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Abstract: The monitoring and optimization of hybridoma cell fed-batch cultures depend on the availabil-

ity of appropriate on-line sensors for the main culture components. A simple and efficient approach to 

maintain hybridoma cultures in the optimal operating conditions is to regulate the substrate concentra-

tions at the critical values (G=Gcrit and/or Gn=Gncrit) such as to control the hybridoma cells at the critical 

metabolism state. However, reliable glucose and glutamine probes are currently rare and/or very expen-

sive on the market and it is necessary to design software sensors which are at same time cheap and relia-

ble and that can be used for online measurement. In this study, the overflow metabolism model is used to 

develop an extended Kalman filter for online estimation of glucose and glutamine in hybridoma cell fed-

batch cultures based on the considered available measurements (biomasses (on-line), lactate and ammo-

nia (on-line or off-line)). The observability conditions are examined, and the performances are analysed 

with simulations of hybridoma cell fed-batch cultures. Glutamine estimation sensitivity is enforced by 

minimizing a cost function combining a usual least-squares criterion with a state estimation sensitivity 

criterion. 

Keywords: hybridoma cultures, bioprocess optimization, software sensors, extended Kalman filter, pa-

rameter identification for state estimation. 



1. INTRODUCTION 

Mammalian cell cultures are widely used for production of 

many recombinant proteins with diagnostic and therapeutic 

applications (Rodrigues et al., 2010; Wurm et al., 2004). The 

high demand for these biopharmaceuticals has led to the 

development of large-scale manufacturing processes.  

Industrial recombinant proteins production is usually 

achieved using fed-batch cultures of mammalian cells. From 

an operational point of view, the main goal is to maximize 

the recombinant protein production and, consequently, the 

biomass production, all in a minimum of time (i.e., to maxim-

ize the biomass productivity). 

The main problem encountered comes from the metabolic 

changes of such strains in the presence of feeding overflow. 

This “overflow metabolism” is a metabolic phenomenon that 

is induced when the rate of substrate consumption exceeds a 

critical value, leading to a by-product formation which inhib-

its the oxidative capacity and the cell growth. It occurs for 

instance in Saccharomyces cerevisiae cultures with aerobic 

ethanol formation, in Pichia pastoris with aerobic methanol 

formation, in Escherichia coli cultures with aerobic acetate 

formation or in mammalian cell cultures with the aerobic 

lactate and ammonia formation. To avoid this undesirable 

effect, controlling cells at the edge of overflow metabolism is 

firstly recommended. Therefore, the substrate concentrations 

must be maintained at the critical level (G=Gcrit and 

Gn=Gncrit) such as to control the cells at the critical metabo-

lism state (Amribt et al., 2013b). These control schemes all 

require the on-line measurement of glucose and glutamine 

concentrations, implying the availability of glucose and glu-

tamine probes or the use of alternative strategies based on 

more basic measurement signals, or software sensors recon-

structing glucose and glutamine from the measurements of 

basic signals as designed in (Hitzmann et al., 2000; Arndt et 

al., 2004; Arndt et al., 2005; Veloso et al., 2009; Dewasme et 

al., 2012). 

In fact there are few sensors which are at the same time cheap 

and reliable and that can be used for online measurement of 

substrates in mammalian cell cultures. The challenge is to 

estimate glucose and glutamine when only a few measure-

ments are available.  

In this work, the focus is placed on the development of an 

extended Kalman filter for online estimation of glucose and 

glutamine in hybridoma cell fed-batch cultures based on the 

overflow metabolism model (Amribt et al., 2013a). In order 

to design the software sensor, biomass concentration is as-

sumed to be measured on-line, while lactate and ammonia are 

assumed to be measured either on-line or off-line.  

The quality of glutamine estimation provided by the extended 

Kalman filter is improved by modifying the numerical values 

of some model parameters based on the minimization of a 

cost function combining a usual least-squares criterion with a 

state estimation sensitivity criterion (Bogaerts and Vande 
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wouwer, 2004). This procedure corresponds to parameter 

identification for state estimation. 

Previous published studies were restricted to the development 

of state observers for reconstructing byproduct in Saccharo-

myces cerevisiae cultures with aerobic ethanol formation 

(Hitzmann et al., 2000; Arndt et al., 2005) and in Escherichia 

coli cultures with aerobic acetate formation (Arndt et al., 

2004; Veloso et al., 2009; Dewasme et al., 2012). The origi-

nality of this paper consists in designing a state observer for 

online estimation of glucose and glutamine in mammalian 

cell cultures with phenomena of overflow metabolism, based 

on parameter identification for state estimation.  

The paper is organized as follows. The overflow metabolism 

model of hybridoma cell fed-batch cultures is briefly present-

ed in Section 2. The observability condition of the system is 

analyzed in Section 3. The extended Kalman filter is devel-

oped and its performances are tested in simulation in Section 

4, while Section 5 presents the parameter identification for 

state estimation procedure and its performances. Final con-

clusions and future work directions are pointed out in Section 

6.  

2. OVERFLOW METABOLISM MODEL 

The metabolism network is described by the following mac-

roscopic reactions linking cells (X), glucose (G), glutamine 

(Gn), lactate (L) and ammonia (N): 

Glucose consumption: LbXaG G          (1) 

Glutamine consumption: NdXcGn Gn 


       (2) 

Glucose overflow metabolism: LG GOver    2         (3) 

Glutamine overflow metabolism: LNGn GnOver    )21(

  
(4) 

where a, b, c and d are the stoichiometric coefficients, and 

φG, φGn, φover-G and φover-Gn are the nonlinear growth rates given 

by: 

)min( maxG1GG ,                                               (5) 

)min( maxGn1GnGn ,            (6) 

)max( maxG1GGOver ,0  
         (7) 

)max( maxGn1GnGnOver ,0  
         (8) 

The kinetic models associated with the global glucose con-

sumption φG1, the global glutamine consumption φGn1, the 

maximum respiratory capacity for glucose φGmax and the 

maximum respiratory capacity for glutamine φGnmax are given 

by:  

V

1GnG

1maxG1G X
GnK

Gn

GK

G


           (9) 

V

N

N

Gn

1maxGn1Gn X
NK

K

GnK

Gn


          (10) 

V2maxGmaxG X            (11) 

V2maxGnmaxGn X            (12) 

During a culture, the cells are likely to change their metabo-

lism because of their limited respiratory capacity. At low 

substrate uptake rates (φG1 < φGmax and φGn1 < φGnmax), glucose 

and glutamine are consumed with biomass growth and me-

tabolites (lactate and ammonia) production without overflow 

metabolism, which is defined as respiratory metabolism. At 

high substrate uptake rates (φG1 > φGmax and/or φGn1 > φGnmax), 

there is a limitation of respiratory capacity, resulting in over-

flow metabolism towards excess metabolites production. The 

state at which overflow metabolism is initiated (φG1=φGmax 

and φGn1=φGnmax) is referred to as critical metabolism. 

The mass balance equations for the system in fed-batch mode 

are: 

VVdGnG
V X

V

F
Xca

dt

dX
           (13) 

dVd
d X

V

F
X

dt

dX
            (14) 

)GG(
V

F
Xm

dt

dG
inOverGVGG           (15) 

)GnGn(
V

F

dt

dGn
inOverGnGn                               (16) 

L
V

F

2

1
2b

dt

dL
OverGnOverGG                          (17) 

N
V

F
d

dt

dN
OverGnGn                          (18) 

F
dt

dV
                   (19) 

where Xv is the viable biomass, Xd is the dead biomass, mG is 

the maintenance coefficients of glucose, V (L) is the reactor vol-

ume, F (L/h) the volumetric feed rate, Gin and Gnin, are the 

concentrations of glucose and glutamine in the feed stream.  

µd is the specific death rate given by: 

 
GnK

K

GK

K

Gnd

Gnd

Gd

Gd
maxdd


                  (20) 

Additionally, an indicator of overflow is proposed for each 

substrate (glucose and glutamine) as follows: 

Gn,G.
max

max1



 









withIndi.over        (21) 

These two indicators of metabolism overflow are positive if 

culture is operated at the state of overflow metabolism. 

The model parameters values and initial conditions of state 

variables are listed in Table 1(Amribt et al., 2013a). 

3.  SYSTEM OBSERVABILITY 

 A fundamental question that arises is to know whether it is 

possible to estimate the state of a system on the basis of a 

specific mathematical model, the knowledge about its inputs 

and some physical measurements. Answering this question 

calls upon the analysis of system observability, which can be 

quite intricate for nonlinear systems. However, this analysis 

can be assessed using canonical forms (Gauthier and Kupka, 

1994; Zeitz, 1984): 
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Table 1. Numerical values of model parameters and initial conditions of state variables 

Parameter Value Parameter Value Initial conditions 

µGmax1 1.0006   mmol/(109 cells.h) KGn1 0.0005   mM Xv0=2.90×105 cells/mL 

µGmax2 0.0283   mmol/(109 cells.h) a 1.1462   109 cells/mmol Xd0=0.1×105 cells/mL 

µGnmax1 0.1992   mmol/(109 cells.h) b 1.2939   mmol/mmol G0=17.17 mM 

µGnmax2 0.0203   mmol/(109 cells.h) c 0.1186   109 cells/mmol Gn0=3.02 mM 

µdmax 0.0111   1/h d 0.3000   mmol/mmol L0=1.12 mM 

KG 23.2350 mM mG 0.0367   mmol/(109 cells.h) N0=0.29 mM 

KGn 0.0004   mM KGd 2.1862   mM V0=0.35L 

KN 0.9931   mM KGnd 0.0020   mM Gin=15mM,   Gnin=9.3mM 

 
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where  is the state vector, y the vector of measured states, fi a 

partition of the nonlinear state equations, q the number of 

partitions. 

To evaluate if the system is observable, one first checks if the 

bioprocess model can be put in the form of (23) by defining 

an appropriate partition, and then the following condition is 

evaluated: 

 1qin
f

rank 1i

1i

i 







1,....,


                (24) 

The objective is to obtain a continuous-time estimation of 

glucose and glutamine from measurements of biomass and 

metabolites (lactate and ammonia). The viable biomass, Xv 

can be measured on-line using a capacitance probe consider-

ing the cells as dipoles and providing permittivity measure-

ments correlated with biomass concentration. Off-line lactate 

and ammonia measurements can be performed by enzymatic 

test kit methods, while on-line predictions can be performed 

by a Near Infra-Red (NIR) probe by correlating frequency 

spectrums with off-line measurements of these metabolites. 

The model equations {(13), (15), (16), (17), (18)} can be put 

in the canonical observability form: 

1
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1 y,
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Note that the differential equation of dead biomass is not 

considered, as Xd does not influence the other states and does 

not need to be estimated. 

The global observability condition is: 

2
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         (29) 

Which, given the model proposed in section 2, is verified if 

G, Gn and N do not vanish.  

4. THE EXTENDED KALMAN FILTER 

The Kalman filter, which is by far the most popular state 

estimation technique used for bioprocess monitoring, is an 

exponential observer that minimizes the variance of the esti-

mation error. If the process model is nonlinear then the filter 

is called extended Kalman filter. Furthermore, it is called 

continuous discrete, if the process model is continuous and 

the measurements are collected at discrete time intervals 

(which is most often the case in bioprocess applications). The 

algorithm proceeds in two steps: a prediction step (corre-

sponding to the time period between two measurement times) 

and a correction step occurring each time a new measurement 

is available. 

Prediction step (between samples): 

1kk ttt,x,uf
dt

dx
 )(          (30) 

T))(()()())(( txAtPtPtxA
dt

dP
         (31) 

Correction step (at sampling times): 

  1TT )()()(
  )t(QCtCPCtPtK kkkk         (32) 

)))()(()()(   kkkkk t(CxtytKtxtx         (33) 

)()()()(   kkkk tCPtKtPtP          (34) 
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where x  is the vector of concentrations of the macroscopic 

components, C the measurements matrix, K the correction 

gain, P the covariance matrix of the state estimation errors, Q 

the covariance matrix of the measurement noise, tk
+
 and tk

-
 the 

time instants characterizing respectively the values before 

and after correction. 

The extended Kalman filter requires the on-line numerical 

integration of the state equation (30) and the Ricatti equation 

(31). The latter involves the matrix A(x) = (f/x)x resulting 

from the model linearization along the predicted state trajec-

tory.  

These equations are solved starting with the initial conditions 

x(0)=x0 and P(0)=P0. For biomass, lactate and ammonia these 

values are best taken from the measured concentrations and 

the measurement error variances at the initial time. For the 

unmeasured component concentrations, these initial values 

can only be guessed based on common sense and process 

knowledge. The nominal values of the unmeasured part of x0 

are chosen as the initial conditions of culture 3 in (Amribt et 

al., 2013a) (see Table 1) with P0=diag([0.3x0]
2
). The noise 

standard deviation is chosen as in Amribt et al. (2013a) (as-

suming the variation coefficients of 10% for the biomass and 

5% for lactate and ammonia). 

The state estimation obtained with 50 runs of an extended 

Kalman filter when varying initial conditions randomly 

around 50% of nominal values and using the measurements 

of biomass, lactate and ammonia (sampling period of 30min) 

are shown in Fig.1. 

It can be observed that in the majority of runs the extended 

Kalman filter estimates accurately the unmeasured glucose 

concentration as well as the measured biomass, lactate and 

ammonia concentrations. However, the unmeasured gluta-

mine concentration is poorly estimated, and the Kalman filter 

only converges locally when the glutamine is depleted. 

 
Fig. 1. Estimation of glucose and glutamine using the measurements (blue circles) of biomass, lactate and ammonia. In black: 

50 runs of extended Kalman filter when varying initial conditions randomly around 50% of nominal values. In blue: model 

evolution. In green: confidence intervals at 95%. 

5. PARAMETER IDENTIFICATION FOR STATE 

ESTIMATION 

To compensate for the lack of sensitivity and convergence of 

the extended Kalman filter with respect to glutamine, the 

numerical values of model parameters are modified based on 

the minimization of a cost function combining the identifica-

tion criterion J(θ) (sum of squared differences between model 

predictions and experimental measurements as in Amribt et 

al. (2013a)) with a state estimation sensitivity measure crite-

rion Fobs(θ) (Bogaerts and Vande wouwer, 2004). 

The new cost function can be defined as: 

)()()(  obsFJF               (35) 

with        










































 

q

1j

p

1i
ij2

1

ij2

1
obs

ff
)(F




T
cond

           (36) 

where “cond” represents the condition number of the matrix 

(the ratio of its largest to its smallest eigenvalue),  is a 

weighting factor, p the number of measurements and q the 

number of experiments. 
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Fig. 2. Evolution of J(θ) and Fobs(θ) as functions of . 
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A problem that arises when using combined cost functions is 

the choice of the weighting factor . In our case, based on the 

evolution of the J(θ) and Fobs(θ) as functions of  (see Figure 

2) the value of 0.1 is retained (significant decrease of Fobs 

with no significant increase of J).  

With this value of  the cost function (35) is minimized 

(function fminsearch in Matlab) and the identified parameters 

are listed in Table 2. The modified model has been validated 

in the same way as the original model; see Amribt et al. 

(2013a). In comparison with Table 1, the values of some 

parameters, particularly µdmax, KGn and KGn1, have changed 

significantly. 

Table 2. Modified values of model parameters 

Parameter Value Parameter Value 

µGmax1 1.5265 KGn1 0.2006 

µGmax2 0.0371 a 0.8757 

µGnmax1 0.1447 b 1.1806 

µGnmax2 0.0222 c 0.0805 

µdmax 0.4753 d 0.4099 

KG 42.7822 mG 0.0352 

KGn 0.2770 KGd 1.7429 

KN 3.5332 KGnd 0.0020 

Estimations of glucose and glutamine with an extended Kal-

man filter using the modified model parameters are shown in  

Figure 3. Significant improvement in the estimation of glu-

tamine can be observed. Therefore, the performances of the 

extended Kalman filter with respect to the variation of initial 

conditions are improved. 

Additionally, Root Mean Square Error (RMSE) (37) of the 

estimations of glucose and glutamine when varying initial 

conditions randomly around 50% of nominal values are 

calculated for an extended Kalman filter using the nominal 

model parameters and the one using the modified model 

parameters, and results are shown in Table 4.  

Nn

)modXXobs(
N

1j

n

1i

2

ij,kij,k

k







 

RMSE        (37) 

where Xobsk,ij is the observed values of variable k (k = glu-

cose or glutamine) at the i
th

 time instant in the j
th

 run, Xmod 

k,ij is the modeled values of variable k at the i
th

 time instant in 

the j
th

 run. 

The glutamine RMSE obtained with the extended Kalman 

filter using the modified model parameters has been reduced 

by a factor 2 in comparison with the extended Kalman filter 

using the nominal model parameters, while, the glucose 

RMSE remains similar. 

 
Fig. 3. Estimation of glucose and glutamine based on modified model parameters and using the measurements (blue circles) of 

biomass, lactate and ammonia. In black: 50 runs of extended Kalman filter when varying initial conditions randomly around 

50% of nominal values. In blue: model evolution. In green: confidence intervals at 95%. 

Table 3. RMSE of glucose and glutamine obtained for 

different extended Kalman filter configurations 

 
Glucose  

RMSE 

Glutamine 

RMSE 

EKF using nominal 

model parameters 
0.7844 0.5423 

EKF using modified 

model parameters 
0.7025 0.3036 

EKF using modified 

model parameters (L 

and N (off-line)) 

0.9177 0.3069 

As reliable probes for on-line measurement of lactate and 

ammonia are rare and more expensive than the one of bio-

mass, an extended Kalman filter using the on-line measure-

ment of biomass (sampling period of 30 min) and off-line 

measurements of lactate and ammonia (sampling period of 12 

hour) is developed, and results are shown in Figure 4. 

It can be observed that the estimations of glucose and gluta-

mine obtained whit an extended Kalman filter using the off-

line measurements of lactate and ammonia are satisfactory 

and the RMSE are similar to the ones obtained with the ex-

tended Kalman filter using the on-line measurements of lac-

tate and ammonia.  
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Fig. 4. Estimation of glucose and glutamine based on modified model parameters and using the measurements (blue circles) of 

biomass (on-line), lactate and ammonia (off-line). In black: 50 runs of extended Kalman filter when varying initial conditions 

randomly around 50% of nominal values. In blue: model evolution. In green: confidence intervals at 95%.  

6. CONCLUSIONS 

One of the difficulties encountered in control and optimiza-

tion of bioprocesses is the lack of reliable on-line sensors, 

which can measure the key process state variables. In this 

paper the design and implementation of an extended Kalman 

filter using the measurements of biomass (on-line), lactate 

and ammonia (off-line) for continuous glucose and glutamine 

estimation in hybridoma cell fed-batch cultures has been 

presented. The observability analysis indicates that the sensor 

configuration is observable.  

The resulting observer efficiently estimates the unmeasured 

glucose concentration, but the glutamine concentration is 

poorly estimated due to a lack of sensitivity of the measured 

output with respect to the unmeasured glutamine. To circum-

vent that problem, the model parameters are identified by 

minimizing a cost function combining the identification crite-

rion with a state estimation sensitivity criterion.  

A perspective is to discuss the estimation performances and 

robustness of the developed extended Kalman filter with 

respect to model uncertainties and measurement noise. This 

will be the subject of further investigation. 
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