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Abstract:
In the production process of polyethylene terephthalate (PET) bottles, the initial temperature
of preforms plays a central role on the final thickness, intensity and other structural properties
of the bottles. Also, the difference between inside and outside temperature profiles could make a
significant impact on the final product quality. The preforms are preheated by infrared heating
oven system which is often an open loop system and relies heavily on trial and error approach
to adjust the lamp power settings. In this paper, a radial basis function (RBF) neural network
model, optimized by a two-stage selection (TSS) algorithm combined with particle swarm
optimization (PSO), is developed to model the nonlinear relations between the lamp power
settings and the output temperature profile of PET bottles. Then an improved PSO method
for lamp setting adjustment using the above model is presented. Simulation results based on
experimental data confirm the effectiveness of the modelling and optimization method.
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1. INTRODUCTION

Over the last few decades, the use of plastics has ex-
perienced significant growth due to its numerous merits
such as lightweight with high strength, high temperature
and chemical resistance, easy to mould with relatively
low cost. One of its applications is in the carbonated soft
drink and mineral water industries where injection stretch
blow-moulding (ISBM) processes are employed to make
numerous thin-walled polyethylene terephthalate (PET)
bottles. In the ISBM process, the polymer preforms are
first loaded and conveyed in an infrared heating oven. The
heated preforms are then stretched and blown to produce
to the final shape in a metal blow mould. Due to the
fast production rate, the ability to mould complex parts
and some other distinctive features, the ISBM process
has become one of the most popular plastics processing
methods in the polymer industry.

In the PET bottle production process, the initial temper-
ature of preforms plays a central role during the ISBM
process. The final thickness and other structural properties
of PET bottles are highly dependent on the temperature
profile of performs (Bordival et al. [2009]). Further, the
difference between inside and outside temperature profiles
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could have a significant impact on the processing behavior
and properties of the final product. Therefore, the preform
temperature is one of the most important parameters in
the PET bottles production (ISBM) process.

However, most current infrared heating ovens used in
ISBM do not have on-board sensors to measure the in-
ternal and external temperatures of preforms on line, and
it is also very expensive and difficult to install infrared
temperature sensors to measure the preform temperatures
in the existing machines. Luo et al. [2012] used an infrared
camera’s sensor to built a finite element model. However
only external temperature could be obtained and model
accuracy is low. Further, feedback controller is rarely used
in the infrared heating oven system, and almost all facil-
ities are open loop and lamp parameters are adjusted by
trial and error, which leads to a significant waste of time
and energy in addition to the additional operation cost
(Menary et al. [2010]).

To obtain an accurate preform temperature profile while
reducing the energy waste, it is necessary to apply ad-
vanced optimization methods to the infrared heating oven
system to obtain the appropriate lamp settings. As it
is difficult to measure the temperature in real-time and
adjust lamp settings on-line automatically, a mathematical
model is necessary for optimization and testing. Hence, a
radial basis function (RBF) neural network model opti-
mized by two-stage selection (TSS) algorithm combined
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with particle swarm optimization (PSO) is developed for
an infrared heating oven system. Then, an improved PSO
method for lamp settings adjustment is designed to obtain
desired temperature profiles.

This paper is organized as follows. The experimental
equipment set-up and temperature data acquisition for
system modelling are introduced first in Sections 2 and
3 respectively. Section 4 presents the system model and
simulation results. An improved PSO method for lamp
settings adjustment and experimental results are given
in Section 5. Finally, Section 6 concludes the paper and
suggests the future work.

2. EXPERIMENTAL SET-UP

2.1 The Configuration of Infrared Heating Oven

The infrared heating oven and stretch blow-moulding ma-
chine used in this research was manufactured by VITALII
& SON and is available in the polymer processing research
center (PPRC) at Queens University Belfast. The preforms
used in this experiment are 18.5g PET bottles with a
diameter of 30mm at the mouth (see Fig. 1).

Fig. 1. Structure of 18.5g PET preform

The layout of the infrared heating oven is shown in Fig.
2 and Fig. 3. Two guards (between points B and C, H
and I) are installed in front of the infrared heating oven
for safety. There are a number of preform bases on the
machine belt which can be seen in Fig. 3. The preform
is placed on the bases between points I and B, and then
conveyed anticlockwise into the oven. When the preform
arrives at point D, the base starts to spin anticlockwise in
order to heat the preform evenly around the circumference.
There are eight infrared lamp tubes from bottom to top
(No. 1 to No. 8) on both sides of the machine (between
point D - E and F - G).

As the preform has a height of 90mm, five lamp tubes
(No.1 - No.5) are deemed sufficient to heat the given
preforms. However, for a different-sized preform, it may
be required to use the remaining lamp tubes. Once the
preform arrives at point I, it is removed from the base and
placed on the THERMOscan to determine its temperature
profile. The THERMOscan is an equipment used to mea-
sure the internal and external surface temperature of the
preform (more details see www.bmt-ni.com).

The machine transport velocity is an important parameter,
which could be adjusted from 13.18 mm/s to 18.67 mm/s.
At the maximum transport velocity, the entire heating
process for a single preform is 129 seconds. In this paper,

Fig. 2. The structure of in-
frared heating oven

Fig. 3. Diagram of lamps
and preform

the transport velocity is set constant at the maximum
value for simplicity, and therefore is not included in the
modelling process.

2.2 Temperature profiles measurement

As there are no on-board temperature sensors to detect
the preform temperature profile within the experimental
oven, an indirect measurement method is designed.

Fig. 4. THERMOscan average temperature profile across
internal and external surface

When the preform is heated, it is manually removed from
the oven and placed on the THERMOscan. The internal
and external preform temperatures are measured at 84
points from bottom to top, thus constituting the internal
and external temperature profile of the complete preform.
It should be noted that there is a small delay between
the completion of the preform heating process and the
temperature profile measurement by the THERMOscan.
In order to compensate for the temperature loss during
that time, 6 scan results are automatically carried out
to calculate the correct temperature profile with an error
margin. Then 14 data points from bottom to top are
obtained to present the complete heated temperature
profile of the preform. Fig. 4 presents the internal and
external temperature profiles at different time after the
preforms have left oven. For each point along the surface,
the scan logs are interpolated to gain a knowledge of
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the change in temperature. The data obtained from the
THERMOscan was processed to obtain the internal and
external temperature profiles of the preform after leaving
the oven.

3. EXPERIMENTS OF PREFORMS HEATING USING
INFRARED OVEN

In order to build a preform temperature profile model
related to the oven lamp settings, a series of experiments
need to be carried out to generate the required data.
For this purpose, the maximum and minimum infrared
lamp settings should be calculated first. This is because
overheating the preform at high temperature results in
crystallization making the preform too stiff to process. On
the other hand, too low settings will result in too low of
temperature to enable the prefrom to be blown.

A heuristic method was used to test the range of infrared
lamps power settings. Firstly, the power of all the lamps
was set to 45% of the maximum value. After the heating
process, it was observed that the top section of the
preform was crystallised meaning that the settings were
too high for the top lamps. Given this observation, the
settings for all heating lamps were reduced. However, the
crystallization of the top section still occurred but with
smaller crystallised area. Then, only lamps 4 and 5 were
further reduced as the crystallised area was confined to
the top section of the preform. This process was repeated
until the maximum setting value for each lamp was found.

To determine the minimum lamp power required values,
both internal and external temperatures of preform should
be higher than the lowest value which is approximate 90◦C.
To achieve this goal, tests based on trial and error were
used again. The resulting maximum and minimum power
settings for each infrared lamp are shown in Table 1.

Table 1: Maximum and minimum settings of each infrared
lamp

Lamp 1 Lamp 2 Lamp 3 Lamp 4 Lamp 5
Max 40% 40% 40% 35% 35%
Min 22% 22% 22% 22% 22%

For data acquisition, 25 combinations of lamp settings
were randomly obtained within the constraints as in Table
1. In order to reduce experimental error, each combination
was executed twice. The average of two temperature
profiles is then taken as the final result. From Fig. 1, since
the control object is the temperature from the top of the
preform to 10mm from bottom, temperature value from
12 points in each test were used to build the modelling
database. A total number of 300 data points for internal
and external temperature samples were obtained. In the
next section, a model of the infrared heating oven system
based on these experimental data will be built. Simulation
results will also be shown demonstrating the accuracy from
the obtained model.

4. MODELLING OF INFRARED HEATING OVEN
SYSTEM

In this paper, a RBF neural network model identified using
a heuristic optimization method, namely PSO method

and a TSS selection algorithm is presented, which models
the internal and external preform temperature profiles in
correlation to the lamp power settings.

As a non-linear identification method, the RBF network is
recognised as a universal approximation model and has
been used for fault diagnosis, prediction, classification,
modelling and control (Chen and Billings [1992]). Com-
pared to the multilayer perception neural network, RBF
neural network is easier to train because it has a simple
topological structure. In the construction of the RBF
network model, the output layer weights are relatively
easier to obtain by the least-squares method. However,
it is difficult to achieve the non-linear basis function pa-
rameters. Traditional methods such as exhaustive search
or gradient methods could be implemented, but they are
often computationally expensive and do not achieve the
global best.

In this paper, a heuristic approach, namely the PSO (Eber-
hart and Kennedy [1995]) is introduced. The employment
of PSO in RBF network model can be used to achieve
both global and local best solutions by optimizing the non-
linear and linear parameters (Deng et al. [2011]). However,
because a number of particles and iterations are needed in
the optimization process, it can also be computationally
expensive. In comparison, the TSS algorithm (Li et al.
[2005] and Deng et al. [2012a]) has the ability to reduce
computation cost by selecting fewer parameter to be opti-
mized step by step. So the combination of PSO and TSS
could achieve both the global best optimal solution and
desirable computational efficiency. A brief review of RBF,
PSO and TSS are presented below.

4.1 Radial Basis function network model

A general RBF neural model can be expressed as

y(t) =

n∑
k=1

θkϕk(x(t); ck; Σk) + ε(t) (1)

where y(t) denotes the system output at sample time t,
x(t) ∈ <p represents the input vector, ϕk(x(t); ck; Σk)
is the RBF activation function, ci = [ci1, ci2, · · · , cip]T is
the centre vector, and Σi represents the associated norm
matrix including the range of the width of RBF centres
σi. Finally, θk denotes the output layer weight for each
RBF node, and ε(t) represents the network error at sample
time t. By using a set of N data samples {x(t), y(t)}Nt=1
for model training, (1) can then be re-written in a matrix
form as

y = Φθ + e (2)

If the regression matrix Φ is of full column rank, the least-
squares estimate of the regression coefficients in (2) is given
by

θ̂ = (ΦTΦ)−1ΦTy (3)

where ΦTΦ is called the information matrix. The associ-
ated minimal cost function is

Jn(θ̂n) = yT (I−Φn)(ΦT
nΦn)−1ΦT

ny (4)

4.2 Particle Swarm Optimization

PSO is an optimization algorithm which optimizes a prob-
lem by iteratively searching for best solution from ran-
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domly candidate solutions. In this work, PSO has been
utilised for non-linear parameters optimization in the hid-
den layer of RBF neural network model.

Suppose xi represents the ith particle in the swarm, vi

denotes its velocity, pi is its best position to date, while pg

represents the best position from the entire swarm. v(i+1)

and x(i+1) are updated as:

v(i+1) = w0vi + c1r1(pi − xi) + c2r2(pg − xi) (5)

x(i+1) = xi + vi (6)

where w0 is the inertia weight used to scale the previous
velocity term, c1 and c2 are acceleration coefficients, and
r1 and r2 are two uniform random numbers generated
between 0 and 1. The acceleration coefficients c1 and c2
can be fixed or varied during the iterative procedure.

In order to ensure that each updated particle is still inside
the search space, it is also necessary to define a value range,
and check both the position and velocity for each particle
at the end of an iteration.

4.3 The two-stage selection algorithm

The two-stage selection algorithm includes a forward
model construction stage and a backward model refine-
ment stage.

First stage - forward selection. At this stage, the nonlinear
parameters ci and θk of RBF model are optimized by the
selection of the local best and global best particles by the
PSO, and added to the model at each step. The initial
particle value at each stage is chosen randomly and the
significance of each centre is measured by its contribution
to the cost function. This selection process continues until
some satisfactory modelling criteria are obtained or until
the maximum number of centres are chosen. Then the
algorithm moves to the second stage.

Second stage - backward refinement. The model from for-
ward selection is not optimal because of the correlations
between selected terms. At this stage, the significance of
each previously selected centre is reviewed, and all insignif-
icant ones are replaced. Clearly, the last selected centre
in the forward construction has always been maximally
optimized for the whole network. The backward refinement
can be divided into two main steps: (a) a selected centre
is moved to the last position in such a way that it was
regarded as the last selected one; (b) an alternative center
is found by optimization, and its local and global best
values are substituted for the selected centre based on the
rest of re-ordered centres. If the moved one is less signif-
icant than the new generated centre it will be replaced,
leading to the required improvement in reducing training
error and generalisation capability. Moreover, PSO is used
to find the best centre at each step. More details about
the algorithm was shown in [Deng et al., 2011] and [Deng
et al., 2012b].

4.4 Modelling and testing results

The internal and external infrared heating oven models
are built respectively in this section. There were 300 data
points each for internal and external preform tempera-
tures. 276 points from each were used for RBF model train-
ing, and the other 24 were reserved for model validation.

For each data point, five lamp settings and the position
on the preform are set as the six model inputs, while the
temperature value is the model output. All the data were
normalized and the order was randomized to guarantee
training effect. The TSS algorithm integrated with PSO
was then applied on the training data.

Table 2: Modelling performances of temperature profile

Model Model size Training error Test error
External 6 0.7482 0.4909
Internal 6 0.6707 0.4088

Table 3: Optimized parameters in the RBF model for the
external preform temperature prediction

PRM Optimized values
θ1 1.2310
θ2 -5.9951
θ3 2.6533
θ4 2.8325
θ5 -3.9581
θ6 4.4984
c1 [1.2000, 1.2000, 1.2000, 0.9539, 0.4705, 0.4068]
σ1 [2.0000, 2.0000, 2.0000, 2.0000, 0.8881, 2.0000]
c2 [0.2394, 0.0677, 0.4213, 0.3979, 0.0987, 0.5242]
σ2 [1.8697, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000]
c3 [0.1102, 0.2991, 0.9274, 0.5468, 0.4837, 0.7252]
σ3 [1.9718, 1.9718, 1.9718, 1.9718, 1.9718, 1.9718]
c4 [1.2000, 1.2000, 0.5150, 0.4718, 0.9092, 1.1906]
σ4 [2.0000, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000]
c5 [0.9182, 0.8574, 0.3000, 0.4092, 0.6561, 0.7977]
σ5 [2.0000, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000]
c6 [0.6772, 0.3950, 0.1191, 0.2781,0.1029, 0.4580]
σ6 [1.9859, 1.4774, 1.9859, 1.9859, 1.9859, 1.9859]

Table 4: Optimized parameters of RBF model for the
internal preform temperature prediction

PRM Optimized values
θ1 21.2947
θ2 -1.7368
θ3 1.7558
θ4 3.7339
θ5 -21.3050
θ6 -1.8344
c1 [1.2000, 1.2000, 1.2000, 0.6483, 0.3564, 1.2000]
σ1 [2.0000, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000]
c2 [0.6513, 0.1989, 0.8793, 0.4102, 0.3654, 0.8572]
σ2 [ 1.8045, 2.0000, 2.0000, 1.9897, 2.0000, 2.0000]
c3 [0.5201, 0.5837, 1.2000, 0.9947, 0.4745, 1.2000]
σ3 [2.0000, 2.0000, 2.0000, 2.0000, 0.4955, 2.0000]
c4 [1.2000, 0.7885, 0.5865, 0.2094, 0.0000, 0.5234]
σ4 [2.0000, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000]
c5 [1.2000, 1.1517, 1.0647, 0.5347, 0.3009, 1.0865]
σ5 [2.0000, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000]
c6 [0.3838, 0.0092, 0.4687, 0.6632, 0.1194, 0.2788]
σ6 [1.7325, 2.0000, 2.0000, 2.0000, 2.0000, 2.0000]

In the modelling, the range of the width of RBF centres
was set as σi ∈ [0.1, 2.0]. The particle number was 50
and update iteration number was 50. Table 2 shows the
validation results where the root mean square error is
employed for evaluator training and testing performance.
The training and test performances of both external and
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internal temperatures profiles are also shown in Fig. 5 -
Fig. 8. The associated RBF model parameters are given in
Table 3 and Table 4.

Fig. 5. The preform external temperature model training
performance by TSS+PSO

Fig. 6. The preform external temperature model test
performance by TSS+PSO

Fig. 7. The preform internal temperature model training
performance by TSS+PSO

5. PSO OPTIMIZATION OF INFRARED HEATING
OVEN LAMP SETTINGS

The resulting internal and external preform temperature
models were employed to find the optimal settings of the
infrared heating oven lamps. Because of the static nature of
the temperature profile models, feedback control cannot be
applied. Also there appears to be strong coupling between
the lamps. For these reasons, PSO as a meta-heuristic op-
timization method has been utilised to obtain appropriate
lamp settings for the desired preform temperature profiles.

As shown in Equation (5), the velocity update law of
each particle is based on the momentum term w0vi, the

Fig. 8. The preform internal temperature model test
performance by TSS+PSO

cognitive part c1r1(pi − xi) and the social part c2r2(pg −
xi). In order to increase the searching efficiency and
accuracy, the parameters are set as below:

w0 = (0.8− 0.5)l/lmax+ 0.5
c1 = (1− 3)l/lmax+ 3
c2 = (3− 1)l/lmax+ 1

(7)

The particle number is 50 and the update iteration number
is 300. The optimized lamp settings for different desired
temperature profiles are given in Table 5. The optimized
performance of simulation results compared with desired
temperature profiles are shown in Fig. 9 - Fig. 12.

For the external temperature, the error between the de-
sired and simulated temperature is quite small for the
uniform temperature setting of 101 ◦C (Fig. 9). The error
is no more than 0.3 ◦C for a linear variation in the de-
sired external temperature setting from 97 - 101 ◦C (Fig.
10). And 0.5 ◦C error could be seen at top and bottom
section when the internal temperature setting is unifrom
106 ◦C (Fig. 11). While, Fig. 12 shows good performance
for a linear variation in the desired internal temperature
settings. From these results, it is observed that all the
error of different experiments are in a small range. And
in the ISBM process, 1 ◦C error is acceptable for preform
temperature profile. So the results of this improved PSO
method are accurate enough for real ISBM process.

Table 5: Optimized lamp settings for different desired
temperature

Temp. (◦C) Lamp settings Ref.
101 [37.7 38.1 29.4 26.5 31.5] Fig. 9

97 - 101 [29.4 26.8 26.4 28.0 31.1] Fig. 10
106 [38.4 29.1 38.8 31.6 27.3] Fig. 11

103 - 111 [25.8 33.9 37.4 30.9 34.0] Fig. 12

6. CONCLUSION AND FUTURE WORK

Preform temperature plays a central role in the ISBM
process to produce plastic bottles with desired properties.
During the heating process, the preform is heated by sev-
eral infrared lamp tubes in the infrared heating oven. Due
to the lack of closed-loop control, large variations can be
observed on the preform temperature. As the temperature
cannot be measured on line, in order to obtain optimal
lamp settings, a mathematical model is needed. In this
work, based on the experimental data, a RBF neural
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Fig. 9. Comparison of external desired (101◦C) and simu-
lation temperature profile

Fig. 10. Comparison of external desired (97◦C − 101◦C)
and simulation temperature profile

Fig. 11. Comparison of internal desired (106◦C) and sim-
ulation temperature profile

network model optimized by two-stage selection algorithm
combined with PSO has been developed and the simula-
tion results have confirmed its feasibility and accuracy. An
improved PSO method has been implemented to optimize
lamp settings and simulation results show its efficacy.
Future work will improve the accuracy of the system model
and optimized parameters. The optimization method can
be further improved for adjusting the lamp settings to
achieve better and more desirable internal and external
temperature profiles simultaneously.
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