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Abstract Accurate uncertainty modeling is of key importance in high performance robust control
design. The aim of this paper is to develop a new uncertainty modeling procedure that enhances
the accuracy of the H∞ norm. A frequency response based approach is adopted. The key novelty
of this paper is a new method to address the intergrid error using local parametric modeling
methods. These local polynomial and rational models enhance the estimates at the discrete
frequency grid. Moreover, the presented methods are shown to enhance the intergrid error
estimate. This is illustrated using simulations and experiments on an industrial active vibration
isolation system. Compared to the local polynomial models, local rational models are able to
handle lightly-damped resonances using far fewer data points.
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1. INTRODUCTION

Robustness is of critical importance in feedback con-
trolled systems, since feedback control can lead to per-
formance degradation or even closed-loop instability. An
important example includes an active vibration isolation
system (AVIS), where feedback is used to isolate high-
precision equipment from external disturbances. The un-
derlying feedback control principle is skyhook damping
[Karnopp, 1995]. However, the performance of skyhook
damping is limited by high-frequent parasitic resonance
phenomena. Such model uncertainties can be taken ac-
count explicitly in a robust control design, see, e.g., Zhang
et al. [2005] and Chida et al. [2008] for approaches based
on H∞ optimization. However, the uncertainty estimation
in these references is based on rough prior assumptions and
hence inaccurate. On the one hand, this can lead to poten-
tially dangerous results, since no stability and performance
guarantees can be given if the estimated uncertainty is too
small. On the other hand, this can also lead to potentially
conservative results, since if the estimated uncertainty is
too large, the resulting controller is robust for an overly
large class of candidate systems.

Several approaches have been developed in the literature
to determine accurate bounds on the model uncertainty.
First, model validation techniques have been developed,
see Poolla et al. [1994] for time domain results and Smith
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and Doyle [1992] for frequency domain results. However,
these results are typically overly optimistic, as is shown in
Oomen and Bosgra [2009]. Second, model-error-modeling
approaches based on parametric system identification with
explicit characterization of bias and variance errors has
been proposed in Ljung [1999]. An important aspect in
these methods is that these require a significant user in-
tervention in the model parameterization step and rely
on assumptions that are asymptotic in the data length.
Third, non-parametric identification approaches have been
adopted, e.g., as in Van de Wal et al. [2002], De Vries
and Van den Hof [1994]. In Van de Wal et al. [2002], an
identified frequency response function is used directly to
evaluate the H∞ norm on a discrete frequency grid. In
De Vries and Van den Hof [1994], an extended method
is presented that bounds the error in between frequency
points in a worst-case approach. However, such worst-case
methods are well-known to be overly conservative [Vinni-
combe, 2001, Section 9.5.2]. Fourth, recently a data-driven
H∞ norm estimation has been developed in Wahlberg
et al. [2010] and Oomen et al. [2014]. This method relies on
a sequence of iterative experiments and directly delivers
an estimate of the H∞ norm, and combines an optimal
experiment design while essentially taking intergrid errors
into account. Recent application of this method in Oomen
et al. [2014] has revealed that these iterative methods lead
to much higher H∞ estimates compared with traditional
frequency response-based methods, thereby underlining
the importance of the intergrid error.

Although recently developed data-driven algorithms pro-
vide an accurate estimation of the H∞ norm, these meth-
ods require a sequence of dedicated iterative experiments.
In addition, the required number of experiments inflates
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in the multivariable case, see Oomen et al. [2014]. The
aim in this paper is to develop a method that provides
accurate estimates of the H∞ norm using data from a
single experiment.

The main contribution of this paper is a new method
for H∞ norm estimation by exploiting recently devel-
oped Local Polynomial Method (LPM) [Schoukens et al.,
2009] and Local Rational Method (LRM) [McKelvey and
Guérin, 2012] identification approaches. These frequency-
local models constitute a golden mean between simple
non-parametric techniques (third approach) and a full
parametric model (second approach). In particular, these
methods lead to an improved frequency response estima-
tion at the standard discrete Fourier transform (DFT)
grid and provide an accurate estimation of the intergrid
behavior.

Contents In Section 2, the problem is formulated and
illustrated on an example. In Section 3, the local modeling
methods – LPM and LRM are introduced, including the
relevant notation. The main contribution of this paper,
which is a new approach for estimating ‖∆‖∞ employing
these local methods, is presented in Section 4. The example
in Section 2.2 is revisited in Section 5. Afterwards, the
technique is illustrated on measurement data of an AVIS in
Section 6. Finally, the obtained results and some challenges
are discussed in Section 7.

2. PROBLEM FORMULATION

Robust control based on H∞ optimization requires a nom-
inal parametric model P̂ and a bound on the model error
∆. After the model P̂ is determined, either through first
principles modeling or system identification, it remains to
determine a bound on the model error ∆. The H∞ norm
of the model error ∆, i.e.

γ = ‖∆‖∞ , sup
ω
|∆(ω)| (1)

for a single-input single-output (SISO) system, or its
weighted form ‖W∆V ‖∞, is a measure that serves an
important purpose in many robust control design method-
ologies that specifies the ‘size’ of the model class for which
a controller is to be designed [Skogestad and Postlethwaite,
2005, Oomen and Bosgra, 2012]. In this paper, the non-
weighted H∞ norm is considered to facilitate the presen-
tation. The proposed approach can be adapted straight-
forwardly to incorporate the weighting filters W and V .

In this paper, a frequency response-based approach is
pursued. When only a limited amount of data is mea-
sured, the frequency resolution of the Frequency Response
Function (FRF) is limited and this can cause unreliable
estimates of ‖∆‖∞ when resonances are present. The goal
of this paper is to obtain an accurate estimate of ‖∆‖∞
using a finite amount of input-output data of a single
(generic) experiment carried out on the set-up explained
below.

2.1 Set-up

Consider the linear time-invariant (LTI) discrete-time
SISO system ∆(q) that is shown in Figure 1. The system
is excited by input signal u∆(n) and the output y∆(n) =

v

u∆ ∆ y∆
y∆0

Figure 1. Model-error system ∆ in open loop.

y∆0(n) + v(n) where v(n) is colored additive noise (i.e.
v(n) = H(q)e(n)). We measure N samples of the input
u∆ and output y∆ and try to determine both the FRF of
∆ and ‖∆‖∞ from this data.

It is emphasized that the presented results in this paper
directly extend to closed-loop systems, as is explained in
detail in Section 6.1.

2.2 Motivating Example

Consider the discrete time (model-error) system ∆ (as in
Figure 1) as unmodeled dynamics:

∆(z) =
0.412z + 0.405

z2 − 1.137z + 0.954
, (2)

with sampling time Ts = 1 s, which is the zero-order-
hold transformed second-order continuous time system.
The input u∆ is white Guassian noise with unit variance
and the disturbing noise variance σ2

v is chosen such that a
signal-to-noise ratio (SNR)

SNR =

√
N−1

∑
n y

2
∆0(n)√

N−1
∑

n v
2(n)

=
σy∆0

σv
≈
‖∆‖2 σu
σv

(3)

of 0 dB at the output is obtained.

Using classical Spectral Analysis (SA) techniques – i.e.
splitting the signals into NS segments, applying a window
before using the discrete Fourier transform (DFT) and
averaging the FRFs over the segments – an FRF of ∆ can
be obtained. In Figure 2, the ensuing FRF for a Hann
window and NS = 1 (no averaging) is shown together
with those obtained using the local modeling methods
introduced in this paper.

From Figure 2 it shows that the SA approach is not advis-
able to estimate ‖∆‖∞, since the frequency resolution is
not dense enough to properly capture the actual resonance
peak. Increasing NS will reduce the variability of this
estimate, at the cost of a decreased frequency resolution,
so it is even more likely to ‘overlook’ a resonance that is
detectable from the data.

2.3 Proposed approach

The proposed in this paper is to use local parametric
modeling methods, including LPM and LRM to

• enhance the FRF estimate of ∆ at the DFT grid; and
• exploit the local parametric models for accurate in-
tergrid error estimation.

A key aspect herein is that the proposed approach does
not require a global parametric model of the error system.

3. LOCAL MODELING METHODS

In the following section the LPM and LRM are introduced
and some practical consideration are given. We first start
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Figure 2. Simulation example revealing that Spectral Anal-
ysis (SA) leads to an underestimate ‖∆‖∞. The pro-
posed approach using Local Rational Method (LRM)
significantly enhances the intergrid estimate as well as
the at-grid estimate. For comparison, it is shown that
Local Polynomial Method (LPM) does not perform
well in this situation. The interpolated LRM and true
∆ almost coincide.

from the global system equations and introduce the ap-
proximations made by the local modeling methods.

The system in Figure 1 can be described, for an infinitely
long data record, by
y∆(n) = ∆(q)u(n) + v(n) = ∆(q)u(n) +H(q)e(n) (4)

where n = t
Ts

is the time instant normalized by the
sampling time Ts, q−1 is the lag operator and both ∆(q)
and H(q) are stable causal real-rational functions. For
the practical situation where the data length is limited
(n ∈ {0, . . . , N − 1}), (4) has to include the influence of
the system transient t∆′(n) and the noise transient tH(n):

y∆(n) = ∆(q)u(n) +H(q)e(n) +

t∆(n)︷ ︸︸ ︷
t∆′(n) + tH(n) (5)

where both transient contributions can be combined into
a single transient term t∆(n).

By applying the DFT

X(k) =
1√
N

N−1∑
n=0

x(n) exp

(
−j2πkn
N

)
(6)

to both sides of (5), its frequency domain equivalent is
obtained:

Y∆(k) = ∆(ωk)U∆(k) + T∆(ωk) + V (k) (7)
The index k corresponds to the kth frequency bin with
frequency ωk = 2πk/(NTs).

3.1 The Local Polynomial Method

The LPM revolves around the observation that the trans-
fer function ∆(ω) and the leakage term T∆(ω) are smooth
over the frequency, and as such can be approximated well
by a Taylor series [Schoukens et al., 2009].

In the LPM these Taylor series are estimated by consider-
ing a local window (r = −NW , . . . , NW ) of 2NW + 1 lines
around each frequency bin k:

∆(ωk+r) ≈ δ0(k) +

NB∑
i=1

δi(k)ri , ∆̃k(r) (8)

T∆(ωk+r) ≈ t0(k) +

NT∑
i=1

ti(k)ri , T̃k(r) (9)

where δi(k) and ti(k) are the (complex-valued) coefficients
of the local polynomials ∆̃k and T̃k. We denote the LPM
as LPM (NW , NB , NT ) to explicitly indicate the degrees
of the polynomials and the local bandwidth. Around each
frequency bin k, δi(k) and ti(k) are obtained by fitting
(7) in least-squares sense with (8) and (9) substituted.
Thereby minimizing the local (linear least-squares) cost
function

NW∑
r=−NW

∣∣∣Y∆(k + r)− ∆̃k(r)U∆(k + r)− T̃k(r)
∣∣∣2 . (10)

At the edges of the frequency grid (where k ≤ NW or k ≥
N
2 −NW ), the local window index r becomes degenerate.
This can be tackled by using e.g. an asymmetric window
around k as is done in [Pintelon et al., 2010a] or by
exploiting the periodicity of the DFT over the frequency
[McKelvey and Guérin, 2012]. In this paper, we limit the
notation to the ‘bulk’ of the frequency grid to enhance the
presentation of the formulas, and tacitly use the former
approach in the actual computation.

Several remarks are appropriate.

• In typical applications of the LPM, mainly the pa-
rameters δ0(k) and t0(k) are of interest, as they are
an improved estimate of the FRF ∆(ωk) and the
spectrum of the leakage T∆(ωk). In contrast, in the
proposed approach in this paper, all δ parameters
are of interest to interpolate the FRF in-between the
frequency grid.
• The LPM (NW , NB , NT ) is used such that the local

fit retains some degrees of freedoms: i.e. 2NW + 1 −
(NB +NT + 2) > 0.
• The separation between ∆ and T∆ in (7) imposes

requirements on the input signal. These requirements
essentially imply that this is only possible if the input
spectrum [U(ωk−NW

) · · · U(ωk+NW
)] is sufficiently

‘rough’ over all frequencies. Importantly, this is the
case for random noise and random phase multisines
[Schoukens et al., 2009].
• Although the LPM is illustrated for the SISO gen-

eralized output error (OE) case, it can be extended
to work for mutiple-input mutiple-output (MIMO)
systems, with feedback and within the errors-in-
variables (EIV) framework as is done in [Pintelon
et al., 2010a,b]. For a more detailed exposition of the
LPM, we also refer to [Schoukens et al., 2006, 2009,
Gevers et al., 2011].

3.2 The Local Rational Method

The LRM builds upon the same basic idea of the LPM,
namely that the transfer function and transient contribu-
tion in (7) are ‘structured’ over frequency. Instead of using
polynomials to capture the local structure, rational models
are used as an approximation [McKelvey and Guérin,
2012].
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In equation (7) that is fitted locally, the different factors
∆(ωk) and T∆(ωk) are expanded into rational functions
instead of polynomials:

∆(ωk+r) ≈
∑NB

i=0 bi(k)ri

1 +
∑NA

i=1 ai(k)ri
=
Bk(r)

Ak(r)
, ∆̃k(r) (11)

T∆(ωk+r) ≈
∑NT

i=0 ti(k)ri

1 +
∑NA

i=1 ai(k)ri
=
Tk(r)

Ak(r)
, T̃k(r). (12)

We denote LRM (NW , NB , NA, NT ) to be the LRM with
the orders and bandwidth defined above. Similarly to
the LPM, these equation can be written in a matrix
formulation for every frequency. The resulting linear least-
squares problem is closely related to the approach of Levy
[1959].

4. LOCAL MODELS FOR H∞ NORM ESTIMATION

In the previous section, the LPM and LRM have been
shown to offer a way to estimate the error-system transfer
function ∆ with a reduced influence of the transient term
T∆. Essentially, this is achieved by approximating ∆ and
T∆ around frequency bin k by the low-order local models
∆̃k and T̃k, being either polynomial or rational functions.
In this section the use of the LPM and LRM is extended
towards an approach that exploits these estimated local
models to obtain a more fine-grained view of the error-
system ∆ specifically geared towards determining ‖∆‖∞.

Remember that evaluating the local model ∆̃k(r) corre-
sponds to the value of ∆’s FRF in the frequency ωk+r

as captured by the local model around ωk. To ease the
notation, denote

∆k(ωk+r) , ∆̃k(r). (13)

As only a discrete grid of ωks is available, the H∞ norm
(1) based on those measurements is

γFRF , max
ωk

|∆ (ωk)| < ‖∆‖∞ = γ (14)

where the discrete grid entails in an underestimate of γ
due to the intergrid error, see also Figure 2.

This raises the question what |∆(ω)| should be for any
value ω not on the grid. Using the LPM/LRM, we notice
that for every ω within the excited frequency grid, two
local models that are adjacent to ω can be found. We
denote those adjacent local models as ∆kL(ω) and ∆kR(ω).
Note that these models are based on the input/output
spectra in the vicinity of ω, hence due to their local
validity additional information can be extracted regarding
the value of ∆(ω). Since they are expressed in a parametric
formulation ((8) for LPM, (11) for LRM), these can be
evaluated locally for a continuous frequency range ω.

With respect to estimating |∆| in the H∞ norm (1),
this means that we have two candidate values that carry
information:

∣∣∆kL(ω)(ω)
∣∣ and ∣∣∆kR(ω)(ω)

∣∣. In view of the
worst-case nature of the H∞ norm, a suitable solution is
to use the largest value: max

{∣∣∆kL(ω)(ω)
∣∣ , ∣∣∆kR(ω)(ω)

∣∣}.
This leads to the following expression for estimating ‖∆‖∞
based on the local models:

̂‖∆LxM‖∞ , max
ω

max
{∣∣∆kL(ω)(ω)

∣∣ , ∣∣∆kR(ω)(ω)
∣∣} . (15)

Instead of formally optimizing (15) over the frequency ω,
this expression can be approximated arbitrarily well by
evaluating the expression on a sufficiently dense frequency
grid. This is the approach we use in the implementation.

5. SIMULATION EXAMPLE REVISITED

In order to get a clear idea of the performance of this
method, we illustrate it applied to a simple discrete-time
resonant second-order system. This corresponds to the
example given in Section 2.2, as depicted graphically in
Figure 1.

If we now take a closer look at the results for LRM (5, 2, 2, 2)
and LPM (3, 2, 2) for this example as shown in Figure 2,
we can see that the LPM is not well-suited to operate
in this setting. Since there are very little points near the
resonance, and a local polynomial model has a hard time
capturing the resonant pole, the obtained FRF estimate is
unreliable. Consequently, the estimated H∞ norm based
on the interpolated local parametric model also is unreli-
able. These observations are corroborated by the results in
[Schoukens et al., 2013], where it is shown that the LPM
requires seven points within the 3 dB bandwidth of the
resonance for a reliable estimate.

In sharp constrast, it can be observed in Figure 2 that the
LRM is able to model the resonance well and yields a great
estimate ‖∆LRM‖∞ = 25.68 dB in the simulation, where
the theoretical value is ‖∆‖∞ = 25.69 dB. This can be
attributed to the fact that the LRM uses a rational model
to locally approximate the actual ∆, which means that
the (resonant) pole is estimated and used to obtain a local
estimate of ‖∆‖∞. These results confirm the advantages of
the proposed method in uncertainty modeling for robust
control design purposes.

6. APPLICATION TO AN AVIS

The proposed method is illustrated on the active vibration
isolation system (AVIS) shown in Figure 3. The AVIS
consists of a support fixed to the ground and a payload
platform, suspended on airmounts, that is free to move
in six degrees of freedom. Moreover, the AVIS is equipped
with six geophones measuring the velocity and eight linear
motors allow to actively compensate for vibration of the
platform. To facilitate the presentation only the vertical
translation is considered, i.e., a SISO error system is
considered.

6.1 Control Framework

To implement the approach in this paper, a suitable un-
certainty structure is employed that addresses the closed-
loop operation of the system. In particular, the so-called
dual-Youla framework is adopted [Hansen et al., 1989,
Anderson, 1998, Douma and Van den Hof, 2005].

This leads to a model set P (as shown in Figure 4) that is
described by

P ,

{
N̂ +Dc∆

D̂ −Nc∆

∣∣∣∣∣ ‖∆‖∞ ≤ γP
}
, (16)

where γP is the H∞ norm that is to be estimated. The
signals u∆ and y∆ in Figure 4 are required. It can be
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Figure 3. Active vibration isolation system (AVIS).

C P̂

P

r1 Nc Dc

∆

r2 D−1
c Nc D̂−1 N̂ yu

u∆

y∆

−

Figure 4. Dual-Youla parametrization of the closed-loop
set-up with controller C, plant model set P and
nominal plant model P̂ .

shown that u∆ can be determined noiselessly. Also y∆

is accessible, but this measurement is disturbed by noise
[Anderson, 1998]. This means that ∆ in Figure 4 can be
estimated in an output error setting equivalent to Figure 1
in the problem formulation.

6.2 Results

We determine an eight-order (global) control-relevant
parametric model P̂ (Figure 5) directly in the co-
prime factorization using the framework of Oomen and
Bosgra [2012] that uses an identical H∞ criterion for
control design and system identification of the form
‖WT (P,C)V ‖∞, with weighting filters W and V and
T (P,C) the transfer function of r1 and r2 to u and y in
Figure 4.

We measure the FRF using five periods of a random phase
quasi-logarithmic multisine excitation [Geerardyn et al.,
2013]. One period consists of 65 536 samples with 1550
excited bins such that ωk ≈ 1.001ωk−1 and fs = 1 kHz.
This signal is applied to the r1 input of the closed-
loop system (keeping the set-point r2 = 0) with an
experimental PID controller Cexp in the loop. The chosen
model provides a reasonable description of the plant,
while some unmodeled dynamics end up in ∆. Next, ∆
is identified non-parametrically by applying the multisine
and calculating the u∆ and y∆ given the estimated P̂ and
known Cexp as in Anderson [1998].

To test the methods on a low-resolution frequency grid,
we use only one out of four excited bins to estimate the
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Figure 5. Measured FRF ( ) and fitted model P̂ ( )
of the AVIS on the top. The dual-Youla ∆ determined
by the proposed method on a coarse ( ) and dense
( ) frequency grid, as validation are shown on the
bottom. Figure 6 shows a zoom of the rectangle.
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Figure 6. Measured ∆ for the AVIS using the LRM
and the proposed interpolation. Clearly, the LRM
leads to a higher peak value. The validity of the
LRM local parametric model is confirmed by the
validation measurement at the dense frequency grid,
which reveals excellent interpolation properties.

LRM (6, 2, 2, 2) of ∆ and apply the proposed interpolation
(15). The LRM applied to the full frequency resolution
data is used as validation for the method. The results
are shown in Figure 5 for the whole frequency band and
Figure 6 for a frequency range where two resonances are
observed and where the results of LPM (4, 2, 2) are shown
for the sparse frequency grid.

In Figure 6 it can be seen that the LPM is not able to rep-
resent these sharp resonances well: the resonance is missed
almost completely by the blue dots. This can attributed
to an insufficient frequency resolution [Schoukens et al.,
2013]. On the other hand, the interpolated LRM on the
coarse grid and the validation data agree within about
5%. The peak value near 328 Hz, is shown to be captured
by the interpolated LRM in agreement with the validation
data. It improves the estimate of ‖∆‖∞ at the DFT grid
by 7.5 dB using the same data record. This is a significant
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improvement that does not rely on an increase in frequency
resolution, or equivalently, measurement time.

This suggests that the local rational models with interpo-
lation are a very reasonable approximation of the actual
∆. The LRM is also able to estimate ‖∆‖∞, even if the
actual peak does not coincide with the discrete frequency
grid.

7. CONCLUSION AND FURTHER RESEARCH

High performance, non-conservative robust control design
requires an accurate estimate of the H∞ norm of the
model error ∆. In this paper, a new approach is presented
that employs so-called local parametric LRM models that
lead to an enhanced estimate of ‖∆‖∞ of a SISO error
system by interpolating between neighboring local models.
In addition, it is illustrated that the LPM is not flexible
enough to handle sharp resonances using very few data
points. The LRM on the other hand is better suited for
that case and is therefore the advisable solution to obtain
a better estimate. The technique is illustrated on a sim-
ulation example where the LRM-based interpolation was
able to retrieve the true H∞ norm. Using measurements
on an AVIS, it is illustrated that the interpolation-based
results can substantially improve ‖∆‖∞. Furthermore, the
results are validated by a detailed validation measurement.
Ongoing research focuses on extending the technique to
MIMO systems and the study of its stochastic properties.
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