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Abstract: It has been recognized that model predictive control (MPC) approach can be successfully applied 

to the signal control of the urban traffic systems. In this research, we mainly focus on dealing with the 

uncertainty of the inflow to the traffic network based on the MPC method. The stochastic process 

describing the uncertainty and chance constraints are embedded to the mathematic programming problem 

to prevent the congestion happening on the arteries. A modified MPC algorithm is also developed to solve 

the novel problem under studies. The simulation results show that the proposed model is closer to the real 

situation than the deterministic ones. The novel MPC algorithm strictly keeps the traffic flows below the 

limit of the arteries. Moreover, from computation point of view, the proposed method requires shorter 

computation time that may meet the real-time control requirement. 

Keywords: Urban traffic network, Model predictive control (MPC), Chance constraints 



1. INTRODUCTION 

It has been a new development philosophy and common goal 

to create Low Carbon City (LCC). In fact, the urban traffic 

jams have become one of the major factors to generate urban 

CO2 emissions and global warming. Thus the studies on 

reducing urban traffic jams with advanced control and 

information technology have been a world-wide attractive 

research area. Generally, the proper strategy for traffic splits 

control is considered as one of fundamental and effective 

measure to improve the efficiency for an existing traffic 

network. The methods and popular tools in theses researches 

can be classified to the following categories by their 

characteristics as noted in (M. Papageorgiou et al., 2003): 

1) Isolated Intersection Control (R.B.Allsop, 1971) is one of 

the earliest and simplest approaches to deal with traffic 

control problems. Obviously, the optimal of each single 

intersection does not mean the optimal of the whole traffic 

network. The vital drawback of these approaches is that the 

coupling between different intersections is neglected.1 

2) Fixed-Time Coordinated Control is a popular control 

strategy. Some well-known traffic control tools such as 

MAXBAND (Y. F. Li, 2008) and TRANSYT (D. I. Robertson, 

1969), (S. C. WONG, 1996) belong to this type of control 

strategies. The signal splits of each intersection in these 

strategies are constant and the interactions between 

intersections are taken into account. Using a reasonable 

design, these methods are potentially more efficient, but also 

more costly (M. Papageorgiou et al., 2003), as they require 

                                                 
 This work was partially supported by the major project of the 

National Science and Technology (2011ZX02601-005). 
1
 SQP: Sequential quadratic programming, is an iterative method for 

the installation, operation, and maintenance of a real-time 

control system. 

3) Coordinated Traffic-Responsive Strategies are the most 

complicated control systems, the famous control systems such 

as SCOOT (P. B. Hunt et al., 1982), OPAC etc. belong to this 

category. These approaches are modified from the fixed-time 

coordinated control methods and the distinction is that the 

new system will adjust the control signal dynamically to adapt 

to the flow of the traffic network. 

Store-and-Forward Based Approach (Gazis and Potts, 1963) is 

an important modeling method used in coordinated traffic-

responsive strategies. The basic idea behind this approach is 

approximately estimating the outflow of each road in a long 

period time horizon. Combining it with control theory, the 

method called TUC (Vaya Dinopoulou et al., 2005) is 

formulated as a quadratic programming form, and the 

controller is designed in the classic LQR control law. In later 

works (Aboudolas et al., 2007; de Oliveira and Camponogara, 

2007; K. Aboudolas et al., 2009; Lucas Barcelos de Oliveira 

et al., 2010; Zhou et al., 2012; Ye et al., 2013), the MPC 

approach was proposed, and demonstrated that the significant 

improvements may be induced by replacing the standard LQR 

control law with the finite moving horizon method such as 

model predictive control.  

It should be noted that the MPC models aforementioned are 

all deterministic programming ones which can be solved by 

either classic optimization methods or multi-agents 

approaches (Lucas Barcelos de Oliveira et al., 2010). As far 

as we know, the studies that take the uncertainty into 

consideration on signal control problem are rarely up to now. 

In (Yafeng Yin, 2008), the authors present three models to 

determine robust (min-max) optimal signal timings so that the 
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system is less sensitive to fluctuations of traffic flows. In 

other words, they perform much better against the worst-case 

scenario. In (Xing Zhang et al., 2010), to improve the 

performance of the traffic-acturated control systems, a flow-

prediction algorithm is embedded into a real-time adaptive 

signal control model to estimate the future vehicle arrival flow. 

Different from previous work, in this paper we incorporate the 

chance constrained programming idea from (Pu Li et al., 2002) 

to build a stochastic model for traffic signal control. The 

traditional MPC-based traffic control models intend to 

minimize the flow through the whole network while the 

model proposed in this work aims to prevent the arteries in the 

traffic network over-saturated in stressed load situations. In 

addition, compared with the work in (Xing Zhang et al., 2010), 

we focus on the performance of a traffic network rather than 

that of a single intersection.  

The rest of this paper is organized as follows: In section 2, we 

will briefly review the single road model which makes up the 

whole traffic network. In section 3, a novel network space 

model with chance constraints is proposed. The simulation 

and results based on the proposed probabilistically 

constrained MPC traffic model and strategies are given in 

section 4. The conclusions and future research directions are 

addressed in section 5.  

2. DETERMINISTIC MODEL 

2.1 The single-way model  

We consider a road z with its downstream intersection j as 

shown in Fig.1. 

z

r

 

w

 

Fig.1. A typical single road model with just one intersection 

Here the intersection η has two upstream roads z and r, and 

without loss of generality, all the roads are assumed to be one-

way direction for simplify. 

Let the following notations: 

x(t): the volume of vehicles in this road at time t. 

∆T: the sample time interval. 

Cη: the cycle time of the signal at intersection η. 

Sz: the saturation flow at road z. 

I(η): the set of the upstream link which connecting the 

junction η. 

O(η): the set of the downstream link which connecting the 

junction η. 

The decision variable: 

uη,z: the green period of signal assigned to road z at 

intersection η. 

uη,r: the green period of signal assigned to road r at 

intersection η. 

First, the flow conservation of this road can be represented by 

the discrete one-dimensional state space model as follows:  

 , ,( 1) ( ) ( ) ( ) ( )    in z out zx t x t T q t q t e t             (1) 

Here e(t) equals to the exit flow minus the demand flow 

generated within the road itself. For simplify, this term will be 

ignored in the rest of this section. 

Here, the outflow term qout,z(t) can be derived as: 

    , ( ) ( ) /out z z zq t g t C S                    (2) 

The Store-and-forward approximate method aforementioned 

(C. Diakaki et al., 2002) is used here. gz(t) = uj,z(t) represents 

the green light period during a signal control cycle Cj, and Sz 

is the saturation flow of the road z. This approximate method 

averages the outflow of road z in a long period view and keeps 

it constant in a sampling period. The aim is to linearize the 

traffic network and using a state space model to describe the 

dynamic of the traffic flow. 

Second, we consider the inflow term qin,z(t). Assume the 

turning rates are given in advance, the traffic flow into link z 

is expressed as: 

, , ,

( )

 ( ) ( ) in z w z out w

w I

q t q t





                   (3) 

Where 
,w z

 is the turning rate towards link ( )z O  coming 

from link ( )w I  . It means that the roads w and z are 

connected by the intersection  . 

Use the Store-and-forward approximating method and let the 

term uw represent the green light period for the traffic on road 

w passing the intersection, then qout,w(t) in (3) can be 

represented as: 

,

,

( )
( )  

w

out w w

u t
q t S

C





                     (4)
 

Substituted the term qout,z(k) and qin,w(k) in (1) with (2) and (3), 

then we get: 

, , ,

( )

( 1) ( ) ( ) ( )w z

z z w z w z

w I

S S
x t x t T u t u t

C C
 

  




 
     

  
    (5)  

Additionally, other constraints should be considered: 

                            
, ,( ) ( )z ru t u t l C                                 (6) 

, , min( ), ( )   z ru t u t u                        (7) 

lη is the lost time per cycle. (6) means that the cycle time of 

junction j is equal to the summation of the green time of all 

the stage and lost time. (7) is introduced to guarantee the 

allocation of sufficient green time to pedestrian phases. 

Remark: Since here we simply assume there are two phases 

(equal to u1, u2) on the intersection, for simplicity, we will not 

explicitly use the concept of phase which is important in the 

traffic light control area in the rest of paper.  

2.2 The regular MPC model of network 

The urban traffic network systems are usually composed of a 

lot of units described at last section. The network in Fig.2 

consists of 13 roads and 6 junctions. All roads are also one-

way direction denoted by the arrow lines in the figure. It 
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should be noted that for the roads (e.g. road 1, 2, 3) at the 

boundary of the system, the inflow equals to the flow coming 

from the outside. For the internal roads (e.g. road 4, 5), it can 

be computed using (4). 
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Fig.2. The configuration of the traffic network 

Inspired by the moving horizon idea in regular MPC approach, 

we can generalize (5) to all links in the network, and then we 

can derive the dynamic equation as follows: 

ˆ ˆ ˆ( 1| ) ( | ) ( | )     t k t t k t t k tx Ax Bu  

Here matrix ˆ( | )t k tx is the vector with each element 

represents the predicted number of traffic on the 

corresponding road at time instant t+k. ˆ ( | )t k tu is the 

predicted control actions. 

1

2

1

ˆ ( | )

ˆ ( | )
ˆ ( | )

ˆ ( | )n n

x t k t

x t k t
t k t

x t k t


 
 

  
 
   

x

1

2

1

ˆ ( | )

ˆ ( | )
ˆ ( | )

ˆ ( | )n n

u t k t

u t k t
t k t

u t k t


 
 

  
 
   

u  

n is the number of links in the network. The state matrix A=I 

according to (5), the control input matrix B is constant by 

combining the control matrix of each road. (E.g. It is the 

linear combination of the parameters associated with control 

ui,w(t), uj,z(t)  from     , ,( )
( / ( ) /


  w z w i i w z jw I i

T S C u t S C  

, ( ))j zu t  in  (5) ). 

And we design the objective P(t) as: 

1

1

0

1
ˆ ˆmin ( | ) ' ( | )

2

1
ˆ ˆ   ( | ) ' ( | )

2







 

  





K

k

K

k

t k t t k t

t k t t k t

x Qx

u Ru

                          (8)                                                                                   

Q weights the states (the number of vehicles in the roads), 

matrix R reflects the penalty imposed on control effort. (This 

quadric function is identical with the TUC method as in (C. 

Diakaki et al., 2002), the detail demonstration on the function 

can refer to it). Thus, the traditional MPC problem objective 

P(t) contains two terms, one to minimize the number of traffic 

in the traffic network and the other to minimize the signal 

control cost. 

Furthermore, we rewrite (6), (7) with their combination forms 

correspondingly as follows. 

     ˆ( | )t k t Du d                                     (9a) 

                             ˆ  ( | )t k t Cu c                                     (9b) 

Combining the objective (8) with constraints (9a), (9b), we 

can build up a deterministic quadratic programming problem 

as the one in (Lucas Barcelos de Oliveira et al., 2010). 

Suppose at a time unit k, we derive the K steps predicted 

optimal control vector û  the by solve the above problem. 

Only one step of û  will be taken action. Then move horizon 

to the next sample time 1 k k  and repeat the above step. 

The regular deterministic MPC approach has been 

demonstrated above. At the next subsection, we will take deep 

investigation into the random disturbance of the inflow 

variable 
, ( )in zq t  and chance constraints will be introduced to 

the deterministic problem. 

3. CHANCE CONSTAINTS  

3.1 Random disturbance and chance constraints 

In real life, the traffic network is influenced by a lot of 

uncertain elements, among which the variance of traffic flow 

through the network is most important. Thus, we assume the 

inflow roads of network face uncertainty (i.e. the road 1, 2, 3, 

8, 9 in Fig.1) and take road 8 in Fig.2 for example. Look back 

into the inflow term 
, ( )in zq t  in the single road space model as 

(1), it is no doubt that the inflow varies from day to day and 

hour to hour.  However, based on the former information, 

(normally, the previous traffic information collected over last 

few months or years is recorded in the database of traffic 

information systems and can be got easily), we can use 

pattern recognition and statistic tool to find same or similar 

pattern matches current situation, and derive the estimation of 

the variation tendency. Since the gauss distribution can 

effectively describe the stochastic process in real life and is 

convenient for the mathematic derivation, without loss of 

generality, we assume that the inflow 
, ( )in zq t to the road 

follows a multivariate normal gauss distribution. It should be 

noted we use ξ  whose element iξ  equals to 
, ( )in zq t i  in the 

rest of paper for brevity. To simplify the notation, in the rest 

of this work, ˆ ( | )zx t i t is abbreviated as ˆ ( )zx t i . 

Suppose the initial time is t, the length of the horizon of the 

control problem is N, using the statistic of the previous data 

aforementioned, we can give the mean vector μ : N×1 where 

, 1,...,i i Nμ  represents the mean value of the ξ  at time 

instant i, while the matrix : N×N represent the covariance 

matrix of ,  1,...,i i Nξ . These parameters can be computed 

and given in advance as follows. 

1

2

 
 
 
 
 
 N

μ

μ
μ

μ

       

2

1 1 2 12 1 1

2

1 2 12 2 1 1

2

1 1 2 2

    

    

    

 
 
 
 
 
  

N N

N N

N N N N N

r r

r r

r r

  

                                                                                            (10) 
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Then the probability density function of the inflow sequence 

is: 
1(1/2)( ) ( )( ) 
  

T

e ξ μ ξ μ
ξ


                        (11) 

Here the parameter  is constant. Where i  is the standard 

deviation of each individual stochastic variable and 

[ 1,1]ijr    are the correlation coefficients between the 

stochastic variables of time point i and j. For simplicity, the 

distribution of ξ  on any road is assumed to be independent 

with other roads.  

3.2  Model with chance constraints 

Utilizing the rolling horizon idea from MPC control, we can 

get the predictive model about state x̂  taking consider the 

uncertainty as follows: 

,
ˆ ˆ ˆ( ) ( 1) ( 1) ( )z z zx t i x t i Bu t i T t i         ξ                                                                         

(12) 

Here, we define ˆ(0) (0)x x is the measured value from the 

sensors at initial time, and /  z jB S T C   can be directly 

derived from (2).  

Remark: 

1) Because we consider a single road, the state vector and 

the input vector are both reduced to scalar variables.  

2) We assume the state variable x can be precisely measured 

by the sensors installed on the roads. (Using the facilities 

such as inductive loop detectors) 

Assume the limit of the number of traffic on road z is Nz. To 

prevent the road over-saturated, we can add the chance 

constraints as follows: 

ˆ( ( | ) )         1,2,...,z zP x t i t N p i N          (13) 

Here P(•) is the cumulative distribution function, p is the 

believe level (usually chosen close to 1. Typically, one does 

not impose p = 1 because the system will become overly 

conservative, actually it can become infeasible because a 

Gaussian distribution will have a tail towards infinity). It 

means in the prediction horizon we want to keep the number 

of traffic on road z below the limit Nz with the probability 

larger than or equal to p.  

The objective of this problem is similar with the one proposed 

in (Pu Li et al., 2002). 

, ,

1

ˆ ˆ( | ) ( 1| )
N

z z

i

u t i t u t i t 


                        (14) 

This objective is to reduce the oscillation of control variable 

and prevent the case that 
,zu  grows too large (close to the 

cycle Cj) which is unrealistic. In the real-life system, the 

smooth varying systems are friendly to the passengers and 

drivers. 

3.3 Problem transformation  

The common method to solve the aforementioned problem is 

transforming the stochastic constraints to deterministic 

constraints. Using the similar method in (Pu Li et al., 2002), 

we can transform the constraints (13) to the following form, in 

which ˆ
ix = ˆ( | )x t i t  for brevity: 

, 1
ˆ ˆ{ ( ( | ) ) / , 1,2,..., }i z z iP N Bu t i t x T i N p       ξ        

(15) 

According to the probability density function (11), replacing 

the term 
1

ˆ
ix 

 with (12), and considering the summation of 

future k steps iξ , we can get  01
  

k

i zi
N xξ  

,1
ˆ ( | ) /

k

zi
B u t i t T

  , define a new vector 'ξ whose 

element 
1

'



k

k ii
ξ ξ , we can derive the new multi-normal 

distribution 'ξ whose dimension is same with ξ . The mean 

'μ and covariance matrix ' of new multi-normal variables 

'ξ  can be derived as follows: 

'        ' T μ Gμ G G   

Then define  0 ,1
ˆ ( | ) /

k

k z zi
N x B u t i t T

    α , we can 

transform (15) as: 

1 2

( ') ( ')
  

   
K

d p
α α α

ξ ξ                     (16) 

Fundamentally, (16) is a deterministic constraint. Specially, 

the right side of the inuality contains the multiple integral 

term which is difficult to solve. 

Above all, it has been shown that the original problem can be 

transformed to a multiple integral problem which regarded as 

a special nonlinear programming problem with nonlinear 

constraints. It can be regarded as a special kind of normal 

nonlinear programming problem and common tools like SQP
1, 

BFGS, 2 may be applied to solve the problem. However, the 

computation of the joint probability value in (16) demands 

numerical integration of the multivariate normal distribution 

function. This is a rather time-consuming task and even 

prohibitive for real-time control. 

4. TRAFFIC NETWORK MODEL AND SOLVING 

4.1Model development 

To embed our chance constraint into the MPC model as 

shown (8), (9), we arbitrary classify all the roads into two 

categories. Define set {road ,  is an artery}z z , and set 

{road , } z z  is the complement of set . And the 

overall problem can be formulated as follows:   
For the subset : 

1

1

1
ˆ ˆ( ) :   min ( | ) ' ( | )

2

 
K

k

P t t k t t k tx Q x  

 
1

0

1
ˆ ˆ( | ) ' ( | )

2





  
K

k

t k t t k tu R u

 
ˆs.t.     ( | ) ( )                                               

         For 0,1,..., 1:       

t t t

k K



 

x x
 

                                                 
1
 SQP: Sequential quadratic programming, is an iterative method for 

nonlinear optimization. BFGS: Broyden–Fletcher–Goldfarb–Shanno 

algorithm, is Quasi-Newton second-derivative line search family 

method. 
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ˆ ˆ ˆ( 1| ) ( | ) ( | )t k t t k t t k t     x A x B u                         
ˆ ( | )

ˆ ( | )

 

 

B

B

t k t

t k t

C u c

D u d

                                         (17)                                           

 

For the subset : 

2

1

ˆ ˆ( ) :    min ( ) ( 1)
N

k

P t t k t k


    u u  

ˆ s.t.      ( | ) ( )t t tx x                                         

For  0,1,..., 1: k K  
ˆ ˆ ˆ ( 1| ) ( | ) ( | ) t k t t k t t k t     x A x B u                 

ˆ ( | )t k t C u c                    

ˆ ( | )t k t D u d                                 (18a) 

 

Chance Constraints: 

ˆ( ( | ) )       1,2,...,   z z zP t k t N p k N z    x       (18b) 

There are following two objectives:  

P1: The objective which is the same as the original problem to 

minimize the number of vehicles in the traffic network plus 

the control costs. 

P2: The objective to keep the traffic flow on these arteries 

unsaturated combining with the constraints (18). 

The reason that we divide all the roads into these two sets is 

that we want to investigate the impact if we carry the new 

control method out in the arteries while the other roads are 

controlled with the original performance index. It should be 

pointed that we emphasis on the arteries which are given high 

priority in control action. 

Due to the assumption of multivariate normal distribution of 

 j
, this sub-problem with chance constraints is convex (Kall 

& Wallace, 1994), while the other sub-problem is a standard 

quadratic programming problem. 

Intuitively, the extreme and most robust way to satisfy the 

constraint (18) is keeping the green time period for the artery 

as long as possible. But it is too conservative and 

unreasonable in practical control situations. Thus we 

introduce the objective P2 in order to make the signal varying 

smoothly. And to keep the traffic network safe and prevent 

the congestion happening, here we should deal with the 

objective P2 first.  

4.2 Algorithm 

The basic idea to solve the mathematic programming problem 

has been shown at the previous section. We decompose the 

optimal problem into two parts, and solve them in series. In 

the optimization process, the safety objective P2 is in prior to 

the original one P1. The algorithm can be described as follows. 

Here L is the simulation length. 

In fact, the sub-problem P1 is a special NLP that is difficult to 

solve, because the nonlinear constraints make the search 

sophisticated. Moreover, the problem with multi-integrate-

terms could be hardly solved with analytic methods. The key 

Initial: k=0,  

Step 1: If k<L, stop; otherwise, go to step 2. 

Step 2: Solve the sub-problem P2 which assures that the 

safety of the arteries. 

Step 3: Solve the sub-problem P1 aims to minimize the 

traffic flow on the rest of the network. 

Step 4: k=k+1 and return to Step 1, until the simulation 

horizon is complete.  

issue to solve the problem is to approximately derive the 

values of integrate terms in the chance constraints. The work 

(Pu Li et al., 2002) successfully utilizes the method proposed 

in (T. SZÁNTAI, 1986) and Hammersley sequence sampling 

(HSS) method. A step by step approach was used by 

computing the probability of the combinations of the single 

and bivariate events accurately and to estimate that of the rest 

combinations through sampling. Instead, for brevity, we use 

the transformation approach proposed in (ALAN GENZ, 1992) 

which embedded with a Monte-Carlo sample to solve the 

problem directly.  

Above all, the essential idea of our method is that we divide 

the whole traffic network into two sub-problems and solve 

them one by one. It should be pointed out that optimization is 

carried out by a centralized tool. Thus the control actions and 

other information on subset  and subset can 

communicate from one problem to the other without any 

difficult.  

4.3 Model generalization 

The stochastic process is not only able to describe the 

uncertain inflow into the road, but also used to represent the 

uncertainty of the term e(t) in (1). It represents the flow which 

generated within the road itself. In other words, according to 

the data recorded previously, we can approximately derive the 

mean and covariance matrix of e(t). Then the constraints 

similar with (18b) could be added to the programming 

problem. Based on our knowledge, it is significant to consider 

the term e(t) at morning or evening peak hours due to more 

traffic flow generated in the urban region during those rush 

hours. 

However, if the interactions exist between two arteries, the 

same problem with chance constraints may be hard to solve 

due to the complexity of it grows rapidly. 

5. SIMULATION STUDIES 

5.1 Simulation Parameters 

The simulation studies are based on the traffic network as 

shown in Fig.2. The parameters of the traffic network are 

listed as follows: 

a) Cycle time C=120s for all intersection; the saturation 

flow of each road is 3600 vel/h. 

b) The turning rates, the weights matrix Q and R are all the 

same with those defined in (Lucas Barcelos de Oliveira 

et al., 2010). 

c) Without loss of generality and for the sake of simplicity, 

it is assumed here that only x8 has uncertain inflow 

whose initial value equals to 400vel. 

d) The upper limit of the volume of vehicles on road 8 is 
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kept 500vel during the whole simulation. 

e)  The mean of the input flow is randomly generated in 

[2000, 2400], and the covariance matrix is built by 

assigning 90  ,   0.1 ,i iji r i j      in (3). 

f) The confidence level 0.8p  . 

The simulation has 20 steps and runs on the computer with 

CPU: Intel® T6500 and 2GB memory. All the programs are 

coded in Matlab® language. 

5.2 Simulation Results 

First, we randomly run a lot of cases and pay attention to the 

number of traffic on road 8, and three randomly selected cases 

are shown in Fig.3. 

In Fig.3 we can see that the value of x8 during the entire 

simulation process is all along below (sometimes slightly 

surpass) the upper limit line (dotted line). It is believed that 

our chance constraints can perform well to prevent the 

congestion. 

Second, the comparison tests were performed. On one hand, 

we use a centralized MPC tool to solve the original 

deterministic problem without considering the chance 

constraints (i.e. we have no concern on whether the volume of 

traffic is saturated or not). In this case, other parameters such 

as the structure of network, the vehicle inflow into the 

network, the turning rate of each intersection, etc. are same 

with the first simulation. On the other hand, we use our novel 

approach to solve the uncertain problem aforementioned. The 

comparison results on objective P1 (including x8) are shown in 

table.1. 

 
Fig.3. Three randomly selected cases that the state x8 varies 

during the simulation

 

The value 200 in the first column means the initial states of 

the roads (the number of traffic on the road) except road 8 are   

randomly generated in [0,200], and we repeat 10 times 

randomly for one case. Table.1 indicates that the proposed 

approach performs about 5% worse than the original approach 

as the cost to guarantee the safety of arties, the reason for that 

is the solution generated by the new approach concerns on 

chance constraints and leads to the performance loss on P1. 

There is no free lunch. 

 

Remark: 

2Table 1.3The performance comparison on objective P1 with 

the same initial parameters. 

 

1) During the simulation, we find that the optimization 

computation spends most of the time on those cases when the 

number of traffic gets close to upper limit of the road 8. 

Because the constraints are tight and considerable instances 

will be exhausted on the integrate term at these cases. 

2) The believe level can be changed according to the situation 

of the road. More tolerable on over-saturation, less value of p 

can be assigned. 

 

 6. CONCLUSION 

In our research, we pay attention to the arteries in traffic 

network which usually undertake stressed load in the traffic 

peak time. To prevent the congestion happening at these roads, 

we build a chance constrains programming model and 

relevant random MPC strategy. Based on the previous 

knowledge to estimate the multi-variable distribution of the 

inflow to these arteries, we compared with the classic MPC 

algorithm, the new algorithm has two differences as follows: 

1) Our approach focus far more on the safety of the arteries. 

We successfully guarantee the security of the arteries with a 

smooth varying control signal and it is quite significant for the 

traffic participants. 

2) We have to sacrifice the performance of objective P1 to 

make our solution robust. The comparison in table.1 indicates 

that the original algorithm is a little outperformed than ours on 

the objective P1. It means that our approach is “lucrative” for 

the traffic system since limited capacity of non-arteries is 

scarified. 

Thus, the advantage of our work is that by considering the 

inflow uncertainty, we introduce the chance constraints term 

into original deterministic model to prevent over-saturated 

happening on the arteries. 

In our opinion, an update and more realistic algorithm can be 

built up as a switch control system integrating our algorithm 

with other regular MPC algorithms. When the traffic load is 

light, the original MPC approach can be used. While the 

traffic load becomes stressed, our approach should be used. 

On the other hand, Poisson distribution should be investigated 

to make the model more close to the nature of traffic.  Also, a 

lot of other stochastic factors such as accidents, the personal 

driving habits should be taken into account in future works. 

                                                 
2 The column “Origin” shows the performance of deterministic MPC 

while the column “New” shows that of our chance constraints MPC. 

The unit of all the data is vel. 
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Case1

Case2

Case3

Threshold

Volume of the artery

Signal input u

Object 

(106) 

200 300 400 

Origin New Origin New Origin New 

1 6.24 6.72 8.92 9.18 8.80 9.94 

2 5.40 5.98 6.73 7.07 13.4 14.4 

3 5.27 5.71 9.60 10.00 10.5 11.4 

4 7.45 7.70 5.77 6.14 10.1 10.4 

5 6.24 6.55 8.21 8.53 9.23 10.0 

6 5.29 5.85 7.99 8.80 11.8 12.6 

7 6.66 6.93 7.32 7.92 9.04 9.31 

8 7.26 7.69 8.51 8.84 7.89 8.56 

9 5.56 6.06 7.09 7.30 12.1 12.9 

10 5.49 5.73 8.20 8.41 11.2 11.8 

Worse 6.92% 4.95% 6.67% 
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