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Abstract: The process faults of shaft furnace roasting processes, e.g. fire-emitting, flame-out, under-

reduction, and over-reduction are undesirable for stable operation of the processes. The processes share 

multiple complexities such as multi-variate and strong correlations, which make it difficult to diagnose the 

faults using model-based or knowledge-based methods. In this paper, a data-driven fault diagnosis method 

for shaft furnace roasting processes is presented based on reconstruction and reconstruction-based 

contribution. The proposed method exploits historical faulty data to derive fault directions to identify 

ongoing faults with the help of additional explanation from contribution plots. A case study on a 

simulation system of shaft furnace roasting processes illustrates the effectiveness of the proposed method. 



1. INTRODUCTION 

Shaft furnace roasting processes are important chemical 

reduction processes that transform weakly magnetic ore into 

strongly magnetic one in a high temperature condition. Stable 

operation of the processes is essential to safety and product 

quality. But process faults usually occur when there is a 

mismatched action which cannot meet frequent changes of 

magnitude, class, and ingredients of the raw ore. Typical 

process faults are fire-emitting, flame-out, under-reduction 

and over-reduction. While fire-emitting and flame-out would 

bring up hazard of equipment damage, under-reduction and 

over-reduction would degrade ore concentrate to have dissa-

tisfactory products. It is necessary to detect and diagnose the 

process faults in time. 

The operating conditions of shaft furnace roasting processes 

change frequently with complex mechanism. On one hand, it 

is difficult to model the processes precisely (Wu et al., 2006). 

On the other hand, process faults are more complex than 

those caused by sensor or actor failure. Consequently model-

based fault diagnosis methods (Zhou & Hu, 2009) are not 

advisable for diagnosis of shaft furnace roasting processes. 

To solve this problem, researchers proposed knowledge-

based fault diagnosis methods with artificial intelligence for 

shaft furnace roasting processes. Yan et al. (2008) proposed 

an intelligent fault prediction system for shaft furnace with 

case-based reasoning technique by matching an ongoing fault 

with historical ones in a fault case to get a diagnosis result in 

the form of probability. Wu et al. (2006) and Chai et al. 

(2007) proposed intelligent fault diagnosis systems with rule-

based reasoning technique separately, which used process 

variable observations to reason by rule and then drew 

diagnosis conclusions. But the methods mentioned above 

suffer from certain limitations. Firstly diagnosis conclusions 

are only categorized by results rather than causes. Secondly 

the accuracy of diagnosis is not reliably guaranteed. 

Furthermore, with a large number of variables in the process, 

the correlation among variables is quite complicated because 

of process coupling and closed loop feedback. It requires 

extensive prior knowledge and tedious work to establish rules 

for a fault case, which means considerable cost. 

Data-driven fault diagnosis methods have advantages of no 

need of process model, dimension reduction, easy visua-

lization, and ease of use and maintenance. Using multivariate 

statistical analysis, statistical process monitoring (SPM) has 

found wide applications in many industrial processes, 

including chemicals, polymers, and microelectronics 

manufacturing (Qin, 2003). To take advantage of the 

convenience of data-driven methods, a data-driven 

reconstruction and reconstruction-based contribution (RBC) 

method is therefore applied to the fault diagnosis of shaft 

furnace roasting processes. With fault directions derived from 

historical faulty data, it can reconstruct faults to identify fault 

types. In addition, major contributing fault variables are 

singled out. 

The objective of this paper is to present an application of 

data-driven fault diagnosis method for an important industrial 

process, i.e., the shaft furnace roasting process. The paper is 

organized as follows. Section 2 provides descriptions of the 

shaft furnace roasting process and the process faults. Section 

3 describes the reconstruction and RBC method. Following 

that, a case study on a simulation system of shaft furnace 

roasting processes is presented in Section 4. Section 5 

discusses conclusions and further work. 

2. SHAFT FURNACE ROASTING PROCESS AND 

PROCESS FAULTS 

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 8897



 

 

     

 

2.1  Description of Shaft Furnace Roasting Processes 

The shaft furnace roasting processes consist of ore feeding, 

ore preheating, heating, reduction, and cooling & discharge 

phases, as shown in Fig. 1.  

 
 

Heating 

zone
 

Reduction 

zone  

Preheating 

zone
 

Reductive 

gas
 

Conbustion 

chamber
 

Hematite ore Ore-store 

slot
 Square 

funnel  

Water-

sealed 

pool  

Ejection 

roller
 

Belt-Conveyer  

Fig. 1. Illustration of shaft furnace roasting processes 

The raw ores of Fe2O3 mixed with reductive gas turn to ore 

concentrate in the reduction zone after being heated in the 

preheating zone and the heating zone. The following 

reductions take place when a proper temperature range in the 

reduction zone is realized. 

 2 3 3 4 2

2 3 2 3 4 2

3Fe O +CO 2Fe O +CO

3Fe O +H 2Fe O +H O




 (1) 

If the reductions are not completely performed, the output of 

reaction is a blend of strongly magnetic ore Fe3O4 and 

weakly magnetic one Fe2O3. And when reduction overreacts 

in a higher temperature, following reductions would take 

place. However resultant FeO is also weakly magnetic. 

 3 4 2

3 4 2 2

Fe O +CO 3FeO+CO

Fe O +H 3FeO+H O




 (2) 

According to some basic knowledge, the process variables 

that correlate with faulty operating situations and product 

quality include the following categories of variables: i) 

pressures of the heating gas, heating air, and reductive gas; ii) 

negative pressure inside the furnace; iii) temperatures of the 

combustion zone, preheating zone, and exhaust gas; iv) flow 

rates of the heating gas, heating air, and reductive gas, and v) 

discharging time. In a normal operating situation, control 

loops can balance the relationship between temperature of the 

combustion chamber, flow rate of the heating air and 

discharging time to perform the desired reduction, but also to 

guarantee normal ranges of negative pressure inside the 

furnace, temperature of the exhaust gas, and so on. But 

because of correlations between process variables, a normal 

situation is at risk of process faults even though variables 

under closed loop are able to follow desired trajectories. The 

process faults would alter the correlations between variables. 

This property provides an option to use data-driven SPM 

methods to monitor the processes. 

2.2  Description of Process Faults 

Mismatched set points in control loops would not only 

degrade ore concentrate, but also adversely lead to process 

faults. The process faults of shaft furnace roasting processes 

include the following four main kinds. 

a) Fire-emitting: fire emits out of the combustion chamber; 

b) Flame-out: flame reaches above the top of the furnace; 

c) Under-reduction: raw ores are pushed out of the furnace 

before fully reduced; 

d) Over-reduction: ore concentrate is over reduced before 

coming out of the furnace. 

In a real industrial setting, diagnosis of these faults is mostly 

based on the operator’s observation and experience. It could 

hardly meet the need of process faults diagnosis. Process 

faults rarely have well-understood mechanism or patterns of 

emergence. And the boundary between normal and faulty 

situations is blurry. Setting up rules for diagnosis requires 

much process knowledge and trial-and-error rule adjustments. 

With so many variables, it is complicated to develop a set of 

rules to describe various faults. 

When a fault occurs, the correlation of variables would be 

broken. The impact on process variables differs from fault to 

fault. Thus a vector or subspace can be extracted as the 

direction of every fault, which makes it possible to identify 

faults (Valle et al., 2001). A data-driven diagnosis method for 

shaft furnace roasting processes is proposed in the next 

section. 

3. FAULT DIAGNOSIS OF SHAFT FURNACE 

ROASTING PROCESSES USING RECONSTRUCTION 

AND RBC APPROACHES 

3.1  Fault Diagnosis Strategy of Shaft Furnace Roasting 

Processes 

The use of multivariate statistics for SPM can yield a latent 

variable model from data. Principal component analysis 

(PCA) is a basic projection model in multivariate statistics. 

The adopted method in this paper is based on PCA and 

applied to a shaft furnace roasting process shown by Chai et 

al. (2011). The strategy of fault diagnosis for shaft furnace 

roasting processes is shown in Fig. 2. A detailed description 

for each module will be discussed as following. 

PCA model: The model built with historical normal data is 

the basis of the whole strategy. Fault relevant variables built 

in the model should be specified beforehand. Seven of 

variables are used including temperature of the combustion 

zone, temperature of the exhaust gas, flow rate of the 

reductive gas, flow rate of the heating gas, negative pressure 

inside the furnace, heat value of the heating gas, and 

predictive magnitude of magnetic tube recovery rate. 
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Fig. 2. Strategy of fault diagnosis shaft furnace roasting 

processes 

Fault detection: It is realized by monitoring real-time data of 

shaft furnace roasting processes with fault detection indices. 

The PCA model works as a digital template of the shaft 

furnace in this module. Indices of statistic would show 

whether or not the process is faulty. 

Extraction of fault directions: A dataset of fault directions is 

derived from historical faulty data of the same variables as 

used in PCA model. Each direction corresponds to one fault 

with certain cause. Seven kinds of sensor failure and four 

kinds of process faults are involved, including fire-emitting, 

flame-out, under-reduction, and over-reduction. 

Reconstruction-based fault identification: It is based on ex-

ploitation of real-time data and coordination between the 

PCA model and the dataset of fault directions. Faults that 

have happened before can be identified. Fault identification 

indices will be discussed in details later. 

RBC-based fault diagnosis: RBC-based diagnosis can work 

with PCA model to draw diagnosis results from real-time 

data. Each one of contribution of variables to the fault is 

presented for further analysis. When a new fault that has 

never happened before occurs, reconstruction-based fault 

diagnosis would fail to diagnose it. After a new fault 

direction is extracted, the fault can be augmented in the fault 

library in case the new fault happens again. Fault 

identification, fault variable diagnosis, and expert knowledge 

are combined for the root-cause diagnosis. Details about the 

strategy are shown in Section 3.2. 

3.2  Fault Diagnosis Algorithms of Shaft Furnace Roasting 

Processes 

3.2.1  Fault Detection of Shaft Furnace Roasting Processes 

Based on Principal Component Analysis 

Let 
mx  denote a sample vector of m sensors of the 

shaft furnace roasting processes. Assuming there are N sam-

ples of each sensor, a data matrix 
 N m

X  is composed of 

N rows for N samples and m columns for m variables. X is 

scaled to zero mean and unit variance. Then the covariance 

matrix S of X can be decomposed by eigendecomposition as 

 
T T

S = PΛP + PΛP  (3) 

where 
m lP  and 

( )m m l P  stand for loading matrices 

of principal components and residual components, l is the 

number of principal components, and diagonal matrices Λ  

and Λ  respectively contain eigenvalues of the covariance 

matrix in descending order. Then a new vector x can be 

decomposed into two orthogonal subspaces as ˆ x x x , 

where 
Tˆ x PP x  is the projection on principal component 

subspace and 
Tx PP x  is the projection on the residual 

subspace. The number of components l is determined as Qin 

& Dunia (2000). 

With fault detection indices defined, fault detection can be 

performed on shaft furnace roasting processes. Qin (2003) 

presented five kinds of fault detection indices. Among them, 

SPE and Hotelling’s T
2
 statistics are most typical and 

common. 

The SPE statistic defined in (4) measures the projection of a 

sample vector on residual subspace. 

 
2 T TSPE  x x PP x  (4) 

The process is considered normal if SPE≤ 2
 , where 

2
  

denotes the upper control limit for SPE with a significance 

level  . 

The Hotelling’s T
2
 statistic defined in (5) measures variations 

in principal component subspace. 

 
2 T -1 TT x PΛ P x  (5) 

The process is considered normal if T
2≤ 2

T , where 2
T  

denotes the upper  control limit for T
2
 with a significance 

level  . 

These two control limits are calculated as Alcala & Qin 

(2009) in this paper. 

3.2.2  Fault Diagnosis of Shaft Furnace Roasting Processes 

Based on Reconstruction 

When a process fault occurs, the first step is to detect it. After 

that, it is necessary to identify the fault for further solution. 

With historical faulty data and causes available, recons-

truction approach can be used to diagnose the faults that have 

happened before. The detectability, reconstructability, and 

isolatability of the faults are discussed by Dunia & Qin 

(1998a) and Dunia & Qin (1998b). 

When a certain process fault occurs, samples of sensors in the 

roasting process need to be captured for further analysis. The 

same variables as in the PCA model are used here. Let 
iN m

i


X  denote the faulty data matrix of fault Fi , which 

consists of Ni rows of Ni  samples and m columns of m 

variables. The work of Valle et al. (2001) discussed the 

relationship between projections of fault direction and faulty 

data on residual subspace and then provided a method to 

extract fault direction. We apply SVD on the residual matrix 

of faulty data T

iX . 

 T Ti i i iX U D V  
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The fault direction matrix can be chosen as 

  i iU  (6) 

To identify the ongoing fault, it is required to reconstruct 

sample vectors of the fault with accessible fault directions. 

The objective of fault reconstruction is to estimate the normal 

values by eliminating the effect of fault Fi. A reconstructed 

sample vector zi along fault direction Ξi is calculated in (7). 

 
i i if z x  (7) 

where fi is the estimation of the magnitude of fault along 

direction Ξi. 

Fault reconstruction corrects the effect of a fault, which 

means it can minimize the fault detection indices of the faulty 

samples. The reconstructed SPE along direction Ξi, i.e. SPEi 

becomes 

 
22 T +SPE ( )i i i i i if     x x x I x  (8) 

according to Qin (2012). Then when a process fault takes 

place, fault detection indices would increase dramatically. If 

this fault is along the direction Ξi, the reconstruction along 

that direction would correct the effect of the fault in a proper 

way. So the reconstructed SPE would drop to a relatively 

normal level. Define a fault identification index 

 SPE SPE i i
 (9) 

If Ξi is the actual fault, ηi would be close to zero because 

reconstruction eliminates the effect of the ongoing fault. 

Then the fault is identified. 

3.2.3  Fault Diagnosis of Shaft Furnace Roasting Processes 

Based on Reconstruction-Based Contribution 

Contribution plots are well-known diagnostic tools. It is con-

venient to be used and requires no prior knowledge. 

Contribution plots of SPE represent the significance of each 

variable of SPE, separating fault relevant variables from fault 

irrelevant ones. The process knowledge on shaft furnace roas-

ting processes is necessary for more convincing explanations 

of diagnostic conclusion. 

If a sample vector x has an abnormal SPE, every single 

variable has a contribution to it. An investigation into the 

variables should be carried on, especially into the variables 

that have a significant contribution. A significant contribution 

indicates which variables are responsible for an inflated SPE, 

which means the largest several contributions are likely 

potential cause of the fault. However the result could be 

inconclusive and lead to a misdiagnosis because of the 

smearing effect, which can be avoided by the reconstruction-

based contribution. 

The reconstruction-based contribution of variable xi to SPE is 

used in this work due to the advantage of RBC compared to 

regular contribution plots. It is defined as Alcala & Qin 

(2009). 

 SPE T T 1 TRBC ( )    i i i i ix C C Cx  (10) 

where 
TC PP . 

4. CASE STUDY ON A SIMULATION SYSTEM OF 

SHAFT FURNACE ROASTING PROCESSES 

In this section, we present a simulation system of shaft 

furnace roasting processes creating a fine environment 

approximate to a real shaft furnace field to demonstrate the 

effectiveness of the proposed method. The simulation system 

hardware is composed of three parts, the simulated plant, 

PLC, and fault diagnosis module as shown in Fig. 3.  
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Fig. 3. Structure of the simulation system of shaft furnace 

roasting processes 

The simulated plant is used for simulation of the dynamics of 

the shaft furnace. PLC achieves process control that a real 

shaft furnace needs. The fault diagnosis module works as a 

real-time security for the whole process. There are sensors of 

pressure, temperature, and flow rate to keep track of variables 

in the process. The PCA model contains seven fault relevant 

variables, which are temperature of the combustion zone 

(TCZ), temperature of the exhaust gas (TEG), flow rate of the 

reductive gas (FRG), flow rate of the heating gas (FHG), 

negative pressure inside the furnace (NPF), heat value of the 

heating gas (HVG), and predictive magnitude of magnetic 

tube recovery rate (MTRR), as shown in Table 1. As MTRR 

cannot be collected in real time, a predictive method is 

adopted from Chai et al. (2011). 

Table 1.  Variables in the PCA model 

Variable No. Unit 

TCZ 1 ℃ 

FRG 2 m
3
/h 

MTTR 3 % 

TEG 4 ℃ 
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NPF 5 Kpa 

HVG 6 KJ/m
3
 

FHG 7 m
3
/h 

 

A PCA model is derived from normal data. And a fault 

direction is built using historical faulty data, which consists 

of seven sensor failures and four process faults, as shown in 

Table 2. 

Table 2.  Serial number of faults 

Fault No. 

1
st
 sensor failure 1 

2
nd

 sensor failure 2 

3
rd

 sensor failure 3 

4
th

 sensor failure 4 

5
th

 sensor failure 5 

6
th

 sensor failure 6 

7
th

 sensor failure 7 

fire-emitting 8 

flame-out 9 

under-reduction 10 

over-reduction 11 

 

In traditional method, every faulty sample corresponds to a 

fault conclusion. To get an overall conclusion of diagnosis, 

another fault identification index is defined as follows 

  i iN N  (11) 

where Ni stands for the number of samples which draw a 

conclusion of ith fault, and N stands for the total number of 

faulty samples.  

The sampling period is 1 second in the experiments. We use 

600 samples under normal conditions to derive a PCA model 

for tests. The plots of SPE and T
2
 of normal data are shown in 

Fig. 4. False alarm rate of SPE is 1.0% and false alarm rate of 

T
2
 is 5.17%. 

Fault diagnosis results for fire-emitting and under-reduction 

are shown in Fig. 5 and Fig. 6 respectively. Fig. 5 illustrates 

that when fire-emitting occurs, SPE and T
2
 can both detect it 

immediately. Both statistics rise visibly above their control 

limits. The fault identification indexσi indicates that 100% 

faulty samples can draw the correct diagnosis conclusion. 

And RBC plots shows that the 1
st
 and 6

th
 variables, i.e. TCZ 

and HVG, are responsible for this fault. Because RBCs of 

these two variables outweigh the others markedly. Fig. 6 can 

be explained in the same way. 100% faulty samples lead to 

the correct diagnosis conclusion of under-reduction and the 

2
nd

 variable is responsible for this fault because of its RBC 

outweighing the others significantly. 
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Fig. 4. Plots of SPE and T
2
 of normal data 
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Fig. 5. Diagnosis result for fire-emitting 
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Fig. 6. Diagnosis result for under-reduction 
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Fault diagnosis results for a new fault are shown in Fig. 7. A 

new fault means the fault direction is unknown. Fig. 7 

presents a confusing diagnosis. The fault is detected by SPE 

and T
2
, but we have got an inconclusive result from fault 

identification index and RBC plots. 92% of faulty samples 

indicate the fault is under-reduction while 8% of them 

indicate the fault is over-reduction. And RBC plots show the 

fault is not a typical under-reduction fault because the major 

contributor this time is 6
th

 variable HVG, which means this 

fault does not share the same cause as under-reduction. When 

a new fault occurs, the actual cause should be analysed with 

expert knowledge. And then the direction should be extracted. 

Thus database of directions of faults could be supplemented 

in case that this fault would happen again. 
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Fig. 7. Diagnosis result for a new fault 

5. CONCLUSIONS 

In this paper we applied a data-driven diagnosis method for 

fault diagnosis of shaft furnace roasting processes. The 

application to the simulation system of shaft furnace roasting 

process shows that reconstruction and RBC are effective 

tools for process fault diagnosis of shaft furnaces. When there 

are much more variables to be monitored in the process, 

multiblock analysis proposed by Qin et al. (2001) and Liu et 

al. (2013) can be effective to interpret the contribution plots. 

Feedback control would make it difficult to identify the faults 

because feedback control obscures the source of faults 

(McNabb & Qin, 2005). Further, operating control in the 

shaft furnace system is quite complicated. Future work is to 

find a way to eliminate the feedback control effect in the 

closed loop system of shaft furnace for accurate diagnosis 

results. 
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