Γ(a) :=
∫∞

0
ta−1etdt for the gamma

function (Abramowitz and Stegun [1964]). The constant j :=
√
−1

is used to denote the unit imaginary number.
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Fig. 4. The Integral I(x̄1)

Note that for a constant control u, the ratio r := λ20

λ
′

20

stays constant along the trajectory, unless a singularity
x̄1 = ±1 is reached. In addition, the change of this ratio
at these singularities can be computed using (27) and (29).
To better comprehend the possible switching positions x̄∗

1
with λ∗

2(x̄
∗
1) = 0, we take now a closer look at the integral

I(x̄1) in (30).

Figure 4 depicts the integral I(x̄1) corresponding to three
different torque profiles, for which analytical expressions
are provided in Table 1. As seen in the figure, I(x̄1)
is always symmetrical with respect to the origin, since
I(−x̄1) = −I(x̄1) holds for the symmetric function τJ(φ)
(see (16) and (30)). In addition, I(x̄1) is monotonically

increasing in x̄1 ∈ (−1, 1), since dI
dx̄1

=
∣

∣

∣

ẋ1(x̄1)

φ̇max

∣

∣

∣

−3

> 0

holds in this interval. Finally, the integral I(x̄1) always
tends to infinity at the singular points x̄1 = ±1, regardless
of the torque profile (see Appendix A). In order to find the
switching positions x̄∗

1 at which λ∗
2 equals to zero, we can

now make use of Figure 4, by investigating the intersection
points of −I(x̄1) with the ratio r = λ20

λ
′

20

(see (30)). Figure 4

indicates thus the dependence of the switching positions on
the boundary conditions λ20 and λ

′

20. The integral I(x̄1)
in Figure 4 can also be used to determine the sign of u∗

along the optimal trajectory. Using (13) and (26), we can
indeed see how u∗ depends on the ratio r:

u∗ =

{

−sgn
(

x̄1λ
′

20 [I(x̄1) + r]
)

, λ
′

20 6= 0

−sgn (x̄1λ20) , λ
′

20 = 0
. (31)

This last equation shows how the optimal control depends
on the two boundary conditions, λ20 and λ

′

20 with the
corresponding ratio r, on the integral I(x̄1) and finally on
the normalized displacement x̄1. A graphical representa-
tion of the equation is given in Figure 5 along with the
corresponding optimal joint torque profiles τJ,1 and τJ,2.
Note that using Figure 5 and the way the phase plots are
divided, we can also see that, once the intersection point
r = −I(x̄∗

1) 6= 0 is reached, the control has to switch, since
the link velocity will not change its sign in x̄1 ∈ (−1, 1).

Furthermore, if λ
′

20 = 0, the control will always switch at
the singularities or equivalently at the maximum deflec-
tions, since λ20 changes its sign at x̄∗

1 = ±1 (see (29)).

Having found the dependence of the switching positions
and the optimal control in terms of the ratio r = λ20

λ
′

20

, we

focus now on how the boundary conditions λ20 and λ
′

20
change with a switching of the control u∗.
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6
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√
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1

1
2

(

x̄1
√

1−x̄4
1

+ F (x̄1; j)

)

x̄1
F̃ (1,− 1

3
; 7
6
;x̄6

1
)

√

1−x̄6
1

λ2(x̄1)
√

1− x̄2
1λ20 + x̄1λ

′

20

√

1− x̄4
1λ20 + 1

2

(

x̄1 +
√

1− x̄4
1F (x̄1; j)

)

λ
′

20

√

1− x̄6
1λ20 + x̄1F̃ (1,− 1

3
; 7
6
; x̄6

1)λ
′

20

C(x̄1) −
√

(1−x̄2
1
)

x̄1

1
2x̄3

1

(

F (x̄1, j)−
√

1− x̄4
1

)

1
3x̄5

1

(

3x̄6
1
F̃ (1,− 1

3
; 7
6
;x̄6

1
)−1

√

1−x̄6
1

)

∆ 0 F (1, j)
√
3π2

27
2

8
3 Γ( 2

3
)−3

Table 1. Analytical Expressions for different Torque Profiles
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Fig. 5. Optimal Torques along the Optimal Trajectory

Behaviour at the Switchings We have just shown how to
determine the positions x̄∗

1, at which the control and thus
the torque profile changes. When the control switches at
these positions an instantaneous change in the torque pro-
file occurs, which in general changes the potential energy
stored in the spring. The amount of this instantaneous
energy change depends on the adjustable torque profiles
and the particular switching position. In the following
subsection, we discuss how the trajectory of the states and
costates is affected by a change in the control and thus in
this stored potential energy.

4.3.2.1. State Trajectory A change in the deflection-
torque relation will in general change the force with which
the link is pulled by the spring. In other words, it will
influence the acceleration of the link ẍ1. The angular de-
flection x1 and the link velocity, on the other hand, will not
have an instantaneous change, since they are continuous
physical quantities. Nevertheless, the normalized angular
deflection we introduced in (25) will have a jump by the
switching instants if the maximum angular deflection φmax

is changed. In order to simplify our discussion, we define
the following new variables for the control, energy and the
states as well as the maximum angular deflection along the
switching structure:

iu := u after the i− 1’th switch
iE := Energy after the i− 1’th switch

iφmax := φmax corresponding to iE
ix1 := x1 after the i− 1’th switch
iẋ1 := ẋ1 after the i− 1’th switch

ix10 := x1 at the i− 1’th switch
ix∗

1 := x1 at the i’th switch,

with the corresponding normalized variables ix̄1 :=
ix1

iφmax
,

ix̄10 :=
ix10

iφmax
, ix̄∗

1 :=
ix∗

1
iφmax

and i ∈ {1, 2, . . .}. The

continuity of the displacement x1 directly leads to a
relation between ix̄∗

1 and i+1x̄10:

ix∗
1 = i+1x10 ⇒ i+1x̄10 = ix̄∗

1

iφmax

i+1φmax

. (32)

Using (32), we see that x̄1 obviously never changes its
sign after a switching. Furthermore, at the switching
position ix∗

1 a jump will always occur, unless the maximum
displacements are equal to each other (iφmax = i+1φmax)
or the switching position is equal to zero (ix̄∗

1 = 0). We
discuss now these jumps for different switching positions.

• Switching at x̄∗
1 = 0: According to (15), the control

u can not change the energy E, when it changes the
torque profile τJ,i at x̄

∗
1 = 0. On the other hand, the

maximum displacement reachable with this energy
depends on τJ,i as can be observed from (17). In
other words, if a switching occurs at x̄∗

1 = 0, φmax

will jump. Nevertheless, the jump in φmax will not
affect the normalized angular deflection x̄1, since x1

is continuous, and we have ix̄∗
1 = i+1x̄10 = 0.

• Switching at x̄∗
1 ∈ (−1, 1)\{0}: If the control u∗

and thus the potential energy stored in the spring is
increased, the maximum angular displacement that
the link obtains by transforming all its kinetic energy
into the potential energy decreases. Consequently,
|x̄1| will increase. Similarly, if u∗ decreases, φmax will
increase and |x̄1| will decrease instantaneously. Note
that, no matter how the torque profiles look, φmax

will always remain positive and |x1| < φmax will hold,
since the kinetic energy is positive. Consequently, we
have x̄10 ∈ (−1, 1)\{0}.

• Switching at x̄∗
1 = ±1: At the singularities, the

link velocity is zero. Consequently iφmax = i+1φmax

holds and we have i+1x̄10 = ix̄∗
1 = ±1.

4.3.2.2. Costate Trajectory As already mentioned, the
analysis in Section 4.1, which led to analytical expressions
for λ2 and λ̇2, is valid only for a constant joint torque
profile τJ(φ) with the corresponding constant energy E. At
a switching position, this torque profile changes which in
turn also changes this energy in general. Nevertheless, both
these quantities remain constant until the next switching.
In other words, the analytical expressions will remain
valid between the switchings. Furthermore, the costates
λ2, λ̇2 are continuous along the whole trajectory including
the switching instants. However, since the normalized
deflection x̄∗

1 at the switching positions is mostly not
continuous as just discussed above, we can conclude that
the boundary conditions λ20 and λ

′

20 in (26),(28) will
in general jump at the switching positions. In order to
distinguish between the costates corresponding to different
switching times, the following additional variables are
introduced for the costates:

iλ2 := λ2 after the i− 1’th switch
iλ

′

2 := λ
′

2 after the i− 1’th switch
ir := r after the i− 1’th switch,
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with i ∈ {1, 2, . . .}. Note that, the boundary conditions

λ20 and λ
′

20 are not only influenced by a switching of
u∗, but also when a singularity x̄1 = ±1 is reached (see
Sec. 4.2 and Fig. 3) . Consequently, we will also need
to sometimes distinguish between the costates before and
after the singularity x̄1 = ±1 in our discussions. We discuss
now the change of λ20, λ

′

20 and r at the three different
switching positions:

• Switching at x̄∗
1 = 0: From the continuity of λ2 at

x∗
1 = 0 we have:

λ2(0) =
iλ20 = i+1λ20. (33)

Using our introduced notation we can also rewrite
λ̇2(0) as,

λ̇2(0) =
iλ

′

20

iẋ1(0)
iφmax

= i+1λ
′

20

i+1ẋ1(0)
i+1φmax

⇒ i+1λ
′

20 =
i+1φmax

iφmax

iλ
′

20, (34)

where we made use of the continuity of λ̇2 as well as
ẋ1. Using (33)-(34), we can then finally find how the
ratio r = λ20

λ
′

20

changes at x̄∗
1 = 0:

i+1r =
iφmax

i+1φmax

ir. (35)

• Switching at x̄∗
1 ∈ (−1, 1)\{0}: According to (13),

at a non-zero switching position λ2(x̄
∗
1) must be zero.

Using again the continuity of λ2, we can then conclude
that

iλ2(
ix̄∗

1) =
i+1λ2(

i+1x̄10) = 0, (36)
where it is important to remember that after a
switching at x̄1 6= 0, a jump in x̄1 always occurs.
Furthermore, from the condition (36), equation (31)
and the fact that I(x̄1) is a monotonously increasing,
we can see that, I(ix̄∗

1) +
ir = 0 must hold with

a unique value of ix̄∗
1. In addition, since i+1x̄10 lies

in the interval (−1, 1) as already discussed in Sec.
4.3.2.1, I(i+1x̄10) +

i+1r = 0 must hold as well and
we have:

i+1r = −I(ix̄∗
1

iφmax

i+1φmax

). (37)

Evaluating λ̇2(x̄1) in (28) at ix̄∗
1 and i+1x̄10, we can

then compute the change of the boudary condition
λ

′

20 as:

i+1λ
′

20 =
i+1φmax

iφmax

iE
i+1E

iλ
′

20. (38)

Note that the change for the boundary condition λ20
can directly be computed using (37) and (38).

• Switching at x∗
1 = ±1: Switchings will take place at

the singularities only if λ∗
2(±1) = dλ2

dx1
(0) 2 iE

iτJ (±iφmax)
=

0 holds, where iτJ := τJ(φ,
iu). Since iE > 0, we

can furthermore see that this is only possible if iλ
′

20
equals to zero. Noting that φmax is not influenced at
the switchings at x∗

1 = ±1 and that λ2 is continuous,
we can than conclude:

i+1λ
′

20 = iλ
′

20 = 0. (39)

Evaluating λ̇2 at the singularities together with (39)
yields then:

i+1λ20 = −

√

i+1E
iE

iτJ(
iφmax)

i+1τJ(iφmax)
iλ20. (40)

Note that, when there is a switching at x̄∗
1 = ±1,

λ
′

20 always stays at zero according to (39) and r is

undefined. Finally, since λ
′

20 does not change, the
switching structure repeats itself (Switchings only at
x̄1 = 0 and x̄1 = ±1).

Equations (32)-(40) provide all the equations needed to
determine the change in the trajectory of the states and
costates. Together with the analytical expressions (26)-
(28) and the switching rule (31) illustrated graphically
in Fig. 5, we have all the necessary tools to construct
the optimal trajectory. Please note that for a given link
mass M and given elastic torque boundaries τJ,1, τJ,2, the
optimal switching positions are uniquely determined by
the sign of λ

′

20 and the optimal initial ratio r∗(0). Indeed,
once an initial ratio is chosen, all the switching positions
can be obtained by considering the direction of the link’s
movement, as well as the intersection points of the ratio r∗

with the integral I(x̄1), where the change of the ratio r∗

at the maximum displacements x̄1 = ±1 as well as at the
switching positions must be accounted for. These changes
have been thoroughly discussed in Sections 4.2-4.3. In the
following last subsection, we will show how to combine
our results by investigating the optimal way to pump the
maximum potential energy into two different VSA’s.

4.4 Maximizing the Potential Energy of VSA’s with
adjustable linear and cubic springs

In this final section, we investigate the optimal way to
change the elastic joint torque τJ(φ, u) of two VSA’s,
such that the stored potential energy in their springs is
maximized at a given final time tf . In particular, we
examine one VSA with adjustable linear springs, τJ,i =
kl,iφ and one VSA with adjustable cubic springs, τJ,i =
kc,iφ

3(i ∈ {1, 2}), where both actuators start from the rest

position with an initial link velocity 3 (φ = 0, φ̇ > 0). Our
main goal is to illustrate how to use the derived switching
structure to solve such OC Problems and also to show how
nonlinearities can affect the optimal strategy as well as the
performance of VSA’s.

Maximizing the potential energy in the springs is for both
VSA’s equivalent to maximizing the magnitude of the
angular deflection |φ|. Consequently, depending on the
sign of the optimal deflection φ∗(tf ) the optimal strategy
that maximizes the potential energy will minimize one of
the two following cost functionals 4 : J(u) = −x1(tf ) ∨
J(u) = x1(tf ). According to (11), for both of these cost

functionals the optimal costate λ∗
2(tf ) = ∂ϑ

∂x2
is zero at

the final time tf . Consequently, if the ratio r∗ is well-

defined (λ
′

20 6= 0) trajectories that end exactly on the
intersection point of r∗ with −I(x̄1) are candidates for the
optimal trajectories that maximize the potential energy
at this final time. Similarly, if λ

′

20 = 0 and r∗ is not
defined, only trajectories that end at x̄∗

1 = ±1, where the
link velocity is zero, can be optimal 5 . We have already
discussed how choosing an initial sign for λ

′

20 together
with an initial ratio r(0) leads to a unique switching
structure. Parameterizing r(0) ∈ (−∞,∞) and noting

that the switching structure for λ
′

20 = 0 corresponds to
the limiting case as r(0) → ±∞, we can systematically

compute for every given sgn(λ
′

20) and r(0) the switching

3 We assume φ̇ to be initially positive without loss of generalization.
4 The first cost functional is minimized if φ∗(tf ) > 0 and the second
functional if φ∗(tf ) < 0.
5 Note that if λ

′

20 = 0, λ20 6= 0 must hold. According to (26), λ2

will then only be equal to zero when ẋ1 = 0.
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positions x∗
1 at which λ∗

2(x
∗
1(tf )) = 0. The duration tf

needed to reach this position can simply be computed
using the relation (18). The set of pairs (tf , x

∗
1(tf )) found

this way, will constitute of all solutions that satisfy the
necessary conditions for optimality. Choosing among the
solutions the ones that result in the maximum |x∗

1(tf )|
yields the optimal strategy that maximizes the potential
energy at tf .

Figure 6 depicts the maximum deflection max |φ(tf )| for
the two different VSA’s mentioned above as a function of
the final time tf , where the figure is obtained following

the procedure explained above (kl,1 = 2Nm
rad

, kl,2 = 8Nm
rad

,

kc,1 = 4 Nm
rad3 , kc,2 = 16 Nm

rad3 , M = 1kgm2, φ(0) = 0rad,

φ̇(0) = 1 rad
s
). Note that the parameters for the linear and

cubic springs are chosen such that at |φ| = 1 rad, the
minimum and maximum storable potential energy in the
springs are equal to each other ( 12k

2
l,i =

1
4k

2
c,i, i ∈ {1, 2}).

One important property regarding the optimal solution
is that max |φ(tf )| is not a strictly increasing function
of the final time. In other words, increasing tf does not
necessarily result to a higher potential energy at the final
time. Secondly, having cubic springs is not really advan-
tageous for our chosen parameters, if the final time is not
high enough. Indeed, there is not a significant difference
in the maximum displacements and consequently, only for
final times tf , where max |φ(tf )| > 1rad, having cubic
springs becomes beneficial. Nevertheless, for a sufficiently
high tf having nonlinearity in the springs can significantly
increase the performance. For instance, for tf = 4s, we see
that the maximum potential energy stored in the linear
spring is approximately 26.8J, whereas for the cubic spring
this energy becomes 122J and thus more than four times
higher.

Having discussed the optimal solution, we now want to
compare the optimal switching structure for linear and
nonlinear variable springs. Figure 7 depicts the trajectory
of the optimal ratio r∗ along the normalized deflection
for tf = 2s. The figure illustrates the change of r∗ at
the singularities and at the switching points but more
importantly the way how the ratio r∗ determines the
switching points together with the integral I(x̄1). A closer
look at the switching structure for the linear spring (Fig.
7: Left) shows now that at the first two non-zero switching
points the magnitude of the normalized deflection |x̄∗

1| does
not change. This is due to the equivalence of the ratios
(3r = −1r) and the symmetry of I(x̄1). Actually, for any
given initial ratio 1r∗, it can be shown that the magnitude
of all the non-zero switching points |x̄∗

1| remain constant,
even for larger final times tf and that the ratio r∗ keeps
following the same trajectory along x̄1 (see the dotted
line in Fig. 7: Left). Indeed, using (17), (35) and (37),
we can show that at all the switching points including the
switchings at x̄∗

1 = 0 we have:

i+1r =

√

i+1kl
ikl

ir,

where ikl denotes the linear spring constant after the i−1’
th switch. Since u∗ is bang-bang along the optimal trajec-
tory, we always have ikl =i+2 kl for all i. Furthermore,
for linear springs ∆ is equal to zero (see Table 1) and
thus the ratio r∗ only changes its sign at the singularities.
Consequently, we can conclude from the symmetry of I(x̄1)
that |i+2r| = |ir| holds for any i ∈ {1, 2, . . .}. Note that
changing at the same non-zero |x̄∗

1| implies that on the
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Fig. 6. Maximum Angular Deflection

optimal trajectory, the ratio of the potential energy in the
springs to the system’s total energy remains always the
same at the switchings. It is here worth noting that this
same result was also found in Andresen et al. [2011] for a
parametric oscillator, where the optimal control strategy
maximizing the oscillator’s energy is analysed. When we
look now at the switching structure for the VSA with
cubic springs, we can conclude that an intiutive switching
structure similar to the VSA with linear springs does not
exist. Indeed, since ∆ 6= 0 holds a symmetry in the switch-
ing positions does not exist and this makes the resulting
structure more complex. Nevertheless, an initial choice for
r∗(0) uniquely determines all the switching positions as in
the linear case.

5. CONCLUSION

In this paper, we presented a novel method to solve OC
problems for VSA’s, when a given terminal cost is to be
minimized. The main advantages of the method are its
direct relation to the system’s physical quantities as well
as its general applicability 6 . Since the solution provides us
the best way to exploit the adjustable elasticity in joints, it
can be used to analyse the maximum performance we can
gain from these actuators as we have illustrated in Section
4.4 for VSA’s with linear and cubic springs.

Clearly, there are still open questions regarding the opti-
mal control of elastic joints, especially for systems with
multiple joints. We see the description of optimal control
strategies in terms of physical quantities as the key to
understanding these systems. Our current research focuses
on extending the introduced method for systems with
multiple degrees of freedom and also to analysing the
influence of the dynamics of the VSA on the optimal
control strategy.
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Appendix A. THE INTEGRAL I

In this Appendix, we will show that the integral I(x̄1)
diverges at x̄1 = ±1. Since, I(x̄1) is symmetrical with
respect to the origin, it is sufficient to show that the
improper integral I(1) is divergent. Using the substitution

6 Note that we only assume to have a strictly increasing continuously
differentiable deflection-torque relation, which is satisfied in most
existing designs.
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Fig. 7. Optimal Ratio r∗ along the Optimal Trajectory (Left: Linear Spring, Right: Cubic Spring)

y(x̄1) =
φ̇2
max−ẋ2

1(x̄1)

φ̇2
max

=

∫

x̄1x1max

0
τJ (φ)dφ

E
, we can rewrite

I(x̄1) as:

I(x̄1) =
E

φmax

∫ y(x̄1)

y(0)=0

(

1

1− y

)
3
2 dy

τJ(x1(y))
,

where we note that at y = 0, the integrand is now not
defined, as well. Noting that τJ is strictly increasing and
positive in x̄1 ∈ (0, 1], we have for any positive scalar ε
less than 1:

I(1) >
E

φmax

∫ 1

ε

(

1

1− y

)
3
2 dy

τJ(x1(y))

>
E

φmaxτJ (φmax)

∫ 1

ε

1

1− y
.

The integral
∫ 1

ε
1

1−y
= ln(1 − ε) − limy→1(1 − y) = ∞

diverges. According to Comparison Test (Rudin [1976]),
we can then conclude that I is always divergent at the
singular points x̄1 = ±1.
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G. Hirzinger. On joint design with intrinsic variable
compliance: Derivation of the DLR QA-joint. IEEE
Int. Conf. on Robotics and Automation (ICRA2010),
Anchorage, Alaska, pages 1687–1694, 2010.

M. Garabini, A. Passaglia, F. A. W. Belo, P. Salaris, and
A. Bicchi. Optimality principles in variable stiffness
control: the vsa hammer. 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS2011), San Francisco, USA, pages 3770 – 3775,
2011.

S. Haddadin, F. Huber, and A. Albu-Schäffer. Optimal
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